
Application Layer
System Architecture: Application Layer
The following explains how the application layer is built and used.

1 Web User Interface
1.1 Web UI Files
1.2 The Build Process
1.3 Servlets and JSPs (JSPUI Only)
1.4 Custom JSP Tags (JSPUI Only)
1.5 Internationalization (JSPUI Only)

1.5.1 Message Key Convention
1.5.2 Which Languages are currently supported?

1.6 HTML Content in Items
1.7 Thesis Blocking

2 OAI-PMH Data Provider
2.1 Sets
2.2 Unique Identifier
2.3 Access control
2.4 Modification Date (OAI Date Stamp)
2.5 'About' Information
2.6 Deletions
2.7 Flow Control (Resumption Tokens)

3 DSpace Command Launcher
3.1 Older Versions
3.2 Command Launcher Structure

Web User Interface

The DSpace Web UI is the largest and most-used component in the application layer. Built on Java Servlet and JavaServer Page technology, it allows end-
users to access DSpace over the Web via their Web browsers. As of Dspace 1.3.2 the UI meets both XHTML 1.0 standards and Web Accessibility
Initiative (WAI) level-2 standard.

It also features an administration section, consisting of pages intended for use by central administrators. Presently, this part of the Web UI is not
particularly sophisticated; users of the administration section need to know what they are doing! Selected parts of this may also be used by collection
administrators.

Web UI Files

The Web UI-related files are located in a variety of directories in the DSpace source tree. Note that as of DSpace version 1.5, the deployment has
changed. The build systems has moved to a maven-based system enabling the various projects (JSPUI, XMLUI, etc.) into separate projects. The system
still uses the familar 'Ant' to deploy the webapps in later stages.

Location Description

[dspace-source]/dspace-jspui/dspace-jspui-api/src/main/java/org/dspace
/app/webui

Web UI source files

[dspace-source]/dspace-jspui/dspace-jspui-api/src/main/java/org/dspace
/app/filters

Servlet Filters (Servlet 2.3 spec)

[dspace-source]/dspace-jspui/dspace-jspui-api/src/main/java/org/dspace
/app/jsptag

Custom JSP tag class files

[dspace-source]/dspace-jspui/dspace-jspui-api/src/main/java/org/dspace
/app/servlet

Servlets for main Web UI (controllers)

[dspace-source]/dspace-jspui/dspace-jspui-api/src/main/java/org/dspace
/app/servlet/admin

Servlets that comprise the administration part of the Web UI

[dspace-source]/dspace-jspui/dspace-jspui-api/src/main/java/org/dspace
/app/webui/util/

Miscellaneous classes used by the servlets and filters

[dspace-source]/dspace-jspui The JSP files

[dspace-source]/dspace/modules/jspui/src/main/webapp This is where you place customized versions of JSPs‚Äîsee 6. JSPUI Configuration and
Customization

[dspace-source]/dspace/modules/xmlui/src/main/webapp This is where you place customizations for the Manakin interface‚ see 7. Manakin [XMLUI]
Configuration and Customization

[dspace-source/dspace/modules/jspui/src/main/resources This is where you can place you customize version of the file.Messages.properties

[dspace-source]/dspace-jspui/dspace-jspui-webapp/src/main/webapp
/WEB-INF/dspace-tags.tld

Custom DSpace JSP tag descriptor

1.
2.
3.
4.

The Build Process

The DSpace Maven build process constructs a full DSpace installation template directory structure containing a series of web applications. The results are
placed in . The process works as follows:[dspace-source]/dspace/target/dspace-[version]-build.dir/

All the DSpace source code is compiled, and/or automatically downloaded from the Maven Central code/libraries repository.
A full DSpace "installation template" folder is built in [dspace-source]/dspace/target/dspace-[version]-build.dir/

This DSpace "installation template" folder has a structure identical to the Installed Directory Layout

In order to then install & deploy DSpace from this "installation template" folder, you must run the following from [dspace-source]/dspace/target
 :/dspace-[version]-build.dir/

ant -D [dspace]/config/dspace.cfg update

Please see the instructions for more details about the Installation process.Installation

Servlets and JSPs (JSPUI Only)

The JSPUI Web UI is loosely based around the MVC (model, view, controller) model. The content management API corresponds to the model, the Java
Servlets are the controllers, and the JSPs are the views. Interactions take the following basic form:

