Internationalization
Children Pages

® Enabling Interface Languages in VIVO as an Administrator
® Using VIVO's Internationalization (i18n) Features
® Developing a New Interface Language for VIVO

Summary of this Page

Children Pages
VIVO Language Support
Adding an existing language to your VIVO site
Building VIVO and Vitro language repositories from source (for developers)
Creating new language files for your language
© The locale
© The language files
= Freemarker Templates (.ftl)
" RDF data (.n3, .nt)
® How VIVO supports languages
© Language in the data model
© Language support in VIVO pages
" Structure of the properties files
" Local extension: application vs. theme
Language in Freemarker page templates
Language-specific templates
Language in Java code
Language in JSPs
O Language in JavaScript files
® i18nChecker
© Scanning language properties files
© Scanning Freemarker templates

[e]
[e]
[e]
[e]

VIVO Language Support

When a VIVO site supports a language other than English, that support includes:

® Text that is displayed in the VIVO pages. For example, menus, selections, prompts, tool-tips and plain text.

® Text from terms in the Ontology, which are frequently displayed as links or section headings. Text includes labels and annotations of properties
and classes.

® Text values stored in the data. For example, if a book title is available in both French and English, a French-speaking user sees the French title. If
a title is available only in English, it is displayed, without regard to the user's preference in languages.

Languages can be selected in a variety of ways, depending on the installation parameters:
® A VIVO administrator can configure VIVO to use one of the supported languages.
* Different users may see different languages, depending on the settings in their web browser.

* Different users may select a language from a list of available languages.

VIVO language files are available for English (U.S. and Canadian), Spanish, Brazilian Portuguese, French (Canadian) and German. If you need support for
another language, please inquire of the VIVO mailing lists, to see if another group has the files you need.

Adding an existing language to your VIVO site

In this step by step guide we will use the German language files as an example. Be sure to use the theme 'wilma' or ‘tenderfoot' for this to work without
issues.

® Edit the vi vo_hone_di r/ confi g/ runtine. properties fileinyour VIVO home directory:
© uncomment/add RDFSer vi ce. | anguageFilter = true
© uncomment/add | anguages. sel ect abl eLocal es = en_US, de_DE
® Restart the tomcat
® You should now be able to select your installed language (in this case German) in the header of your VIVO site

For more details, see Enabling Interface Languages in VIVO as an Administrator.

Building VIVO and Vitro language repositories from source (for developers)

® Clone the VIVO-languages and Vitro-languages repositories to your local machine.

https://wiki.lyrasis.org/display/VIVODOC113x/Enabling+Interface+Languages+in+VIVO+as+an+Administrator
https://wiki.lyrasis.org/display/VIVODOC113x/Using+VIVO%27s+Internationalization+%28i18n%29+Features
https://wiki.lyrasis.org/display/VIVODOC113x/Developing+a+New+Interface+Language+for+VIVO
https://wiki.lyrasis.org/display/VIVODOC113x/Enabling+Interface+Languages+in+VIVO+as+an+Administrator
https://github.com/vivo-project/VIVO-languages
https://github.com/vivo-project/Vitro-languages

® Ensure the <ver si on> in the pom xn files for VIVO and Vitro-languages matches the <ver si on> of VIVO you are building against. You may
need to change the version in multiple places in the files.
® Go into each language folder (VI VO- | anguage and Vitro-language) and install them with Maven using nvn i nst al |
® Build VIVO from the VIVO project folder using nvn install -o -s installer/nmy-settings.xm (Note the -o flag, this forces Maven to
use the language projects from your local repository instead of downloading from a remote repository)
® Editthe vi vo_hone_di r/ confi g/ runtine. properties fileinyour VIVO home directory:
© uncomment/add RDFSer vi ce. | anguageFilter = true
© uncomment/add | anguages. sel ect abl eLocal es = en_US, de_DE
® Restart the tomcat
® You should now be able to select your installed language (in this case German) in the header of your VIVO site

Creating new language files for your language

First, contact the VIVO development team. We would love to talk to you. We will be happy to help with any questions you may have and introduce you to
others who may be working on the same language as you are.

