
2024.03.22 Meeting notes

Date

22 Mar 2024
Time: 16:00 (CET)

Meeting link https://tib-eu.webex.com/meet/georgy.litvinov

Attendees

Georgy Litvinov
William Welling
Dragan Ivanovic
Brian Lowe  
Mark Vanin
Miloš Popovi
Ivan Mrsulja

Agenda

Published updated Dynamic API branches
https://github.com/vivo-project/Vitro/tree/dynapi-1.14.1-snapshot
https://github.com/vivo-project/VIVO/tree/dynapi-1.14.1-snapshot

Check style alignment 
Fixed report generator endpoints method
Fixed binary file conversion in json converter
Standard license headings added to java files
Cleaned n3 files
License heading has to be added to n3 files
Configuration bean loader modification

Added implemented by object property
Fixed dynamic api classes and tests to align with configuration bean loader modification
Updated dynamic api class to implementation binding
Align configuration bean loader modifications with main branch https://github.com/vivo-project/Vitro/pull/446
Created new configuration bean loader tests
https://github.com/vivo-project/VIVO/issues/3109
Tests to be added

Authorization policies to support dynamic API to be created
Array implementation using JsonContainer

Additional fixes are needed:
Refactoring of JsonContainer related classes

Meeting notes (transcribed automatically)

Georgy: Okay then we can slowly start and maybe he'll come and maybe Brian will come. We'll see. Okay so as always this meeting will be audio recorded 
and we will have some transcribed meeting notes. 
Feel free to fix them if they're not correct. I don't know if you have looked at some previous meeting notes. We can't hear you, Ivan. Some issues with 
audio, I suppose. Okay. Let's, okay. 
So I don't know if you looked at today's agenda. So first thing is that these dynamic API branches on the top of the latest VITRO and VIVO modifications 
were published in VITRO, in view project VITRO and view project VIVO. 
And there are a few commits to do that, to rebase that. And we will get to that a little bit later. So first big thing that was done is, I don't know if you 
remember that in the development of 1.14 VIVO main branch, 
This check style was enabled by default, so all the Java files not excluded, not specifically excluded, should comply with check style rules and I fixed check 
style validation errors that we have in dynamic API for dynamic API specific classes. 
So there are a lot of fixes, a lot of changes, but that's all just styling, refactoring, so no real code was modified there. So the next point is about the method 
for repo generator endpoints. 
I think Mark will talk about that right before your vacation.  

Mark: Yeah, so I'm currently as well, uh, glancing at, uh, commits and I see like you have changed the default methods from boot to post and some other 
ones regarding reports and writers. So I will look at this one later.  

https://tib-eu.webex.com/meet/georgy.litvinov
https://wiki.lyrasis.org/display/~litvinovg
https://wiki.lyrasis.org/display/~wwelling@library.tamu.edu
https://wiki.lyrasis.org/display/~dragan.ivanovic
https://wiki.lyrasis.org/display/~brianjlowe
https://wiki.lyrasis.org/display/~mark.vanin
https://wiki.lyrasis.org/display/~milospp
https://wiki.lyrasis.org/display/~ivanmrsulja
https://github.com/vivo-project/Vitro/tree/dynapi-1.14.1-snapshot
https://github.com/vivo-project/VIVO/tree/dynapi-1.14.1-snapshot
https://github.com/vivo-project/Vitro/commit/8bde780ce33f7a8c68e85491c1279f35297c2faf
https://github.com/vivo-project/Vitro/commit/b70d04a43e0153cd54be2edc22ee5ed018f1a34b
https://github.com/vivo-project/Vitro/commit/096a0a6cfbc561aacef149259c1a86981fe9cda5
https://github.com/vivo-project/Vitro/commit/4ba6c278bbc8adf7ef6c6160b23394ee5825d1bd
https://github.com/vivo-project/Vitro/commit/4ba6c278bbc8adf7ef6c6160b23394ee5825d1bd
https://github.com/vivo-project/Vitro/commit/958ef9b3af4c38dcff2f38a8983a363cf64efd2a
https://github.com/vivo-project/Vitro/commit/001b8fe1b4a4d0709a057230cb1a9cbf823fc973
https://github.com/vivo-project/Vitro/commit/5fd4a255ca651899844b2e5f3eb6adf674b7987d
https://github.com/vivo-project/Vitro/commit/9f0d6009ce1fd5a71db6b099c3c1886624bbe180
https://github.com/vivo-project/Vitro/commit/8d44a70b3c46c67d048f6c3e4bb758c792b774db
https://github.com/vivo-project/Vitro/pull/446
https://github.com/vivo-project/Vitro/commit/952439f6cd4f755fc65f271a35ff4f4965d8c540
https://github.com/vivo-project/VIVO/issues/3109
https://github.com/vivo-project/Vitro/commit/329fb015b638c2711d1653aef4830fa396005cce