An HTTP request is received from a browser
The appropriate servlet is invoked, and processes the request by invoking the DSpace business logic layer public API
Depending on the outcome of the processing, the servlet invokes the appropriate JSP
The JSP is processed and sent to the browser
The reasons for this approach are:

All of the processing is done before the JSP is invoked, so any error or problem that occurs does not occur halfway through HTML rendering
The JSPs contain as little code as possible, so they can be customized without having to delve into Java code too much
The servlet is always loaded first. This is a very simple servlet that checks the org.dspace.app.webui.servlet.LoadDSpaceConfig dspace-config
context parameter from the DSpace deployment descriptor, and uses it to locate . It also loads up the Log4j configuration. It's important dspace.cfg
that this servlet is loaded first, since if another servlet is loaded up, it will cause the system to try and load DSpace and Log4j configurations,
neither of which would be found.

All DSpace servlets are subclasses of the class. The class handles some basic operations such as creating a DSpace DSpaceServlet DSpaceServlet Cont
 object (opening a database connection etc.), authentication and error handling. Instead of overriding the and methods as one normally ext doGet doPost

would for a servlet, DSpace servlets implement or which have an extra context parameter, and allow the servlet to throw various doDSGet doDSPost
exceptions that can be handled in a standard way.

The DSpace servlet processes the contents of the HTTP request. This might involve retrieving the results of a search with a query term, accessing the
current user's eperson record, or updating a submission in progress. According to the results of this processing, the servlet must decide which JSP should
be displayed. The servlet then fills out the appropriate attributes in the object that represents the HTTP request being processed. This is done HttpRequest
by invoking the method of the object that is passed into the servlet from Tomcat. The servlet then setAttribute javax.servlet.http.HttpServletRequest
forwards control of the request to the appropriate JSP using the method.JSPManager.showJSP

The method uses the standard Java servlet forwarding mechanism is then used to forward the HTTP request to the JSP. The JSP JSPManager.showJSP
is processed by Tomcat and the results sent back to the user's browser.

There is an exception to this servlet/JSP style: , the 'home page', receives the HTTP request directly from Tomcat without a servlet being invoked index.jsp
first. This is because in the servlet 2.3 specification, there is no way to map a servlet to handle only requests made to ' '; such a mapping results in every /
request being directed to that servlet. By default, Tomcat forwards requests to ' ' to . To try and make things as clean as possible, / index.jsp index.jsp
contains some simple code that would normally go in a servlet, and then forwards to using the method. This means home.jsp JSPManager.showJSP
localized versions of the 'home page' can be created by placing a customized in , in the same manner as other JSPs.home.jsp [dspace-source]/jsp/local

[dspace-source]/jsp/dspace-admin/index.jsp, the administration UI index page, is invoked directly by Tomcat and not through a servlet for similar reasons.

At the top of each JSP file, right after the license and copyright header, is documented the appropriate attributes that a servlet must fill out prior to
forwarding to that JSP. No validation is performed; if the servlet does not fill out the necessary attributes, it is likely that an internal server error will occur.

Many JSPs containing forms will include hidden parameters that tell the servlets which form has been filled out. The submission UI servlet (SubmissionCont
 is a prime example of a servlet that deals with the input from many different JSPs. The and hidden parameters (written out by the roller step page Submissi

 method) are used to inform the servlet which page of which step has just been filled out (i.e. which page of the onController.getSubmissionParameters()
submission the user has just completed).

Below is a detailed, scary diagram depicting the flow of control during the whole process of processing and responding to an HTTP request. More
information about the authentication mechanism is mostly described in the configuration section.

https://wiki.lyrasis.org/display/DSDOC17/Directories#Directories-InstalledDirectoryLayout
https://wiki.lyrasis.org/display/DSDOC17/Installation

Flow of Control During HTTP Request Processing

Custom JSP Tags (JSPUI Only)

The DSpace JSPs all use some custom tags defined in , and the corresponding Java classes reside in /dspace/jsp/WEB-INF/dspace-tags.tld org.dspace.
. The tags are listed below. The file contains detailed comments about how to use the tags, so that information is not app.webui.jsptag dspace-tags.tld

repeated here.