When your files are ready, you can make them available to the development team in any way you choose. Note that the VIVO project will release your files
under the Apache 2 License. They will require a Contributor Agreement stating that you agree to the terms in the agreement.

Translating VIVO into your language involves determining a locale, and preparing files as discussed below.

The locale

Your locale is an internationally recognized code that specifies the language you choose, and the region where it is spoken. For example, the locale string f
r_CAis used for French as spoken in Canada, and es_MXis used for Spanish as spoken in Mexico. Recognized codes for languages and regions can be
found by a simple Google search. Here is a list of locales that are recognized by the Java programming language. You may also use this definitive list of
languages and regions, maintained by the Internet Assigned Numbers Authority.

The locale code will appear in the name of each file that you create. In the files that contain RDF data, the locale code will also appear at the end of each
line.

When the locale code appears in file names, it contains an underscore (en_US). When it appears inside RDF data files, it contains a hyphen (en- US).

The language files

You can get the US English (en_US) files from the VIVO-language and Vitro-language among the vivo-project repositories (https://github.com/vivo-project),
to use as a template for your own files.

The process simply consists of duplicating each file having the extension en_US inside VIVO/Vitro -language repositories and renaming the copy using
the locale of the new language. The new files will reside in a directory named after the new locale.

For example, when initializing the languages files for Estonian (et _EE), copying the file vivo_all_en_US.properties will help creating vivo_all_et_EE.
properties. The new file will reside in vivo-languages/et_EE/webapp/src/main/webapp/il8n

In the process of initializing the files for a new language. You will encounter the following types of file:

Text strings (.properties)
These files contain about 1500 words and phrases that appear in the VIVO/Vitro web pages.
These words and phrases have been removed from the page templates, so no programming knowledge is required to translate them.
They appear at different level in the application :

® in Vitro-languages/webapp/src/main/webapp/i18n

® in VIVO-languages/webapp/src/main/webapp/i18n

® in each theme's i18n directory. For instance :

© VIVO-languages/en_US/webapp/src/main/webapp/themes/tenderfoot/i18n and

© VIVO-languages/en_US/webapp/src/main/webapp/themes/wilma/i18n

The application will look for an entry starting with the activated theme (like tenderfoot or wilma), then VIVO and lastly Vitro.

Freemarker Templates (.ftl)

Almost all of the text in the Freemarker templates is supplied by the text strings in the properties files. However, some Freemarker templates are
essentially all text, and it seemed simpler to create a translation of the entire template. These include the hel p and about pages, the Terms of Use
page, and the emails that are sent to new VIVO users.

They are located in:

® Vitro-languages/<locale>/webapp/src/main/webapp/templates/freemarker
® VIVO-languages/<locale>/webapp/src/main/webapp/templates/freemarker/body

https://wiki.lyrasis.org/display/VIVO/Development+Interest+Group
http://www.apache.org/licenses/LICENSE-2.0.html
https://www.oracle.com/java/technologies/javase/jdk11-suported-locales.html
http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry
https://github.com/vivo-project

® VIVO-languages/<locale>/webapp/src/main/webapp/templates/freemarker/visualization/capabilitymap
® VIVO-languages/<locale>/webapp/src/main/webapp/templates/freemarker/visualization/mapOfScience

Here are some examples of templates files to create for Estonian support

Example file names

Vi tro-1anguages/ et _EE/ webapp/ src/ mai n/ webapp/ t enpl at es/ f reemar ker/ sear ch- hel p_et _EE. ft|

Vi tro-1 anguages/ et _EE/ webapp/ src/ mai n/ webapp/ t enpl at es/ freemarker/ternmsCf Use_et _EE. ftl

Vi tro-1 anguages/ et _EE/ webapp/ sr ¢/ mai n/ webapp/ t enpl at es/ f r eemar ker / user Account s- acct Cr eat edEmai | _et _EE. ftl