Georgy: Yes. Now that should work without any, anything else right now. Yes, also, as you remember, right, I think on Tuesday, right before you get to a 
vacation, I found this mistake that was in JSON converter where binary files 
were converted back and I changed it, I fixed it. It's not a boolean, of course. It's serialized as a text note and yeah, that should work. So, the next point in 
the agenda is about the standard license hearings, for some reason,
I think in some files we forgot to do that. It's done in all other, I hope, all other VIVO Java classes that we have in VIVO and VITRO projects. So that just 
hitings that I added with the same pattern that we have in VIVO and VITRO. 
So once again, a lot of files, but nothing really changed here. So also, and that may be interesting to you. So I used some prefixes to make current entry 
file a little bit more readable. So instead of having these full URIs everywhere, 
I created prefixes, then in KPI HTTP methods, for example, here you can see implementation type, serialization config. And I think that way it's much more 
readable. And also in case some URI prefix is changed, it's much easier to do that, to fix that. 
So you see it's everywhere here. So for RDF types, so all the files were a little bit improved. So getting... more so I didn't do that, but I plan to add the 
license heating the same way that existing in the Java files and they also exist in some 
VIVO and VITRO files. So we need to have license heatings there just to specify the license of the VIVO project that we use. And yeah, that's not done yet, 
but it's going to be done hopefully soon. Also...  

Mark: Yeah, I can see that there have been lots of improvements and changes in those two weeks, like around five to six pages, like small ones, mostly 
commits. But so, yeah, there have been lots of job done.  

Georgy: Yes, and that's if you go for example to look at this VITRO branches and we go to the commits. So just to explain to you how this rebase worked 
from 1.14 that was a release 1.14.0. to current 1.14.1 snapshot. 
So I created at the start of commits, I created a new commit that reverts all the change made in VIVO main branch and created commit after at the end of 
all of our chain of the comments that puts that back and resolves merge conflicts that we have. 
And also, so maybe I'll show it to you. So it was, I think, somewhere here. So there was a compile error after rebase, and that's the commit to restore this 
change. So we had merge conflicts for model names, configuration triple source, 
configuration model setup, and startup listeners. So not much, so that was more or less easy. Compilers, because we have changed this method, 
applyChangeToWriteModel, so that all the change from custom entry forms go through writing with a RDF service, 
which is able to notify all the listeners about this change. And not only that, but also it it's able to provide the URI of the user so that in the model that called 
audit so that's tool to track changes in VivoGraphs we would be able to see these modifications  
and so yeah I had to wrap it here with a dev service model that's not not ideal, because a dev service model is just a wrapper for a model to be able to 
work with a dev service. Usually that should be avoided, because that's not performant if the model is 
initially from a RDF service and this model should be accessed a different way, but as a temporary solution, until we resolve these difficulties with the RDF 
services, that should work. And that's not very bad right now, but this is something that has to be 
revisited and fixed one day. Yeah, so that was the complication about this rebasement. Sorry, I just wanted to give you more information about that. And 
one of the big problems and maybe you remember if you were on the last meeting was about configuration 
bean loader. And if you can see here, so I created a few commits to modify configuration bean loader. I don't know if you... So there are two files, two Java 
files, configuration RDF parser and configuration bean loader. 
And configuration bean loader basically the service that creates a Java instances from triple source. So it reads the data and creates a Java instances and 
create and is able to provide. So it's basically dependency injection for semantic data. 
So we are able to create big classes with arbitrary complexity by asking this configuration bean loader to load some individual. And this configuration bean 
loader is following all the dependencies in classes and creating the instances. 
And also, so one way to do that is to provide an instance to that. And then another way is to provide a type of a class so that the configuration bean loader 
would find all the real instances that should be loaded. 
For example, we have procedures, as you know, in Dynamic API. And to load all the procedures in procedure pool, we need to find all the procedures first. 
So that's done by configuration bean loader. 
So it finds all the instances and then load them one by one. And we had a problem that previous implementation, so initial implementation done by Jim 
Blake, it loaded data it loaded the triples but 
these triples should be specified as a type with the resource and the URI of this resource should be Java then the path or over the Java class and initially I 
created Java implementation. 
Maybe I'll show it to you here. Initially, I created the binding between the ontology classes and implementation classes. Hi, Dragan.

