
Embargo

1 What is an Embargo?
2 DSpace Embargo Functionality

2.1 Managing Embargoes on existing Items
3 Configuring and using Embargo in DSpace Submission User Interface

3.1 Introduction
3.2 Configuring the Embargo UI
3.3 Submission Process

3.3.1 item-submission.xml
3.3.2 Simple Embargo Settings

3.3.2.1 AccessStep
3.3.2.2 UploadWithEmbargoStep

3.3.3 Advanced Embargo Settings
3.3.3.1 AccessStep
3.3.3.2 UploadWithEmbargoStep
3.3.3.3 Restrict list of displayed groups to specific (sub)groups

3.4 Private/Public Item
3.5 Pre-3.0 Embargo Migration Routine

4 Technical Specifications
4.1 Introduction
4.2 ResourcePolicy
4.3 Item
4.4 Item.inheritCollectionDefaultPolicies(Collection c)
4.5 AuthorizeManager
4.6 Withdraw Item
4.7 Reinstate Item
4.8 Pre-DSpace 3.0 Embargo Compatibility

5 Creating Embargoes via Metadata
5.1 Introduction
5.2 Setting Embargo terms via metadata

5.2.1 Terms assignment
5.2.2 Terms interpretation/imposition
5.2.3 Embargo period

5.3 Configuration of metadata fields
5.4 Operation
5.5 Extending embargo functionality

5.5.1 Setter
5.5.2 Lifter

What is an Embargo?

An embargo is a temporary access restriction placed on metadata or bitstreams (i.e. files). Its scope or duration may vary, but the fact that it eventually
expires is what distinguishes it from other content restrictions. For example, it is not unusual for content destined for DSpace to come with permanent
restrictions on use or access based on license-driven or other IP-based requirements that limit access to institutionally affiliated users. Restrictions such as
these are imposed and managed using standard administrative tools in DSpace, typically by attaching specific access policies (or "resource policies") to
Items, Collections, Bitstreams, etc.

Embargo functionality was originally introduced as part of DSpace 1.6, enabling embargoes on the level of items that applied to all bitstreams included in
the item. Since DSpace 3.0, this functionality has been extended to the Submission User Interface, enabling embargoes on the level of individual
bitstreams.

DSpace Embargo Functionality

Embargoes can be applied per and per . The level embargo will be the default for every , item (including metadata) bitstream (i.e. file) item bitstream
although it could be customized at level.bitstream

When an embargo is set on either an item level or a bitstream level, a new ResourcePolicy (i.e. access policy) is added to the corresponding Item or
Bitstream. An embargo lift date is This ResourcePolicy will automatically control the lifting of the embargo (when the embargo date passes).
generally stored as the "start date" of such a policy. This means that the access rights defined in the policy do not get applied until (aafter that date passes
nd prior to that date, the access rights will default to Admin only).

The scheduled, manual "embargo-lifter" commands (used prior to DSpace 3) are no longer necessary and not recommended to run.

Managing Embargoes on existing Items

Administrators are able to change the lift date of any embargo by editing the authorization policy (ResourcePolicy) on the object. These authorization
policies can be managed from the Edit Item screen by clicking on "Authorizations".

To add an embargo, edit the appropriate policy and set a "start date". To add an full Item embargo (including metadata), edit the Item policy. To
embargo individual bitstreams, edit the appropriate Bitstream policy.
To remove an embargo, edit the appropriate policy, and clear out the "start date".
To change an embargo, edit the appropriate policy, and change the "start date" to a new date.

Changes to the embargo should take effect immediately. However, as Administrators have full access to embargoed items, you may need to log out first.
After logging out, you will be subject to the embargo.

Configuring and using Embargo in DSpace Submission User Interface

Introduction

The following sections describe the steps needed to configure and use Embargo functionality in the DSpace .Submission User Interface

As a DSpace administrator, you may choose to integrate either Simple or Advanced Embargo as part of the item submission process in the user interface.
These are outlined in detail in the sections and .Simple Embargo Settings Advanced Embargo Settings

This preference is stored in the value . If not set, the default is for Simple dspace.cfg webui.submission.restrictstep.enableAdvancedForm
Embargo.