Vi tro-1 anguages/ et _EE/ webapp/ sr ¢/ mai n/ webapp/ t enpl at es/ f r eenmar ker / user Account s-

acct Cr eat edExt ernal Onl yEmai | _et _EE. ftl

Vi tro-1anguages/ et _EE/ webapp/ sr c/ mai n/ webapp/ t enpl at es/ f r eemar ker / user Account s- conf i r mEnmi | ChangedEnsi | _et _EE.
ftl

Vi tro-1 anguages/ et _EE/ webapp/ sr c/ mai n/ webapp/ t enpl at es/ f r eemar ker/ user Account s-fi rst Ti neExt ernal Enai | _et _EE. ftl
Vi tro-| anguages/ et _EE/ webapp/ src/ mai n/ webapp/ t enpl at es/ f r eemar ker / user Account s- passwor dCr eat edEmai | _et _EE. ft|
Vi tro-1 anguages/ et _EE/ webapp/ sr ¢/ mai n/ webapp/ t enpl at es/ f r eemar ker / user Account s- passwor dReset Conpl et eEmai | _et _EE.
ftl

Vi tro-1 anguages/ et _EE/ webapp/ src/ mai n/ webapp/ t enpl at es/ f r eemar ker / user Account s- passwor dReset Pendi ngEnwi | _et _EE.
ftl

VI VO | anguages/ et _EE/ webapp/ sr ¢/ mai n/ webapp/ t enpl at es/ f r eermar ker / body/ about MapOF Sci ence_et _EE. ft|

VI VO | anguages/ et _EE/ webapp/ sr ¢/ mai n/ webapp/ t enpl at es/ f r eemar ker / body/ about Qr Codes_et _EE. ft|

VI VO | anguages/ et _EE/ webapp/ sr ¢/ mai n/ webapp/ t enpl at es/ f reemar ker/ vi sual i zat i on/ mapCf Sci ence

/ mapOf Sci enceTool tips_et _EE. ftl

Terms of Use (Estonian)

<section id="terns" rol e="region">
<h2>kasut ust i ngi nused</ h2>

<h3>Hoi at used</ h3>

<p>
See ${ternmsf Use. siteNane} veebisait sisaldab materjali; teksti informatsiooni
aval damine tsitaadid, viited ja pildid ikka teie poolt ${ternmsCf Use. siteHost}
ja erinevate kol mandatel e isikutele, nii Uksikisikute ja organi satsi ooni de,
ari-ja nuidu. Sel nd&ral copyrightable Siin esitatud infot VIVO veebilehel ja
katt esaadavaks Resource Description Framework (RDF) andnmed al ates VI VO at
${termsCf Use. siteHost} on nbel dud aval i kuks kasutami seks ja vaba |evitanise
tingi muste kohaselt
<a href="http://creativecomons.org/licenses/by/3.0/"

target="_bl ank" title="creative commons">
Creative Commons CC-BY 3.0
</ a>
litsentsi, mis vdinmaldab teil kopeerida, |evitada, kuvada ja muuta derivaadid
seda teavet teile anda | aenu ${ternmsCf Use. siteHost}.
</ p>
</ section>

RDF data (.n3, .nt)

Data in the RDF models include labels for the properties and classes, labels for property groups and class groups, labels for menu pages and more. Here
is the list of directories where one will have to create required rdf files:

VIVO-languages/<locale>/home/src/main/resources/rdf/il8n/<locale>/applicationMetadata/everytime
VIVO-languages/<locale>/home/src/main/resources/rdf/i18n/<locale>/display/everytime
VIVO-languages/<locale>/home/src/main/resources/rdf/i18n/<locale>/display/firsttime
VIVO-languages/<locale>/home/src/main/resources/rdf/il8n/<locale>/tbox/everytime

In each case, the delivered file in English has a corresponding file with the same name followed by and underscore and the name of the locale. See
illustrations below:

File names (Estonian)

