2022-10-20 DSpace 7 Working Group Meeting

Date

Agenda

Attendees

Current Work
© Project Board
© New Feature development process for 7.5
O Issue Triage process for 7.5

* Notes

Date

20 Oct 2022 from 14:00-15:00 UTC

Location: https://lyrasis.zoom.us/my/dspace?pwd=RTk4QUhISnhPRi9YenVrTFIKbDIIQTO9 (Meeting ID: 502 527 3040). Passcode: dspace
® More connection options available at DSpace Meeting Room

7.5 Release Plan (Tentative)

Rel@ase Schedule:

® Thursday, December 1 (Donated Feature Notification Deadline): Any community members who wish to donate a feature to this release must
notify Tim Donohue by this date (either via email, Slack or GitHub). The DSpace 7 team will then provide feedback on whether it will be possible
to include this feature in the release (based on team member availability and the size of the feature). Early notifications are more likely to get
included in the release.

* Friday, December 23 (Feature PR Creation Deadline): PRs should be created by this date if they are to be reviewed in time for the
release. Please note there is no guarantee that a PR will be included if it is created by this date. Larger PRs are recommended to be created
earlier, as that makes it more likely they can be reviewed in time for inclusion. (Smaller bug fixes are welcome anytime)

® Friday, January 20 (POSSIBLY PUSH TO JAN 27) (Feature PR Review/Test Deadline): All code reviewers or testers should submit their
feedback by this date. Code reviews must be constructive in nature, with resolution suggestions. Any code reviews submitted AFTER this date
will be considered non-blocking reviews. NOTE: Larger PRs or donated PRs may have their own deadlines established for PR creation, review
and merger. This deadline only applies for PRs with no other deadline established.

® Friday, January 27 (Bug PR Creation Deadline): Bug fix PRs are still acceptable after this date if they are very high priority. However, any
submitted after this date will likely need to have pre-assigned reviewers in order to ensure the review can be completed before the PR Merge
Deadline.

® Friday, February 3 (PR Merge Deadline): All PRs should be merged by this date. (Note: bug fixes can still get in after this deadline, as long as
they are small or important)

® Week of February 6 (Documentation & Release Week): Any merged PRs which don't have minimal documentation (how to enable / configure)
MUST have documentation created this week. Later in this week (around Thurs) will be the 7.4 release.

® Monday, February 13 (POSSIBLY PUSH TO FEB 20): Public Release Announcement. 7.4 will be announced/released by this date.

Ongoing/Weekly tasks:

® Tackle/Claim issues on 7.5 board (starting with "high priority")
® Review/test all PRs assigned to you for review/testing: https://github.com/pulls/review-requested (Prioritize reviews of "high priority" PRs first)

Agenda

® (30 mins) General Discussion Topics
1. 7.5 Planning
a. Rough schedule above, loosely based on 7.4 schedule. (NEW: "Documentation week")
b. Step through Tiers & assign features in Tier 2 and Tier 3. See DSpace Release 7.0 Status
2. Updates / Brainstorms about improving initial response speed of DSpace 7 Ul ? See DSpace 7 Ul Optimization Analysis
a. Possible performance issues Tim has found in Angular Ul:
i. Some libraries we use are quite large & take up a lot of space in main.js. Some fixes already (which decrease main.js
by ~81KB gzipped):
1. https://github.com/DSpace/dspace-angular/pull/1903 (Replace momentjs, saving 66KB)
2. https://github.com/DSpace/dspace-angular/pull/1908 (Shrink Klaro by translating it ourselves, saving 15KB)

ii. "Shared" module (/src/app/shared) is massive (151KB gzipped) and is all included in main.js. It likely needs to be
broken up into many smaller "shared" modules which can be lazy loaded where needed.

ii. Not always lazy-loading or delaying download of larger features, resulting in larger initial download before the page is
drawn. For instance, it'd be ideal to lazy load Klaro (which is a large library) after the initial page loads. (It's
recommended by Klaro to use deferred loading)

iv. Main.js could potentially be shrunk to only include code & dependencies needed on all pages (e.g. header/footer, core
modules, core dependencies, etc). It's 877KB gzipped and it really should be half that size or less.