layout: Just about every JSP uses this tag. It produces the standard HTML header and <BODY>_tag. Thus the content of each JSP is nested
 tag. The (XML-style)attributes of this tag are slightly complicated--see . The JSPs in the source code inside a _<dspace:layout> dspace-tags.tld

bundle also provide plenty of examples.
sidebar: Can only be used inside a tag, and can only be used once per JSP. The content between the start and end tags is layout sidebar
rendered in a column on the right-hand side of the HTML page. The contents can contain further JSP tags and Java 'scriptlets'.
date: Displays the date represented by an object. Just the one representation of date is rendered currently, but this org.dspace.content.DCDate
could use the user's browser preferences to display a localized date in the future.
include: Obsolete, simple tag, similar to . In versions prior to DSpace 1.2, this tag would use the locally modified version of a JSP if jsp:include
one was installed in jsp/local. As of 1.2, the build process now performs this function, however this tag is left in for backwards compatibility.
item: Displays an item record, including Dublin Core metadata and links to the bitstreams within it. Note that the displaying of the bitstream links
is simplistic, and does not take into account any of the bundling structure. This is because DSpace does not have a fully-fledged dissemination
architectural piece yet. Displaying an item record is done by a tag rather than a JSP for two reasons: Firstly, it happens in several places (when
verifying an item record during submission or workflow review, as well as during standard item accesses), and secondly, displaying the item turns
out to be mostly code-work rather than HTML anyway. Of course, the disadvantage of doing it this way is that it is slightly harder to customize
exactly what is displayed from an item record; it is necessary to edit the tag code (). Hopefully a better org.dspace.app.webui.jsptag.ItemTag
solution can be found in the future.
itemlist, : These tags display ordered sequences of items, collections and communities, showing minimal collectionlist, communitylist
information but including a link to the page containing full details. These need to be used in HTML tables.
popup: This tag is used to render a link to a pop-up page (typically a help page.) If Javascript is available, the link will either open or pop to the
front any existing DSpace pop-up window. If Javascript is not available, a standard HTML link is displayed that renders the link destination in a
window named ' '. In graphical browsers, this usually opens a new window or re-uses an existing window of that name, but if a dspace.popup
window is re-used it is not 'raised' which might confuse the user. In text browsers, following this link will simply replace the current page with the
destination of the link. This obviously means that Javascript offers the best functionality, but other browsers are still supported.
selecteperson: A tag which produces a widget analogous to HTML , that allows a user to select one or multiple e-people from a pop-<SELECT>
up list.

sfxlink: Using an item's Dublin Core metadata DSpace can display an SFX link, if an SFX server is available. This tag does so for a particular
item if the property is defined in .sfx.server.url dspace.cfg

Internationalization (JSPUI Only)
XMLUI Internationalization

For information about XMLUI Internationalization please see: .XMLUI Multilingual Support

The is used to specify messages in the JSPs like this:Java Standard Tag Library v1.0

OLD:

<H1>Search Results</H1>

NEW:

<H1><fmt:message key="jsp.search.results.title"/></H1>

This message can now be changed using the file. (This must be done at build-time: is config/language-packs/Messages.properties Messages.properties
placed in the Web application file.)dspace.war

jsp.search.results.title = Search Results

Phrases may have parameters to be passed in, to make the job of translating easier, reduce the number of 'keys' and to allow translators to make the
translated text flow more appropriately for the target language.

OLD:

<P>Results <%= r.getFirst() %> to <%= r.getLast() %> of <%=r.getTotal() %></P>

NEW:

<fmt:message key="jsp.search.results.text">
 <fmt:param><%= r.getFirst() %></fmt:param>
 <fmt:param><%= r.getLast() %></fmt:param>
 <fmt:param><%= r.getTotal() %></fmt:param>
</fmt:message>

(Note: JSTL 1.0 does not seem to allow JSP <%= %> expressions to be passed in as values of attribute in <fmt:param value=""/>)

The above would appear in the file as:Messages_xx.properties

jsp.search.results.text = Results {0}-{1} of {2}

Introducing number parameters that should be formatted according to the locale used makes no difference in the message key compared to string
parameters:

jsp.submit.show-uploaded-file.size-in-bytes = {0} bytes

In the JSP using this key can be used in the way belov:

<fmt:message key="jsp.submit.show-uploaded-file.size-in-bytes">
 <fmt:param><fmt:formatNumber><%= bitstream.getSize()%></fmt:formatNumber></fmt:param>
</fmt:message>

(Note: JSTL offers a way to include numbers in the message keys as . Setting the parameter as jsp.foo.key = {0,number} bytes <fmt:param
 workes when is a single variable name and doesn't work when trying to use a method's return value instead: value="${variable}" /> variable bitstream.