[MIVQ /| anguages/ et _EE/rdf /i 18n/ et _EE/ appl i cati onMetadata/firsttime/classgroups_| abel s_et_EE. n3
[MVQ /Il anguages/ et _EE/rdf/i 18n/ et _EE/ applicati onMetadata/firsttime/ propertygroups_| abel s_et_EE. n3
[MIVQ /| anguages/ et _EE/ rdf /i 18n/ et _EE/ di spl ay/ everyti me/ PropertyConfig_et_EE. n3

[VIVQ /| anguages/ et _EE/ rdf /i 18n/ et _EE/ di spl ay/firsttine/ about Page_et _EE. n3

[MVQ /Il anguages/ et _EE/rdf/i 18n/et _EE/ di splay/firsttime/ nmenu_et_EE. n3

[VIVQ /1l anguages/ et _EE/rdf/i 18n/ et _EE/ tbox/firsttime/vitroAnnotations_et_EE. n3

In each file, labels specify text to be used by VIVO. Each label should be translated and affixed with the appropriate locale tag. See below:

Some classgroups_labels (Estonian)

<http://vi voweb. or g/ ont ol ogy#vitroC assG ouppeopl e>

<http://ww. w3. or g/ 2000/ 01/ r df - schema#l abel > "i ni mresed" @t - EE .
<http://vivoweb. or g/ ont ol ogy#vi troC assG ouppubl i cati ons>

<http://ww. w3. or g/ 2000/ 01/ r df - schema#l abel > "t eadus" @t - EE .
<http://vivoweb. or g/ ont ol ogy#vi troC assG oupor gani zati ons>

<http://ww. w3. or g/ 2000/ 01/ r df - schenma#l abel > "or gani sat si ooni d" @t - EE .
<http://vivoweb. or g/ ont ol ogy#vitroC assG oupactivities>

<http://www. w3. or g/ 2000/ 01/ r df - schema#l abel > "t egevused" @t - EE .

How VIVO supports languages

Language in the data model

The usual form of language support in RDF is to include multiple labels for a single individual, each with a language specifier.

In fact, any set of triples in the data model are considered to be equivalent if they differ only in that the objects are strings with different language
specifiers. If language filtering is enabled, VIVO will display the value that matches the user's preferred locale. If no value exactly matches the locale, the

closest match is displayed.

Consider these triples in the data:

<http://abc. edu/i ndi vi dual / subj ect 1> <http://abc. edu/i ndi vi dual / propertyl> "col ori ng"
<http://abc. edu/indi vi dual / subj ect 1> <http://abc. edu/i ndi vi dual / propertyl> "col ouring" @n- UK .
<http://abc. edu/individual / subj ect 1> <http://abc. edu/indivi dual / propertyl> "col orear" @s .

VIVO would display these values as follows:

User's preferred locale displayed text

en_UK colouring
en_CA colouring
es_MX colorear
fr_FR coloring

Language support in VIVO pages

VIVO uses the Java language's built-in framework for Internationalization. You can find more information in the Java tutorials for resource bundles and prop
erties files.

"Internationalization” is frequently abbreviated as "118n", because the word is so long that there are 18 letters between the first "I" and the last "n".

In the 118n framework, displayed text strings are not embedded in the Java classes or in the Freemarker template. Instead, each piece of text is assigned
a "key" and the code will ask the framework to provide the text string that is associated with that key. The framework has access to sets of properties files,
one set for each supported language, and it will use the appropriate set to get the correct strings.

For example, suppose that we have:

® The text that will appear in an HTML link, used to cancel the current operation, with the key cancel _I i nk.

http://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html
http://docs.oracle.com/javase/tutorial/i18n/resbundle/propfile.html
http://docs.oracle.com/javase/tutorial/i18n/resbundle/propfile.html

® The title of a page used to upload an image, with the key upl oad_i mage_page_title.
® The text of a prompt message, telling users how big an image must be, with the key m ni mum_i nage_di nensi ons.