On the level of an individual item, a new Private/Public state has been introduced to control the visibility of item metadata in the different indexes serving
the DSpace web interface (search, browse, discovery), as well as machine interfaces (REST-API, OAI-PMH, …)

Configuring the Embargo UI

As already mentioned the user will be given the opportunity to choose between:

Simple Embargo Settings
Advanced Embargo Settings

To switch between the two, you need to set following variable in the file (or your local.cfg, see). A value of (the dspace.cfg Configuration Reference false
default) enables the Simple settings while a value of enables the Advanced settings.true

webui.submission.restrictstep.enableAdvancedForm=false

Configuration name changed

Please note that the configuration parameter name was changed in DSpace 4.0 from .submission.restrictstep.enableAdvancedForm to .xmlui webui
submission.restrictstep.enableAdvancedForm

Submission Process

item-submission.xml

To enable the embargo, changes are required to the file, located in your directory. This file determines which item-submission.xml [dspace]/config/
steps are executed in the submission of a new item (see also).Submission User Interface

Two new submission steps have been introduced in the file. By default, they are not activated:

AccessStep: the step in which the user can set the embargo at item level, effectively restricting access to the item metadata.
UploadWithEmbargoStep: the step in which the user can set the embargo at bitstream level. If this step is enabled, the old UploadStep must
be disabled. Leaving both steps enabled will result in a system failure.

Here is an extract from the new file:

https://wiki.lyrasis.org/display/DSDOC6x/Submission+User+Interface
https://wiki.lyrasis.org/display/DSDOC6x/Configuration+Reference
https://wiki.lyrasis.org/display/DSDOC6x/Submission+User+Interface

<!--Step 3 will be to Manage Item access.
 <step>
 <heading>submit.progressbar.access</heading>
 <processing-class>org.dspace.submit.step.AccessStep</processing-class>
 <jspui-binding>org.dspace.app.webui.submit.step.JSPAccessStep</jspui-binding>
 <xmlui-binding>org.dspace.app.xmlui.aspect.submission.submit.AccessStep</xmlui-binding>
 <workflow-editable>true</workflow-editable>
 </step>
 -->

<!-- Step 4 Upload Item with Embargo Features (not supported in JSPUI)
 to enable this step, please make sure to comment-out the previous step "UploadStep"
 <step>
 <heading>submit.progressbar.upload</heading>
 <processing-class>org.dspace.submit.step.UploadWithEmbargoStep</processing-class>
 <jspui-binding>org.dspace.app.webui.submit.step.JSPUploadWithEmbargoStep</jspui-binding>
 <xmlui-binding>org.dspace.app.xmlui.aspect.submission.submit.UploadWithEmbargoStep</xmlui-
binding>
 <workflow-editable>true</workflow-editable>
 </step>
 -->

To enable the new Embargo, ensure that the new steps are uncommented and the old UploadStep is commented out.

Simple Embargo Settings

Using the simple embargo settings, submitters will be able to define embargoes bound to specific dates, that are applied to all anonymous and default read
access. To keep the interface simple, options to apply embargoes for particular groups of DSpace users are not shown. The simple embargo settings
interface assumes that embargoes always start immediately upon submission, so only end dates are configurable.

AccessStep

The simple Embargo form renders three options for the user:AccessStep

Private item: to hide an item's metadata from all search and browse indexes, as well as external interfaces such as OAI-PMH.
Embargo Access until Specific Date: to indicate a date until which the item will be embargoed.
Reason: to elaborate on the specific reason why an item is under embargo.

When Embargo is set, it applies to Anonymous or to any other Group that is indicated to have for that specific collection.default read access

This shows how the Access step is rendered, using the simple embargo settings:

UploadWithEmbargoStep

The simple form renders two new fields for the user:UploadWithEmbargoStep

Embargo Access until Specific Date: to indicate a date until which the will be embargoed. When left empty, no embargo will be applied.bitstream
Reason: to elaborate on the specific reason why the is under embargo.bitstream

These fields will be preloaded with the values set in the AccessStep.

The following picture shows the form for the Upload step, rendered using the simple embargo settings with preloaded values:

Advanced Embargo Settings

The Advanced Embargo settings are really designed with a submitter in mind who is aware of user groups in DSpace and has understanding of how
Resource Policies work.

AccessStep

The Advanced Embargo step allows the users to manage more fine-grained resource policies to attach to the item.AccessStep

The form will render the following fields:

Policies List: list of the custom policies already added.
Private Item: whether to hide an item's metadata from all search and browse indexes, as well as external interfaces such as OAI-PMH.
Name: to give a name to the policy.
Groups: to indicate the user groups to which the policy will apply.
Visible/Embargoed: whether the Item will be visible or embargoed for that specific group.
Embargo Access until Specific Date: to indicate a date until which the item will be embargoed.
Reason: to elaborate on the specific reason why the policy is applied.

The last two fields will be enabled only when has been selected.Embargoed

This step gives the opportunity to the user to manage the policy manually, so that combinations such as the following will be possible:

Set Embargo for Anonymous
Set Embargo for anyone, except for the users belonging to a specific group
Set Embargo for specific groups, but not for other groups ...