Dragan: Hello, hello.



Georgy: Initially, the binding between ontology classes and implementation classes was done with RDF subclass of object property. But this object 
property is a transitive and it is used by the reasoner, by the standard ontology reasoner 
that's provided in Jena, in ont model, for example, if you use ont model. And the result of it is that you will have for each individual, you will have all the... If 
it has a hierarchy of classes behind it, then you will have all the implementation types here. 
And then configuration bean loader is confused because it has two main implementations to load one individual and it can decide about it. So the problem 
was to provide information for configuration bean loader to decide that. 
And yeah, and Dragan last week, we discussed that and Dragan, for example, proposed a solution to be able to define the hierarchy of that 
implementations in the same file. So in basically in this file, so we have this implementation. 
So that's a URI of implementation and to provide this way. And yeah, that's a good solution, but I wanted to get a solution where we can fully decouple 
ontology part of dynamic API and the implementation part. 
And if you have to define the hierarchy of Java implementations on the Ontology side, so in the triple store, then people who later working with Ontology 
would have to know something and update information if the implementation part changes. 
So for that reason, I found another solution. I created dynamic API object property. So you see it here, it's dynamic API implemented by. And this 
implemented by property differs from this subclass because it's not the transitive property and it's not used by the 
so you won't have inferred statements. So that's only one part of the problem. So problem with hierarchy on the side of Java implementations, because in 
Java implementations, we can use inheritance and we would like not to have a constraint on that.  
So the other part of that problem. So here you see the query that finds finds the instances by Java implementations. So in this query, this is the old part, 
how it was done. It was not done in this particular query. 
I just implemented it so that would be a fallback for standard we were loading because we will load this file, for example, to load the application itself in 
configuration file application 3. 
And this is the way, so by just specifying that we are looking for URIs that has type and this type is Java URI, specified it here. So we are able to make this 
function work for both for standard view, 
how it was implemented before, and for dynamic API specifics. I think it's a broader concept, I would say. And here you see that this is the function, so find 
URIs that was affected. 
And another one and maybe a little bit more complicated is construct query that I created to be able to find implementations for some individual. And it also 
has a fallback, so you see there is a union and the top left side of that union is a fallback, 
so we find all the types of some individual and filter that they should start with Java. And the right side of this is a way to find out which implementation we 
would like to use because we could have inheritance and more than one ancestor in that 
inheritance might have set this Java implementation object property. And to do that, I use these sparkle path how it's called path property, this asterisk you 
see. So this asterisk means that we are looking for a subclass and it could be not just 
the subject in this property, but it can be indefinitely away from that. And it's also can be so the type also can be interpreted as intermediate class because 
asterisk also means no, so zero distance. 
And the same is done on, so we find these intermediate classes and that's the final class that has this implemented by. And we find the distance between 
our individual and some ontology class with Java implementation. 
And then it's here I group it and I get the distance for each implementation to be able to range. So the fallback has zero distance, of course, but all the 
dynamic API ways to define that have more than zero instance. 
Of course, this query, it's broader, so it can find in a tree-like structures, but of course if you have two, because in ontologies you are able to define more 
than one, so inherit from more than one class, and if these classes 
inheritance chains have some the same ascendant then after that ascendant and on this ascendant it will have wrong priorities but I think that's fair enough 
for our use cases. So I don't think that we will use something like that 
and maybe by that time if we get to that then we would be able to use maybe more full featured sparkle constructs that easily allow us to do so.  