The default properties file might show the English language versions of these properties, like this:

Excerpt from all.properties

cancel _link = Cancel
upl oad_i nage_page_title = Upl oad i mage
m ni mum_i mage_di mensi ons = M ni num i mage di nensions: {0} x {1} pixels

Notice that the actual image dimensions are not part of the text string. Instead, placeholders are used to show where the dimensions will appear when they
are supplied. This allows us to specify the language-dependent parts of a message in the properties file, while waiting to specify the language-independent
parts at run time.

A Spanish language properties file might show the Spanish versions of these properties in a similar manner:
Excerpt from all_es.properties
cancel _link = Cancel ar

upl oad_i nage_page_title = Subir foto
m ni mum_i mage_di nensi ons = Di nensi ones nininmas de i magen: {0} x {1} pixels

To use these strings in Java code, start with the 118n class, and the key to the string. Supply values as needed to replace any placeholders in the message.

Using 118n strings from Java code

protected String getTitle(String siteNanme, VitroRequest vreq) {
return |18n.text(vreq, "upload_i nage_page_title");

}

private String getPronpt (HttpServletRequest req, int width, int height) {
return 118n.text(req, "mni mum.inage_di nensions", wi dth, height);

}

Similarly, using text strings in a Freemarker template begins with the i 18n() method.

Using 118n strings in a Freemarker template

<#tassign text_strings = i18n() >

${text_strings. cancel _|ink}
</ a>

<p class="note">
${text_strings.m ni rum.inage_di mensi ons(w dth, height)}
</ p>

Here is the appearance of the page in question, in English and in Spanish:

Photo Upload

Current Photo
Upload a photo (pec, GIF or PHG)
| Browse... |

Maximum file size: 5 megabytes
Minimum image dimensions: 200 x 200 pixels

Upload photo or Cancel

Subir foto

Foto actual
Suba foto ureG, GIF, o PNG)
| Browse_.. |

Tamafio maximo de archivo: & megabytes
Dimensiones minimas de imagen: 200 x 200 pixels

o Cancelar

Structure of the properties files
The properties files that hold text strings are based on the Java 118n framework for resource bundles. Here is a tutorial on resource bundles.

Most text strings will be simple, as shown previously. However, the syntax for expressing text strings is very powerful, and can become complex. As an
example, take this text string that handles both singular and plural:

A complex text string

del eted_accounts = Deleted {0} {0, choice, O#accounts |l#account | l<accounts}.

The text strings are processed by the Java 118n framework for message formats. Here is a tutorial on message formats. Full details can be found in the
description of the MessageFormat class.

Local extension: application vs. theme

The Java 118n framework expects all properties files to be in one location. In VIVO, this has been extended to look in two locations for text strings. First, it
looks for properties files in the current theme directory. Then, it looks in the main application area. This means that you don't need to include all of the
basic text strings in your theme. But you can still add or override strings in your theme.

If your VIVO theme is named "frodo", then your text strings (using the default bundle name) would be in

® webapp/thenes/frodo/i18n/all.properties
® webapp/i 18n/all.properties

http://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html
http://docs.oracle.com/javase/tutorial/i18n/format/messageintro.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/MessageFormat.html

If you specify more than one locale for VIVO, this search pattern becomes longer. For example, if your user has chosen Canadian French as his language
/country combination, then these files (if they exist) will be searched for text strings:

webapp/ t henes/ frodo/i 18n/all _fr_CA properties
webapp/i18n/all _fr_CA properties

webapp/ t henes/ frodo/i 18n/al |l _fr. properties
webapp/i18n/all _fr.properties

webapp/ t henes/ frodo/i 18n/al |l . properties
webapp/i 18n/all. properties

When VIVO finds a text string in one of these files, it uses that value, and will not search the remaining files.