Here is a screenshot of the Access step form that will be rendered for the advanced embargo settings:

UploadWithEmbargoStep

UploadWithEmbargoStep for Advanced Embargo settings displays an additional button next to in the list of uploaded files. Policies Edit
Clicking it brings you to the a page where you can edit existing policies on the bitstream and add new ones.

When the button is pushed, a form similar to the one in the will be rendered, making it possible to manage the policies at level.AccessStep bitstream

Restrict list of displayed groups to specific (sub)groups

For large instances of DSpace, the list of Groups can be quite long. Groups can be nested. This means that not only EPersons can be members of groups,
but groups themselves can belong to other groups.

When advanced embargo settings are enabled, you can limit the list of groups displayed to the submitters to subgroups of a particular group.

To use this feature, assign the super group name to following configuration value in dspace.cfg:

webui.submission.restrictstep.groups=name_of_the_supergroup

Configuration name changed

Please note that the configuration parameter name has been changed in DSpace 4.0 from .submission.restrictstep.groups to .submission.xmlui webui
restrictstep.groups

Once a specific group is configured as supergroup here, only the groups belonging to the indicated group will be loaded in the selection dialogs. By default,
all groups are loaded.

Private/Public Item

It is also possible to adjust the Private/Public state of an item after it has been archived in the repository.

Here is a screenshot showing the updated dialog:Edit Item

Private items are not retrievable through the DSpace search, browse or Discovery indexes.

Therefor, an admin-only view has been created to browse all private items. Here is a screenshot of this new form:

Pre-3.0 Embargo Migration Routine

If you have just upgraded from a DSpace 1.x.x version, any embargoes that are currently "in effect" will need to be migrated into ResourcePolicies. Prior to
3.0, embargoes in DSpace were managed entirely in metadata fields (and required running a scheduled "embargo-lifter" command). However, DSpace
now stores all embargo information directly on ResourcePolicies (i.e. "access policies"). These ResourcePolicies automatically "lift" an embargo after the
embargo date passes.

In order to migrate old embargoes into ResourcePolicies, a migration routine has been developed. Please note that this migration routine should only
 (immediately after an upgrade from 1.x.x to a more recent version of DSpace). After that point, any newly defined embargoes will need to be run ONCE

automatically be stored on ResourcePolicies.

To execute it, run the following command:

[dspace]/bin/dspace migrate-embargo -a

Technical Specifications

Introduction

The following sections illustrate the technical changes that have been made to the to add the new functionality.back-end Advanced Embargo

ResourcePolicy

When an embargo is set at level or level, a new will be added.item bitstream ResourcePolicy

Three new attributes have been introduced in the class:ResourcePolicy

rpname: resource policy name
rptype: resource policy type
rpdescription: resource policy description

While and are fields manageable by users, the is managed by DSpace itself. It represents a type that a resource policy can rpname rpdescription rptype
assume, among the following:

TYPE_SUBMISSION: all the policies added automatically during the submission process
TYPE_WORKFLOW: all the policies added automatically during the workflow stage
TYPE_CUSTOM: all the custom policies added by users
TYPE_INHERITED: all the policies inherited from the enclosing object (for Item, a Collection; for Bitstream, an Item).

Here is an example of all information contained in a single policy record:

policy_id: 4847
resource_type_id: 2
resource_id: 89
action_id: 0
eperson_id:
epersongroup_id: 0
start_date: 2013-01-01
end_date:
rpname: Embargo Policy
rpdescription: Embargoed through 2012
rptype: TYPE_CUSTOM

Item

To manage state a new attribute has been added to the Item:Private/Public boolean

isDiscoverable

When an Item is private, the attribute will assume the value .false

Item.inheritCollectionDefaultPolicies(Collection c)

This method has been adjusted to leave custom policies, added by the users, in place and add the default collection policies only if there are no custom
policies.

AuthorizeManager

Some methods have been changed on to manage the new fields and some convenience methods have been introduced:AuthorizeManager

public static List<ResourcePolicy> findPoliciesByDSOAndType(Context c, DSpaceObject o, String type);
public static void removeAllPoliciesByDSOAndTypeNotEqualsTo(Context c, DSpaceObject o, String type);
public static boolean isAnIdenticalPolicyAlreadyInPlace(Context c, DSpaceObject o, ResourcePolicy rp);
public static ResourcePolicy createOrModifyPolicy(ResourcePolicy policy, Context context, String name, int
idGroup, EPerson ePerson, Date embargoDate, int action, String reason, DSpaceObject dso);

Withdraw Item

The feature to withdraw an item from the repository has been modified to keep all the custom policies in place.