. Passing the number as string (or using the <%= %> expression) also does not work.)getSize()

Multiple can be created for different languages. See . e.g. you can add German and Canadian French Messages.properties ResourceBundle.getBundle
translations:

https://wiki.lyrasis.org/display/DSDOC17/XMLUI+Configuration+and+Customization#XMLUIConfigurationandCustomization-MultilingualSupport
http://jakarta.apache.org/taglibs/doc/standard-1.0-doc/intro.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/ResourceBundle.html#getBundle(java.lang.String,%20java.util.Locale,%20java.lang.ClassLoader)

Messages_de.properties
Messages_fr_CA.properties

The end user's browser settings determine which language is used. The English language file (or the default server locale) will be Messages.properties
used as a default if there's no language bundle for the end user's preferred language. (Note that the English file is not called – Messages_en.properties
this is so it is always available as a default, regardless of server configuration.)

The tag has been updated to allow dictionary keys to be passed in for the titles. It now has two new parameters: and . dspace:layout titlekey parenttitlekey
So where before you'd do:

<dspace:layout title="Here"
 parentlink="/mydspace"
 parenttitle="My DSpace">

You now do:

<dspace:layout titlekey="jsp.page.title"
 parentlink="/mydspace"
 parenttitlekey="jsp.mydspace">

And so the layout tag itself gets the relevant stuff out of the dictionary. and still work as before for backwards compatibility, and the odd spot title parenttitle
where that's preferable.

Message Key Convention

When translating further pages, please follow the convention for naming message keys to avoid clashes.

For text in JSPs use the complete path + filename of the JSP, then a one-word name for the message. e.g. for the title of use:jsp/mydspace/main.jsp

jsp.mydspace.main.title

Some common words (e.g. "Help") can be brought out into keys starting for ease of translation, e.g.:jsp.

jsp.admin = Administer

Other common words/phrases are brought out into 'general' parameters if they relate to a set (directory) of JSPs, e.g.

jsp.tools.general.delete = Delete

Phrases that relate to a topic (eg. MyDSpace) but used in many JSPs outside the particular directory are more convenient to be cross-strongly
referenced. For example one could use the key below in to provide a link back to the user's :jsp/submit/saved.jsp MyDSpace

(Cross-referencing of keys in general is not a good idea as it may make maintenance more difficult. But in some cases it has more advantages as the
meaning is obvious.)

jsp.mydspace.general.goto-mydspace = Go to My DSpace

For text in servlet code, in custom JSP tags or wherever applicable use the fully qualified classname + a one-word name for the message. e.g.

org.dspace.app.webui.jsptag.ItemListTag.title = Title

Which Languages are currently supported?

To view translations currently being developed, please refer to the of the DSpace Wiki.i18n page

HTML Content in Items

For the most part, the DSpace item display just gives a link that allows an end-user to download a bitstream. However, if a bundle has a primary bitstream
whose format is of MIME type , instead a link to the HTML servlet is given.text/html

So if we had an HTML document like this:

http://wiki.dspace.org/I18nSupport

contents.html
chapter1.html
chapter2.html
chapter3.html
figure1.gif
figure2.jpg
figure3.gif
figure4.jpg
figure5.gif
figure6.gif

The Bundle's primary bitstream field would point to the contents.html Bitstream, which we know is HTML (check the format MIME type) and so we know
which to serve up first.

The HTML servlet employs a trick to serve up HTML documents without actually modifying the HTML or other files themselves. Say someone is looking at c
 from the above example, the URL in their browser will look like this:ontents.html

https://dspace.mit.edu/html/1721.1/12345/contents.html

If there's an image called in that HTML page, the browser will do HTTP GET on this URL:figure1.gif

https://dspace.mit.edu/html/1721.1/12345/figure1.gif

The HTML document servlet can work out which item the user is looking at, and then which Bitstream in it is called , and serve up that bitstream. figure1.gif
Similar for following links to other HTML pages. Of course all the links and image references have to be relative and not absolute.