Language in Freemarker page templates

Here is some example code from page- hone. ft |

Excerpt from page-home.ftl

<section id="search-honme" rol e="regi on">
<h3>${i 18n().intro_searchvivo} filteredSearch</h3>
<fiel dset>
<l egend>${i 18n() . search_f orn} </ | egend>
<form i d="sear ch- honepage" action="${urls.search}" name="search-home" rol e="search" nethod="post" >
<div id="search-hone-field">
<input type="text" name="querytext" class="search-honepage" val ue="" autocapitalize="off" />
<input type="submit" value="${i 18n().search_button}" class="search" />
<i nput type="hi dden" nanme="cl assgroup" value="" autocapitalize="off" />
</div>

${i 18n().intro_filtersearch}
</ a>
<ul id="filter-search-nav">
%{i 18n().all _capitalized}
<@h. al | A assG oupNanes vCd assG oups! />

</ ul >
</ form
</fieldset>
</section> <!-- #search-home -->

This code lays out all of the formatting and markup, but the actual strings of text are retrieved from the property files, depending on the current language
and locale. Here are the English-language strings used by this code:

English properties used in the example

intro_searchvivo = Search VIVO
search_form = Search form
search_button = Search
intro_filtersearch = Filter search
all _capitalized = All

Language-specific templates

Most Freemaker templates are constructed like the one above; the text is merged with the markup at runtime. In most cases, this results in lower
maintenance efforts, since the markup can be re-structured without affecting the text that is displayed.

In some cases, however, the template is predominantly made up of text, with very little markup. In these cases, it is simpler to rewrite the entire template in
the chosen language.

The Freemarker framework has anticipated this. When a template is requested, Freemarker will first look for a language-specific version of the template

that matches the current locale. So, if the current locale is es_MX, and a request is made for t er nsOf Use. f t |, Freemarker will look for these template
files:

Search order fortermsOf Use. ft |

Current locale is es_MX

ternmsOf Use_es_MX. ftl
ternsOf Use_es. ftl

ternmsOf Use. ftl

Language in Java code
Java code has access to the same language properties that Freemarker accesses. Here is an example of using a language-specific string in Java code:
Excerpt from UserAccountsAddPageStrategy.java

Freemar ker Enai | Message enmi | = Freemar ker Emai | Fact ory. cr eat eNewMessage(vreq) ;
enui | . addReci pi ent (TO, page. get AddedAccount (). get Enai | Address());
emai | . set Subj ect (i 18n. text ("account_created_subject”, getSiteName()));

The properties files contain this line:

English language properties used in the example

account _creat ed_subject = Your {0} account has been created.

Note how the name of the VIVO site is passed as a parameter to the text message.

Language in JSPs

Up through VIVO release 1.10, no attempt has been made to add language support to JSPs.

Language in JavaScript files

To access string properties in JavaScript called from a template, assign the properties to variables in the Freemarker template, and then access those
values from the JavaScript.

For example, the template can contain this:

Excerpt from page-home.ftl

<script>
var i18nStrings = {
countri esAndRegi ons: ' ${i 18n().countries_and_regi ons}"',
statesString: '${i1l8n().map_states_string}"',
</script>

And the script can contain this:

Excerpt from homePageMaps.js

if (area == "global") {
text =" " + i18nStrings.countriesAndRegi ons;
}
else if (area == "country") {
text =" " + i18nStrings.statesString;
}

i18nChecker

'as removed in the 1.12 release (Unable to locate Jira server for this

Of 118n, Unable to locate Jira server for this macro. It

be due to Application Link configuration.

i18nChecker Is a set of Ruby scripts that are distributed with VIVO, inthe uti | i ti es/ | anguageSupport/i 18nChecker directory. Use them to scan
your language properties files and your freemarker templates. The scripts look for common errors in the files.

Scanning language properties files

Warn if a specialized file has no default version.
Warn about duplicate keys, keys with empty values.
Warn about keys that do not appear in the default version.
If the "complete” flag is set,
© Warn if the default version is not found.
© Warn about missing keys, compared to the default version.

Scanning Freemarker templates

® Warn about visible text that contains other than blank space or Freemarker expressions.
® Visible text is:
O Anything that is not inside a tag and not between <script> tags
O title="" attributes on any tags
o alert="" attributes on tags
o alt="" attributes on tags
o]

value="" attributes on <input> tags with submit attributes

	Internationalization