Dragan: So basically, Georgy, you implemented that in both directions, right? So if I have the name of the anthology class, I can get the Java 
implementation of Java Bin for that. That's the second you presented. 
And the previous one you presented, it was for the another direction, right?  

Georgy: So if we have a... Yeah.  First one, if you have a Java implementation name, so class name, then you can find all the individuals. And this one, 
this one, is to find all the Java implementations by individual. 
So for this one we need to find all the implementations and here and that's optimized and limited version so it will provide us for example, results with 0 
distance, with distance 1, with distance 2, with distance 3. 
And I do not limit it here. I have a query that is able in Sparkle to get only the distance 0 distance. But it's much less performant because it's sparkly. It's 
just not performant at all. 
So for that reasons you would see here that after we have these solutions with Java implementation name and the distance, we use only the lowest 
distance. So the first it's sorted with ascending order. 
So the zero will be first the one or two but all of them are more than zero and if we get to a solution that has a different distance so we have maybe two 
with zero distance then we just go out because we are not interested 
we already have two solutions that we are going to use. And only if there are two solutions with the same distance, this will result in the same... How it's 
called... There was an exception where this... Yeah, I think it's here. 
When concrete classes are more than one, then we throw these too many classes exception. But as you can see, a few exceptions will not be thrown. I 
think some of them weren't used at all. But exceptions like is it a URI.
I'm just checking most of that in the query. And if not, then I should do that. And also, I think something else was removed. Yeah, that's confirm eligibility 
for result class, because I think it checks basically absolutely the same thing 
that does other code and it checks it in wrongly. So, yeah, that was removed and that's not needed. So, that was about this configuration with loader. And 
yeah, as I said, maybe here I created this object property that's used there. 
I also use this. So I fixed dynamic API classes. So dynamic API classes would work with that because we also coupled with that implementation. And for 
that reason, for example, I removed this check is it in model for the abstract pool. 
Because I think that maybe I suppose abstract pool should not check that. So it should not be its responsibilities, just too much coupling between the pool 
and the models that it might use. Because we would plan to use different models, 
so different graphs for different data, it doesn't really make sense to have that and re-implement that to check the same thing, but maybe not with these 
object properties, but with the sparkle queries, so that was removed. 
And yeah, and this one I will show that's fixed for implementation binding, this one. So everywhere just subclasses were replaced by implemented by and 
also I think I don't need to provide interfaces anymore because it's just not needed. 
We can infer that from the concrete class in Java. Yeah. Also, Dragan, if you find time, please review and check that pull request that I created. I don't 
know.  

Dragan: This was a draft pull request at one moment, right? And now you switch that to be ready for you, right?  



Georgy: One second. Yeah. Yeah. Two weeks ago that was marked as ready for review on 8th of March and it was almost at the start. And that changed 
only that I cherry-picked these fixes for the Dynamic API branch alignment. 
So what was already in Dynamic API? And today I also cherry-picked this gamete that I was talking about right now. So if you find time, please check that. 
Also, I added some tests because we already had this, 
how it's called, load as URI. Load as URI, what's it called? Annotation, yeah. And load integers and load boolean, so now it's tested. We had that 
functionality in dynamic API, but it wasn't covered with tests. 
Maybe if I find time, I'll add maybe more tests because that's my idea. And that can be added as a new pull request. So feel free to review that because 
the faster it's merged and we align that with the main branch, I think the better.  