1. All other modules should be lazy-loaded on the pages where they are used.
3. (Other topics?)
® (30 mins) Planning for next week
© Review the Backlog Board - Are there any tickets here stuck in the "Triage" column? We'd like to keep this column as small as possible.
© Review the 7.5 Project Board - Assign tickets to developers & assign PRs to reviewers.
® Paid (by DSpace project) developers must keep in mind priority. If new "high" or "medium" priority tickets come in, developers
should move effort off of "low" priority tasks.


http://www.timeanddate.com/worldclock/fixedtime.html?hour=14&min=0&sec=0&p1=0
https://lyrasis.zoom.us/my/dspace
https://wiki.duraspace.org/display/DSPACE/DSpace+Meeting+Room
https://wiki.lyrasis.org/display/~tdonohue
https://github.com/orgs/DSpace/projects/22
https://github.com/pulls/review-requested
https://wiki.lyrasis.org/display/DSPACE/DSpace+Release+7.0+Status
https://wiki.lyrasis.org/display/DSPACE/DSpace+7+UI+Optimization+Analysis
https://github.com/DSpace/dspace-angular/pull/1903
https://github.com/DSpace/dspace-angular/pull/1908
https://heyklaro.com/docs/integration/overview
https://angular.io/guide/lazy-loading-ngmodules
https://github.com/orgs/DSpace/projects/10
https://github.com/orgs/DSpace/projects/22

" Volunteer developers are allowed to work on tickets regardless of priority, but ideally will review code in priority order

Attendees

Tim Donohue

Natalie Baur

Art Lowel (Atmire)

Andrea Bollini (4Science)
Lieven Droogmans
Giuseppe Digilio (4Science)
Ben Bosman

Paulo Graga

Mark H. Wood
Pascal-Nicolas Becker

Current Work

Project Board
DSpace 7.5 Project Board: https://github.com/orgs/DSpace/projects/22

To quickly find PRs assigned to you for review, visit https://github.com/pulls/review-requested (This is also available in the GitHub header under "Pull
Requests Review Requests")

New Feature development process for 7.5

® For brand new Ul features, at a minimum, the Ul ticket should contain a description of how the feature will be implemented
o If the Ul feature involves entirely new User Interface interactions or components, we recommend mockups or links to examples
elsewhere on the web. (If it's useful, you can create a Wiki page and use the Balsamiq wireframes plugin in our wiki)
© Feature design should be made publicly known (i.e. in a meeting) to other Developers. Comments/suggestions must be accepted for
TWO WEEKS, or until consensus is achieved (whichever comes first). After that, silence is assumed to be consent to move forward
with development as designed. (The team may decide to extend this two week deadline on a case by case basis, but only before the
two week period has passed. After two weeks, the design will move forward as-is.)
© This does mean that if a Ul feature is later found to have design/usability flaws, those flaws will need to be noted in a bug ticket (to
ensure we don't repeat them in other features) and fixed in follow-up work.
® For brand new REST features (i.e. new endpoints or major changes to endpoints), at a minimum we need a REST Contract prior to
development.
© REST Contract should be made publicly known (i.e. in a meeting) to other Developers. Comments/suggestions must be accepted for
TWO WEEKS, or until consensus is achieved (whichever comes first). After that, silence is assumed to be consent to move forward
with development. (The team may decide to extend this two week deadline on a case by case basis, but only before the two week period
has passed. After two weeks, the design will move forward as-is.)
© This does mean that some REST features may need future improvement if the initial design is found to later have RESTful design
flaws. Such flaws will need to be noted in a bug ticket (to ensure we don't repeat them in other features) and fixed in follow-up work.
© REST API Backwards Compatibility support
= During 7.x development, we REQUIRE backwards compatibility in the REST API layer between any sequential 7.x
releases. This means that the 7.1 REST API must be backwards compatible with 7.0, and 7.2 must be compatible with 7.1, etc.
® However, deprecation of endpoints is allowed, and multi-step 7.x releases may involve breaking changes (but those
breaking changes must be deprecated first & documented in Release Notes). This means that it's allowable for the
7.2 release to have changes which are incompatible with the 7.0 release, provided they were first deprecated in
7.1. Similarly, 7.3 might have breaking changes from either 7.1 or 7.0, provided they were deprecated first.
= After 7.x development, no breaking changes are allowed in minor releases. They can only appear in major releases (e.g. 7.x8.0
or 8.x9.0 may include breaking changes).
®* No new Entity Types will be accepted in 7.x
© Because new out-of-the-box Entity Types require strategic planning, we have decided that we will be unable to accept new Entity Types
in any 7.x release. That said, any newly suggested Entity Types will be passed along to Steering / Leadership so that they may be
considered during the planning of the 8.0 release.
© Enhancements, improvements or bug fixes to the Configurable Entities feature itself, or existing out-of-the-box Entity Types are still
welcome in 7.x. We want to ensure that Configurable Entities is made as stable and usable as possible in 7.x, in preparation for
discussions of new entity types in 8.x and beyond.