HTML documents must be "self-contained", as explained here. Provided that full path information is known by DSpace, any depth or complexity of HTML
document can be served subject to those constraints. This is usually possible with some kind of batch import. If, however, the document has been
uploaded one file at a time using the Web UI, the path information has been stripped. The system can cope with relative links that refer to a deeper path, e.
g.

If the item has been uploaded via the Web submit UI, in the Bitstream table in the database we have the 'name' field, which will contain the filename with
no path (). We can still work out what is by making the HTML document servlet strip any path that comes in from the URL, e.g.figure1.gif images/figure1.gif

https://dspace.mit.edu/html/1721.1/12345/images/figure1.gif
 ^^^^^^^
 Strip this

BUT all the filenames (regardless of directory names) must be unique. For example, this wouldn't work:

contents.html
chapter1.html
chapter2.html
chapter1_images/figure.gif
chapter2_images/figure.gif

since the HTML document servlet wouldn't know which bitstream to serve up for:

https://dspace.mit.edu/html/1721.1/12345/chapter1_images/figure.gif
https://dspace.mit.edu/html/1721.1/12345/chapter2_images/figure.gif

since it would just have figure.gif

To prevent "infinite URL spaces" appearing (e.g. if a file linked to , which would link to ...) this behavior can be foo.html bar/foo.html bar/bar/foo.html
configured by setting the configuration property .webui.html.max-depth-guess

For example, if we receive a request for , and we have a bitstream called just , we will serve up that bitstream for the request if foo/bar/index.html index.html
 is 2 or greater. If is 1 or less, we would not serve that bitstream, as the depth of the file is webui.html.max-depth-guess webui.html.max-depth-guess

greater. If is zero, the request filename and path must always exactly match the bitstream name. The default value (if that webui.html.max-depth-guess
property is not present in) is 3.dspace.cfg

Thesis Blocking

The submission UI has an optional feature that came about as a result of MIT Libraries policy. If the parameter in is , an extra block.theses dspace.cfg true
checkbox is included in the first page of the submission UI. This asks the user if the submission is a thesis. If the user checks this box, the submission is
halted (deleted) and an error message displayed, explaining that DSpace should not be used to submit theses. This feature can be turned off and on, and
the message displayed (can be localized as necessary./dspace/jsp/submit/no-theses.jsp

OAI-PMH Data Provider

The DSpace platform supports the (OAI-PMH) version 2.0 as a data provider. This is Open Archives Initiative Protocol for Metadata Harvesting
accomplished using the .OAICat framework from OCLC

The DSpace build process builds a Web application archive,), in much the same way as the Web UI build process described [dspace-source]/build/oai.war
above. The only differences are that the JSPs are not included, and is used as the deployment descriptor. This 'webapp' [dspace-source]/etc/oai-web.xml
is deployed to receive and respond to OAI-PMH requests via HTTP. Note that typically it should be deployed on SSL (protocol). In a typical not https:
configuration, this is deployed at , for example:oai

http://dspace.myu.edu/oai/request?verb=Identify

The 'base URL' of this DSpace deployment would be:

http://dspace.myu.edu/oai/request

It is this URL that should be registered with . Note that you can easily change the ' ' portion of the URL by editing www.openarchives.org request [dspace-
 and rebuilding and deploying .source]/etc/oai-web.xml oai.war

DSpace provides implementations of the OAICat interfaces , and that interface with the DSpace content AbstractCatalog RecordFactory Crosswalk
management API and harvesting API (in the search subsystem).

Only the basic unqualified Dublin Core metadata set export is enabled by default; this is particularly easy since all items have qualified Dublin Core oai_dc
metadata. When this metadata is harvested, the qualifiers are simply stripped; for example, is exposed as unqualified . The description.abstract description

 field is hidden, as this contains private information about the submitter and workflow reviewers of the item, including their e-mail description.provenance
addresses. Additionally, to keep in line with OAI community practices, values of are exposed as values.contributor.author creator

Other metadata formats are supported as well, using other implementations; consult the file described below. To enable a Crosswalk oaicat.properties
format, simply uncomment the lines beginning with . Multiple formats are allowed, and the current list includes, in addition to unqualified DC: Crosswalks.*
MPEG DIDL, METS, MODS. There is also an incomplete, experimental qualified DC.