Dragan: Yeah, sure.  

Georgy: Yes, so what's next? Yeah, that's what I was talking about. So that's the test. So there is a few tests and modification of the test data. Also, yeah, 
be that I didn't say that alongside with that modification of configuration 
bean loader the test suite takes a little bit more time. So it was 4 minutes before that and now it's 4 minutes and 40 seconds. So something like that. I tried 
to optimize it as much as possible because initially that was 8 minutes. 
Yeah, but I don't think I can do it even faster. Most of the time in test takes for initial initialization for the tests for each class of the test. And yeah, that's 
something that I don't think we can make faster at least right now. 
Also, I would like to, while working with that, I would like to point you to this VIVO issue that we have. There is a discussion, there was a discussion 
between Mike Conlon and Andrew Woods about this modification, VIN configuration bean loader. 
I don't know if you're familiar with that, but this configuration bean loader, is able to load data with different prefixes. Maybe I can show you that. So, yeah. 
So, for example, if in some file we have this prefix that looks like this, 
then configuration bean loader will be able to load that because what it does for each full stop or dot, it replaces this dot with a hashtag and tries to load a 
class with that, tries to find this implementation in a triple store. 
And as you see, so the more, the longer your name of the class or the full name of the class, the more attempts it will try there will be more sparkle queries 
that I may be able to show you the code that related to that. 
So I think it's, yeah, it was somewhere in configuration RDF parser, I suppose. One second, I'll open it to you.  

Dragan: Georgy, the issue is that any package requires some action, right?  

Georgy: The issue is that I think that it's not necessary to try to... No, it's configuration. One second. It's not necessary to really do that, to really try to find 
that. So this is a canonical URI and it's used. Yeah, it's used. 
Yeah, that's I think. So it finds all the possible URIs. So for example, if you provide the configuration bean loader Java URI, it will still split your URI into 
pieces, that's URI pieces. And for each numbers of the dots in your URI, 
it will try, it will produce a new URI with hashtag that replaces one of the dots just it's done for I suppose it's done to make it more because of I don't know 
ontologists friendly how to call it because if we go to the VITRO or 
VIVO main configuration file and we open that configuration file so that's the application setup entry and you see that here you see this java URI and it 
ends with hashtag so that people could use hashtags here and for example close it 
and using URI something like that, oh sorry, something like web app application. I don't think we need that. So much easier thing to support and to work 
with for configuration bean loader, not to spend time to find, uh, 
any possible thing in a triple store is just always have this if we need to define a prefix that ended with dot it's valid. Maybe it's not. It not confirms maybe 
some practices because usually you answer prefixes with slashes or hashtag. 
But it's a different case. We have this Java implementation URI, so it's very specific case, and it's still valid syntax to do it that way. So that's why in this 
issue, I think Mikle Kornel said that the prefixes it's a shortcut and the string 
following the prefix as the text to substitute it for the prefix. So it's basically a thing to replace before parsing URIs. It's nothing specific and we should not 
do it this way. So like it was done. I think, yeah, here it was... 
Sorry, I won't find it. I had a link to that, but I don't remember where it is. So, yeah, that would be much more performant, I suppose, because we traverse 
the triple store a few times just to make it more beautiful. It doesn't make much sense, I think. 
And also, yeah, I wrote it in an agenda that I plan to add maybe more tests for dynamic API specific tests. We'll see how it goes. And also I can say that I 
wasn't able to work on authorization policies yet to support dynamic API. 
As you might remember, last time we discussed that there should be policies that could support authorization, some simple authorization settings that we 
could be able to use in dynamic API procedures. Yeah, also there was this array implementation 
using JSON container, and I merged that, not merged that, I just cherry-picked the code. But it's still not finished. I can say that it more or less work. But we 
need to refactor this JSON container and to heavily modify that. 
But in case you're interesting, yeah, for example, that's the use case even gave me. And by using this use case, for example, if I edit one and use it here 
and then go to a person's and go here. We see that edit this individual and show raw 
statements with resources as a subject. We see that given name has two literals. So that works, but it's not in the comments because it's not ready for 
production code.  