Reinstate Item

The feature to reinstate an item in the repository has been modified to preserve existing custom policies.

Pre-DSpace 3.0 Embargo Compatibility

The Pre-DSpace 3.0 embargo functionality (see below) has been modified to adjust the policies setter and lifter. These classes now also set the dates
within the policy objects themselves in addition to setting the date in the item metadata.

Creating Embargoes via Metadata

Introduction

Prior to DSpace 3.0, all DSpace embargoes were stored as metadata. While embargoes are no longer stored permanently in metadata fields (they are
now stored on ResourcePolicies, i.e. access policies), embargoes can still be initialized via metadata fields.

This ability to create/initialize embargoes via metadata is extremely powerful if you wish to submit embargoed content via electronic means (such as Importi
, , , etc).ng Items via Simple Archive Format SWORDv1 SWORDv2

Setting Embargo terms via metadata

https://wiki.lyrasis.org/display/DSDOC6x/Importing+and+Exporting+Items+via+Simple+Archive+Format
https://wiki.lyrasis.org/display/DSDOC6x/Importing+and+Exporting+Items+via+Simple+Archive+Format
https://wiki.lyrasis.org/display/DSDOC6x/SWORDv1+Server
https://wiki.lyrasis.org/display/DSDOC6x/SWORDv2+Server

Functionally, the embargo system allows you to attach "terms" to an item before it is placed into the repository, which express how the embargo should be
applied. What do we mean by "terms" here? They are really any expression that the system is capable of turning into (1) the time the embargo expires,
and (2) a concrete set of access restrictions. Some examples:

"2020-09-12" - an absolute date (i.e. the date embargo will be lifted)
"6 months" - a time relative to when the item is accessioned
"forever" - an indefinite, or open-ended embargo
"local only until 2015" - both a time and an exception (public has no access until 2015, local users OK immediately)
"Nature Publishing Group standard" - look-up to a policy somewhere (typically 6 months)

These terms are interpreted by the embargo system to yield a specific date on which the embargo can be removed (or "lifted"), and a specific set of access
policies. Obviously, some terms are easier to interpret than others (the absolute date really requires none at all), and the default embargo logic
understands only the most basic terms (the first and third examples above). But as we will see below, the embargo system provides you with the ability to
add your own interpreters to cope with any terms expressions you wish to have. This date that is the result of the interpretation is stored with the item. The
embargo system detects when that date has passed, and removes the embargo ("lifts it"), so the item bitstreams become available. Here is a more
detailed life-cycle for an embargoed item:

Terms assignment

The first step in placing an embargo on an item is to attach (assign) "terms" to it. If these terms are missing, no embargo will be imposed. As we will see
below, terms are carried in a configurable DSpace metadata field, so assigning terms just means assigning a value to a metadata field. This can be done
in a web submission user interface form, in a SWORD deposit package, a batch import, etc. - anywhere metadata is passed to DSpace. The terms are not
immediately acted upon, and may be revised, corrected, removed, etc, up until the next stage of the life-cycle. Thus a submitter could enter one value, and
a collection editor replace it, and only the last value will be used. Since metadata fields are multivalued, theoretically there can be multiple terms values,
but in the default implementation only one is recognized.

Terms interpretation/imposition

In DSpace terminology, when an Item has exited the last of any workflow steps (or if none have been defined for it), it is said to be "installed" into the
repository. At this precise time, the interpretation of the terms occurs, and a computed "lift date" is assigned, and recorded as part of the ResourcePolicy
(aka policy) of the Item. Once the lift date has been assigned to the ResourcePolicy, the metadata field which defined the embargo is . From that cleared
point forward, all embargo information is controlled/defined by the ResourcePolicy.

It is important to understand that this interpretation happens only once, (just like the installation). Therefore, updating/changing an embargo cannot be
Instead, all embargo updates must be made to the ResourcePolicies themselves (e.g. ResourcePolicies can be managed from done via metadata fields.

the Admin UI in the Edit Item screens).

Also note that since these policy changes occur before installation, there is no time during which embargoed content is "exposed" (accessible by non-
administrators). The terms interpretation and imposition together are called "setting" the embargo, and the component that performs them both is called the
embargo "setter".

Embargo period

After an embargoed item has been installed, the policy restrictions remain in effect until the embargo date passes. Once the embargo date passes, the
policy restrictions are automatically lifted. An embargo lift date is generally stored as the "start date" of a policy. Essentially, this means that the policy
does not get applied until after that date passes (and prior to that date, the object defaults to Admin only access).