Note that the current simple DC implementation () does not currently strip out any invalid XML characters that may be org.dspace.app.oai.OAIDCCrosswalk
lying around in the data. If your database contains a DC value with, for example, some ASCII control codes (form feed etc.) this may cause OAI harvesters
problems. This should rarely occur, however. XML entities (such as) are encoded (e.g. to)> >

In addition to the implementations of the OAICat interfaces, there is one main configuration file relevant to OAI-PMH support:

oaicat.properties: This file resides in . You probably won't need to edit this, as it is pre-configured to meet most needs. You [dspace]/config
might want to change the field to more accurately reflect the oldest datestamp in your local DSpace system. Identify.earliestDatestamp
(Note that this is the value of the column in the database table.)last_modified Item

Sets

OAI-PMH allows repositories to expose an hierarchy of sets in which records may be placed. A record can be in zero or more sets.

DSpace exposes collections as sets. The organization of communities is likely to change over time, and is therefore a less stable basis for selective
harvesting.

Each collection has a corresponding OAI set, discoverable by harvesters via the ListSets verb. The setSpec is the Handle of the collection, with the ':' and '
/' converted to underscores so that the Handle is a legal setSpec, for example:

hdl_1721.1_1234

Naturally enough, the collection name is also the name of the corresponding set.

Unique Identifier

Every item in OAI-PMH data repository must have an unique identifier, which must conform to the URI syntax. As of DSpace 1.2, Handles are not used;
this is because in OAI-PMH, the OAI identifier identifies the associated with the . The is the DSpace item, whose metadata record resource resource resour

 is the Handle. In practical terms, using the Handle for the OAI identifier may cause problems in the future if DSpace instances share items with ce identifier

http://www.openarchives.org/
http://www.oclc.org/research/software/oai/cat.shtm
http://www.openarchives.org/

the same Handles; the OAI metadata record identifiers should be different as the different DSpace instances would need to be harvested separately and
may have different metadata for the item.

The OAI identifiers that DSpace uses are of the form:

oai:host name:handle

For example:

oai:dspace.myu.edu:123456789/345

If you wish to use a different scheme, this can easily be changed by editing the value of at the top of the OAI_ID_PREFIX org.dspace.app.oai.
 class. (You do not need to change the code if the above scheme works for you; the code picks up the host name and Handles DSpaceOAICatalog

automatically from the DSpace configuration.)

Access control

OAI provides no authentication/authorisation details, although these could be implemented using standard HTTP methods. It is assumed that all access
will be anonymous for the time being.

A question is, "is all metadata public?" Presently the answer to this is yes; all metadata is exposed via OAI-PMH, even if the item has restricted access
policies. The reasoning behind this is that people who do actually have permission to read a restricted item should still be able to use OAI-based services
to discover the content.

If in the future, this 'expose all metadata' approach proves unsatisfactory for any reason, it should be possible to expose only publicly readable metadata.
The authorisation system has separate permissions for READing and item and READing the content (bitstreams) within it. This means the system can
differentiate between an item with public metadata and hidden content, and an item with hidden metadata as well as hidden content. In this case the OAI
data repository should only expose items those with anonymous READ access, so it can hide the existence of records to the outside world completely. In
this scenario, one should be wary of protected items that are made public after a time. When this happens, the items are "new" from the OAI-PMH
perspective.

Modification Date (OAI Date Stamp)

OAI-PMH harvesters need to know when a record has been created, changed or deleted. DSpace keeps track of a 'last modified' date for each item in the
system, and this date is used for the OAI-PMH date stamp. This means that any changes to the metadata (e.g. admins correcting a field, or a withdrawal)
will be exposed to harvesters.

'About' Information

As part of each record given out to a harvester, there is an optional, repeatable "about" section which can be filled out in any (XML-schema conformant)
way. Common uses are for provenance and rights information, and there are schemas in use by OAI communities for this. Presently DSpace does not
provide any of this information.

Deletions

DSpace keeps track of deletions (withdrawals). These are exposed via OAI, which has a specific mechansim for dealing with this. Since DSpace keeps a
permanent record of withdrawn items, in the OAI-PMH sense DSpace supports deletions 'persistently'. This is as opposed to 'transient' deletion support,
which would mean that deleted records are forgotten after a time.