Dragan: Is this going to be possible in another direction, meaning when I'm fetching the person to get in the JSON also the array of those?  

Georgy: Yes, yes, of course. But the current problem is that just the implementation of working with the JSON data is not ready at all. And after the 
modification that I described to you about this configuration bean loader, we don't have this 
constraint between the ontology and Java implementation. And because we don't have it anymore, I'm going to refactor the code a lot. I hope that it 
wouldn't be significant, but... it will make the Java classes more reusable and less bad code. 
I don't know how to call it. So then it will be usable. Now I just created a small fix in my IDE and the fix works and it should work both ways. I would say 
that the second way, I think it's covered with the tests, with the pull request 
that I told you about some minutes ago. But the main reason right now that I need to maybe couple the use cases. So now we have these JSON 
containers, but JSON containers are used not only like, so you can just parse JSON and then you have 
parsed JSON in your instance object. We use Jackson library for that. I think it was the most useful and the most feature rich. And the problem is involves 
that we also would like to have some methods to easily get something from array 
and put something to an JSON array and the same way work with objects. So we created some methods that able to store real implementation of objects 
and how now it works. It saves keys as node values in JSON and then it's the real 
real objects in memory are stored nearby in a hashmap and when the key is requested then it's found from the node value and the value is used as a key 
in a hashmap and then the real object is returned. Now it's a little bit mixed as you might understand. 
So their responsibilities is not only to parse the JSON, input JSON, but it also can be used, for example, to put something real, some already instantiated 
object, not to do the same serialization, deserialization multiple times during procedural execution. 
Yeah, and for that reason it has to be refactored. We'll see, I'll let you know how it's going. I've already started this process. Yeah, so... 



Dragan: Yeah, but we already did refactoring. Is that going to help us to have, let's say, the full control over the needed JSON input and the expected 
JSON output?  

Georgy: Yeah, it will allow us, of course, to have functions that work specifically with arrays, specifically with objects, and we're already able to produce 
some objects and arrays and combine them and create some complicated and maybe complex output, 
JSON output, but the problem is that there is no specific high level library that is able to help you map JSONs easily. And we can just reuse it. So yeah, 
there are something, but not something that can be easily reusable sometimes because of dependencies, 
sometimes because of the license limitations. So right now it's just create an array, put something in an array, and the same with the objects. So that 
simple modifications are easy, but if you compare that with something that I did for GESAH project, 
And if you give me a second, I'll show you that what I'm talking about. So here, this is a repository that I'm working with. And in this repository, dynamic API 
is used. And if we go to the dynamic API, A box. You see there is nothing complicated, 
so algorithm is very basic, so we have a few steps and it checks the presence of something and then it does basically two things. It transform, it makes a 
sparkle construct query. So I think this is the operation export culture object to Lido. 
So that's a sparkle construct query. Then it does the XML transformation. And after XML transformation, it does XML validation via the XML schema. And 
you don't see the XML schema here, of course, and XML transformation. So that's in other files. 
And that's just some parameters that I use here. But if we go to the real XML transformations that exist here, so that's the file and that's just a parameter 
defined here as a string. And that's the mapping itself. And that's not a small mapping, as you see.  
And to do that, so I had to write this file. Yeah, look at that if you are interested and maybe you'll find some mistakes. But this API, so we have this Lido 
export and this Lido is already used and it's already even public on, I think it's called, one second, 
I'll find it, on a graphic portal here. So that's the data from GESAH that was imported here. And yeah, there is a lot of, I think something like...  