Issue Triage process for 7.5

® Overview of our Triage process:
1. Initial Analysis: Tim Donohue will do a quick analysis of all issue tickets coming into our Backlog Board (this is where newly reported
issues will automatically appear).
2. Prioritization/Assignment: If the ticket should be considered for this release, Tim Donohue will categorize/label it (high/medium/low
priority) and immediately assign to a developer to further analysis. Assignment will be based on who worked on that feature in the past.
a. "high priority" label = A feature is badly broken or missing/not working. These tickets must be implemented first, as ideally they s
hould be resolved in the next release. (Keep in mind however that priorities may change as the release date approaches. So, it
is possible that a "high priority" ticket may be rescheduled if it is a new feature that cannot fit into release timelines.)
b. "medium priority" label = A feature is difficult to use, but mostly works.. These tickets might be resolved prior to the next release
(but the release will not be delayed to fix these issues).


https://wiki.lyrasis.org/display/~tdonohue
https://wiki.lyrasis.org/display/~natalie.baur
https://wiki.lyrasis.org/display/~artlowel
https://wiki.lyrasis.org/display/~bollini
https://wiki.lyrasis.org/display/~lievend
https://wiki.lyrasis.org/display/~giuseppe.digilio
https://wiki.lyrasis.org/display/~benbosman
https://wiki.lyrasis.org/display/~paulo_graca
https://wiki.lyrasis.org/display/~mwood
https://wiki.lyrasis.org/display/~pbecker
https://github.com/orgs/DSpace/projects/22
https://github.com/pulls/review-requested
https://balsamiq.com/wireframes/
https://wiki.lyrasis.org/display/~tdonohue
https://github.com/orgs/DSpace/projects/10
https://wiki.lyrasis.org/display/~tdonohue

C.

"low priority" label = A feature has usability issues or other smaller inconveniences or a non-required feature is not working as
expected. These tickets are simply "nice to have" in the next release. We'll attempt to fix them as time allows, but no
guarantees are made.

3. Detailed Analysis: Developers should immediately analyze assigned tickets and respond back within 1-2 days. The developer is
expected to respond to Tim Donohue with the following:

a.
b.
c.
d.

e.

Is the bug reproducible? (If the developer did not understand the bug report they may respond saying they need more
information to proceed.)

Does the developer agree with the initial prioritization (high/medium/low), or do they recommend another priority?

Does the bug appear to be on the frontend/Ul or backend/REST API?

Does the developer have an idea of how difficult it would be to fix? Either a rough estimate, or feel free to create an immediate
PR (if the bug is tiny & you have time to do so).

Are you (or your team) interested in being assigned this work?

4. Final Analysis: Tim Donohue will look at the feedback from the developer, fix ticket labels & move it to the appropriate work Board. If it is
moved to the Project Board, then the ticket may be immediately assigned back to the developer (if they expressed an interest) to begin
working on it.

a.

Notes

If the ticket needs more info, Tim Donohue will send it back to the reporter and/or attempt to reproduce the bug himself. Once
more info is provided, it may be sent back to the developer for a new "Detailed Analysis".


https://wiki.lyrasis.org/display/~tdonohue
https://wiki.lyrasis.org/display/~tdonohue
https://github.com/orgs/DSpace/projects/16
https://wiki.lyrasis.org/display/~tdonohue

	2022-10-20 DSpace 7 Working Group Meeting