Administrators are able to change the lift date of the embargo by editing the policy (ResourcePolicy). These policies can be managed from the Edit Item
screens.

Configuration of metadata fields

DSpace embargoes utilize standard metadata fields to hold both the "terms" and the "lift date". Which fields you use are configurable, and no specific
metadata element is dedicated or pre-defined for use in embargo. Rather, you must specify exactly what field you want the embargo system to examine
when it needs to find the terms or assign the lift date.

The properties that specify these assignments live in dspace.cfg:

DC metadata field to hold the user-supplied embargo terms
embargo.field.terms = SCHEMA.ELEMENT.QUALIFIER

DC metadata field to hold computed "lift date" of embargo
embargo.field.lift = SCHEMA.ELEMENT.QUALIFIER

You replace the placeholder values with real metadata field names. If you only need the "default" embargo behavior - which essentially accepts only
absolute dates as "terms" - this is the only configuration required, except as noted below.

There is also a property for the special date of "forever":

string in terms field to indicate indefinite embargo
embargo.terms.open = forever

1.

2.

3.

4.

which you may change to suit linguistic or other preference.

You are free to use existing metadata fields, or create new fields. If you choose the latter, you must understand that the embargo system does create not
or configure these fields: i.e. you must follow all the standard documented procedures for actually creating them (i.e. adding them to the metadata registry,
or to display templates, etc) - this does not happen automatically. Likewise, if you want the field for "terms" to appear in submission screens and workflows,
you must follow the documented procedure for configurable submission (basically, this means adding the field to input-forms.xml). The flexibility of
metadata configuration makes if easy for you to restrict embargoes to specific collections, since configurable submission can be defined per collection.

Key recommendations:

Use a local metadata schema. Breaking compliance with the standard Dublin Core in the default metadata registry can create a problem for the
portability of data to/from of your repository.
If using existing metadata fields, avoid any that are automatically managed by DSpace. For example, fields like "date.issued" or "date.
accessioned" are normally automatically assigned, and thus must not be recruited for embargo use.
Do not place the field for "lift date" in submission screens. This can potentially confuse submitters because they may feel that they can directly
assign values to it. As noted in the life-cycle above, this is erroneous: the lift date gets assigned by the embargo system based on the terms. Any
pre-existing value will be over-written. But see next recommendation for an exception.
As the life-cycle discussion above makes clear, after the terms are applied, that field is no longer actionable in the embargo system. Conversely,
the "lift date" field is not actionable the application. Thus you may want to consider configuring both the "terms" and "lift date" to use the until
same metadata field. In this way, during workflow you would see only the terms, and after item installation, only the lift date. If you wish the
metadata to retain the terms for any reason, use 2 distinct fields instead.

Operation

After the fields defined for terms and lift date have been assigned in dspace.cfg, and created and configured wherever they will be used, you can begin to
embargo items simply by entering data (dates, if using the default setter) in the terms field. They will automatically be embargoed as they exit workflow,
and that the computed lift date will be stored on the ResourcePolicy

Extending embargo functionality

The embargo system supplies a default "interpreter/imposition" class (the "Setter") .

Setter

The default setter recognizes only two expressions of terms: either a literal, non-relative date in the fixed format "yyyy-mm-dd" (known as ISO 8601), or a
special string used for open-ended embargo (the default configured value for this is "forever", but this can be changed in dspace.cfg to "toujours",
"unendlich", etc). It will perform a minimal sanity check that the date is not in the past. Similarly, the default setter will only remove all read policies as noted
above, rather than applying more nuanced rules (e.g allow access to certain IP groups, deny the rest). Fortunately, the setter class itself is configurable
and you can "plug in" any behavior you like, provided it is written in java and conforms to the setter interface. The dspace.cfg property:

implementation of embargo setter plugin - replace with local implementation if applicable
plugin.single.org.dspace.embargo.EmbargoSetter = org.dspace.embargo.DefaultEmbargoSetter

controls which setter to use.

Lifter
DEPRECATED: The Lifter is no longer used in the DSpace API, and is not recommended to utilize. Embargo lift dates are now stored on ResourcePolicies
and, as such, are "lifted" automatically when the embargo date passes. Manually running a "lifter" may bypass this automatic functionality and result in
unexpected results.

The default lifter behavior as described above - essentially applying the collection policy rules to the item - might also not be sufficient for all purposes. It
also can be replaced with another class:

implementation of embargo lifter plugin - - replace with local implementation if applicable
plugin.single.org.dspace.embargo.EmbargoLifter = org.dspace.embargo.DefaultEmbargoLifter

	Embargo