Dragan: And this is imported using the Lido format.  

Georgy: Yes, that's all the imported using a Lido format. So maybe in some long... Yeah, we just click here, and so all these 2636 cultural objects are 
imported with this function. Here. And for each one you can see some images, 
some data, and you can go back to the real to the real description of that object and look at maybe even better quality of image because they have 
limitations in their graphic portal on the image quality. Yeah, so if we compare to that, 
so that's not ready and most likely it will require, if you're thinking about this JSON conversion, that it might be much more complicated than it is for the 
XML. And there is, for example, what I'm also planning to do for this JSON is 
finalize maybe validation of JSON because we are able to validate the input JSON and output JSON and at least some basic functionality is there, but I 
don't remember if that's enforced, most likely not. And yeah, that's something to be 
finished and also be the latest updates in VIVO. We don't need a select context for many of our classes anymore. So before, if you're not familiar with the 
issue, all the access to the graphs, it was stored on the context, a select context, 
and to be able to access graphs in runtime, you had to initialize these instances with a select context so that it would be able to queries or add some data 
into the graphs. And now that's converted into the singletons. So there is no need to do that. 
And I already simplified some code in dynamic API and I'm going to continue to do that. Yeah. Do you have any questions and remarks? It's very 
welcomed.  

Dragan: Yeah, it is, but it's not so easy to consume everything you informed us, basically.  

Georgy: Yeah, but overall we have, I think, some good progress. And I expect that after 1.15 is released, our shore to rebase on top of 1.15 will be 
minimal.  

Dragan: Yeah, and you said it's quite important for the main branch to merge the configuration bean loader improvements and that's right?  

Georgy: Yes, I would like to have it synchronized before we somehow find some other problem in configuration bean loader and then we will have diverse 
branches related to this configuration bean loader and yeah, that would be a problem. 
It's not something very urgent, but as it's more or less safe operation and I would like, I would try to add maybe more tests. I would like to see that merged 
as soon as possible, yeah. But nothing like, it's not blocking anything at the moment. 
It just plans for the future.  

Dragan: Yeah, but it should be part for sure of 1.15. Yeah.  

Georgy: Yeah. Yeah. And we talked about the test coverage. I hope we will improve that. With that too. Because I think for dynamic API, we we cover 
more than it's done in VIVO at least. Hopefully this will be improved more because what I've noticed 
that is I covered, for example, I think JSON converter maybe not covered at all or covered insufficiently because I, because a lot of bugs were found in that 
and bugs, I mean, just simple like this simple, maybe typos or just something that I overlook. 
So that should be covered too. And yeah, we are getting better and better. And the next would be, I suppose, to resolve the issues after refactoring, 
resolve the issues where RDF service and we'll see if that will be synchronized with the update of Jena. 
I'm curious about that because our RDF service, maybe I told you, Dragan, that we have... Yeah, I think yesterday we talked about that we have... more 
than one way to access graphs and one, the good way to do that is by using RDF service and the bad one 
is by using these ontology model selectors.  But we can't at this point just get away from ontology model selectors because there is a caching that's done 
outside of RDF service. And this caching is in memory models.  So every model that's initially stored 
in configuration triple store is cached and also the models T-box. So the model related to ontologies that is stored in a content model is also cached. So 
yeah, we need, I think we, I had a conversation with Brian sometime ago that maybe we need to to move 
this caching into RDF service implementation, but most likely we need to even make it configurable because now every model is, and every graph is 
somewhat unique and it's very hard to maintain and it's very hard to, it's not a flexible configuration that we have. 
It should be more flexible. Okay, so that was all I had for today. Do you have anything else? No? Okay. So, have a nice weekend.  

Dragan: Thank you, Georgy. Thank you for a nice presentation.  

Georgy: Thank you.Thank you.Have a nice weekend. Have a nice day. Bye-bye. 

Ivan: You too. Bye-bye.  

Mark: Have a nice week.  




	2024.03.22 Meeting notes