Once an item has been withdrawn, OAI-PMH harvests of the date range in which the withdrawal occurred will find the 'deleted' record header. Harvests of
a date range prior to the withdrawal will find the record, despite the fact that the record did exist at that time.not

As an example of this, consider an item that was created on 2002-05-02 and withdrawn on 2002-10-06. A request to harvest the month 2002-10 will yield
the 'record deleted' header. However, a harvest of the month 2002-05 will not yield the original record.

Note that presently, the deletion of 'expunged' items is not exposed through OAI.

Flow Control (Resumption Tokens)

An OAI data provider can prevent any performance impact caused by harvesting by forcing a harvester to receive data in time-separated chunks. If the
data provider receives a request for a lot of data, it can send part of the data with a resumption token. The harvester can then return later with the
resumption token and continue.

DSpace supports resumption tokens for 'ListRecords' OAI-PMH requests. ListIdentifiers and ListSets requests do not produce a particularly high load on
the system, so resumption tokens are not used for those requests.

Each OAI-PMH ListRecords request will return at most 100 records. This limit is set at the top of (org.dspace.app.oai.DSpaceOAICatalog.java MAX_RECO
). A potential issue here is that if a harvest yields an exact multiple of , the last operation will result in a harvest with no records in it. RDS MAX_RECORDS

It is unclear from the OAI-PMH specification if this is acceptable.

When a resumption token is issued, the optional and attributes are not included. OAICat sets the of the resumption completeListSize cursor expirationDate
token to one hour after it was issued, though in fact since DSpace resumption tokens contain all the information required to continue a request they do not
actually expire.

Resumption tokens contain all the state information required to continue a request. The format is:

from/until/setSpec/offset

from and are the ISO 8601 dates passed in as part of the original request, and is also taken from the original request. is the number of until setSpec offset
records that have already been sent to the harvester. For example:

2003-01-01//hdl_1721_1_1234/300

This means the harvest is 'from'
, has no 'until' date, is for collection hdl:1721.1/1234, and 300 records have already been sent to the harvester. (Actually, if the original OAI-2003-01-01

PMH request doesn't specify a 'from' or 'until, OAICat fills them out automatically to '0000-00-00T00:00:00Z' and '9999-12-31T23:59:59Z' respectively. This
means DSpace resumption tokens will always have from and until dates in them.)

DSpace Command Launcher

Introduced in Release 1.6, the DSpace Command Launcher brings together the various command and scripts into a standard-practice for running CLI
runtime programs.

Older Versions

Prior to Release 1.6, there were various scripts written that masked a more manual approach to running CLI programs. The user had to issue [dspace]/bin
 and then java class that ran that program. With release 1.5, scripts were written to mask the command. We have left the java /dsrun [dspace]/bin/dsrun

class in the System Administration section since it does have value for debugging purposes and for those who wish to learn about DSpace
programming or wish to customize the code at any time.

Command Launcher Structure

There are two components to the command launcher: the dspace script and the launcher.xml. The DSpace command calls a java class which in turn refers
to that is stored in the directorylauncher.xml [dspace]/config

launcher.xml is made of several components:

<command> begins the stanza for a command
<name>_ _ the name of the command that you would use.name of command </name>
<description>_ _the description of the command </description>
<step> </step> User arguments are parsed and tested.
<class>_ _<the java class that is being used to run the CLI program> </class>
Prior to release 1.5 if one wanted to regenerate the browse index, one would have to issue the following commands manually:

[dspace]/bin/dsrun org.dspace.browse.IndexBrowse -f -r
[dspace]/bin/dsrun org.dspace.browse.ItemCounter
[dspace]/bin/dsrun org.dspace.search.DSIndexer

In release 1.5 a script was written and in release 1.6 the command replaces the script. The stanza from [dspace]/bin/dspace index-init launcher.
 show us how one can build more commands if needed:xml

<command>
 <name>index-update</name>
 <description>Update the search and browse indexes</description>
 <step passuserargs="false">
 <class>org.dspace.browse.IndexBrowse</class>
 <argument>-i</argument>
 </step>
 <step passuserargs="false">
 <class>org.dspace.browse.ItemCounter</class>
 </step>
 <step passuserargs="false">
 <class>org.dspace.search.DSIndexer</class>
 </step>
</command>

.

	Application Layer

