
1.

a.

2.

3.

a.

Technology Overview
DSpace open source software is free to use, and community supported.

DSpace consists of both a frontend (User Interface) and a backend (REST API & other machine interfaces). A brief overview of the technologies used for
each is provided below.

DSpace Frontend (UI) Technologies
DSpace Backend (REST API) Technologies
How the Frontend and Backend interact

DSpace Frontend (UI) Technologies

The DSpace Frontend provides the which allows people to interact with DSpace. It requires a DSpace backend, and cannot be run User Interface
standalone.

The DSpace Frontend is built on the platform, written in the language.Angular Typescript It uses & HTML5 for theming/styling & strives Bootstrap
for WCAG 2.1 AA alignment. The frontend also uses for "server-side rendering", which allows it to function even when Javascript is Angular Universal
unavailable in the browser. For more information on Angular Universal, see the the .Angular University guide

More information on installing the DSpace Frontend can be found in the guide.Installing DSpace

DSpace Backend (REST API) Technologies

The DSpace Backend provides the , which is required by the DSpace Frontend. It also provides additional machine interfaces for interacting with REST API
data in DSpace, such as , , and various command-line (CLI) tools. The DSpace backend can be run OAI-PMH SWORDv2 Server SWORDv1 Server
standalone, but it doesn't provide a user friendly web interface (which is why the DSpace frontend is recommended).

The DSpace Backend is built on , written in Java.Spring Boot The REST API portion of the backend is built on Spring Technologies, including Spring
, , and aligns with . The REST API uses the as a basic web interface for REST Spring HATEOAS Spring Data REST Spring Data REST Hal Browser

exploring the REST API. All REST API responses are returned in JSON format.

The DSpace Backend requires a relational database (usually), used to store all the metadata and relationships between objects. All files PostgreSQL
uploaded into DSpace are stored on the filesystem (any operating system is supported). is also required, and is used to index all objects for Apache Solr
searching/browsing.

More information on installing the DSpace Backend can be found in the guide. More information on the REST API specifically can be Installing DSpace
found in our .REST Contract

How the Frontend and Backend interact

Here is a high level overview of what happens when a user interacts with DSpace when the user interface is running in mode:production

Initial static page via server-side rendering (SSR): When a user initially visits any page in the DSpace user interface (UI), this triggers server-side
rendering (SSR) via . This means that the UI (Javascript) application is run by Node.js. The result is that a Angular Universal on the server static
HTML page is generated, which will be sent back to the user.

This process of rendering the static HTML page will result in Node.js making requests to REST API to gather all the data necessary to
build the HTML page.static

Static page is dynamically replaced by UI application: The user briefly sees the generated static HTML page while the UI (Javascript) application
 . This allows the user to immediately see the DSpace User Interface even before it becomes interactive. As soon is downloading to their browser

as the UI application finishes downloading, it dynamically replaces that static HTML page, making the User Interface interactive to the user. (The
time between the UI page appearing and becoming interactive is usually unnoticeable to a user.) This entire process is handled by Angular

.Universal
Interactions with the UI application send requests to the REST API (client-side rendering): As soon as the UI becomes interactive, it runs entirely
in the user's browser (as any other Javascript application). This means that when the user interacts with the application (by clicking links/buttons
or typing in fields, etc), this will send requests from the user's browser to the REST API (backend). This is called client-side rendering (CSR) as
all HTML is generated within the user's browser.

At this point, every action in the User Interface will generate one or more requests to the REST API to gather necessary data. These
requests are all visible in the user's browser (in the "Network" tab of the browser's "Developer tools").

Keep in mind, SSR can be potentially taxing for very large pages with a lot of objects or data display. This is because Node.js has to make requests to the
REST API to gather all the data for the page before rendering the static HTML. Because of this, we do also document some Performance Tuning
suggestions for the User Interface (e.g. there is an option to cache these SSR generated static pages in order to generate them less frequently).

Some bots and clients may use server-side rendering at all times

For bots or clients , every page request will trigger SSR (server-side rendering). This is because the static HTML page without the ability to run Javascript
can never be dynamically replaced by the User Interface application (in step 2 above). However, this behavior is necessary to support Search Engine

. Some search engine bots cannot run Javascript & therefore cannot index sites which do not generate static HTML pages.Optimization
Running the user interface in development mode disables SSR and may impact SEO

Running the user interface (frontend) in mode will only utilize client-side rendering (CSR) (as described in step 3 above). This means server-development
side rendering (SSR) will never occur, and all HTML will be generated in the user's browser. The result is that bots or clients without the ability to run

 will be unable to interact with the site (which can negatively impact)Javascript Search Engine Optimization

https://wiki.lyrasis.org/display/DSDOC7x/User+Interface
https://angular.io/
https://www.typescriptlang.org/
https://getbootstrap.com/
https://angular.io/guide/universal
https://blog.angular-university.io/angular-universal/
https://wiki.lyrasis.org/display/DSDOC7x/Installing+DSpace
https://wiki.lyrasis.org/display/DSDOC7x/REST+API
https://wiki.lyrasis.org/display/DSDOC7x/OAI
https://wiki.lyrasis.org/display/DSDOC7x/SWORDv2+Server
https://wiki.lyrasis.org/display/DSDOC7x/SWORDv1+Server
https://spring.io/projects/spring-boot
https://spring.io/guides/tutorials/rest/
https://spring.io/guides/tutorials/rest/
https://spring.io/projects/spring-hateoas
https://spring.io/projects/spring-data-rest
https://docs.spring.io/spring-data/rest/docs/current/reference/html/#_the_hal_browser
https://www.postgresql.org/
https://solr.apache.org/
https://wiki.lyrasis.org/display/DSDOC7x/Installing+DSpace
https://github.com/DSpace/RestContract/blob/main/README.md
https://angular.io/guide/universal
https://angular.io/guide/universal
https://angular.io/guide/universal
https://wiki.lyrasis.org/display/DSDOC7x/Performance+Tuning+DSpace
https://wiki.lyrasis.org/pages/viewpage.action?pageId=260899138
https://wiki.lyrasis.org/pages/viewpage.action?pageId=260899138
https://wiki.lyrasis.org/pages/viewpage.action?pageId=260899138

	Technology Overview

