
Validating CheckSums of Bitstreams

1 Checksum Checker
1.1 Checker Execution Mode
1.2 Checker Results Pruning
1.3 Checker Reporting
1.4 Cron or Automatic Execution of Checksum Checker
1.5 Automated Checksum Checkers' Results
1.6 Database Query

Checksum Checker

Checksum Checker is program that can run to verify the checksum of every item within DSpace. Checksum Checker was designed with the idea that most
System Administrators will run it from the cron. Depending on the size of the repository choose the options wisely.

Command used: [dspace]/bin/dspace checker

Java class: org.dspace.app.checker.ChecksumChecker

Arguments short and (long) forms): Description

-L or --continuous Loop continuously through the bitstreams

-a or --handle Specify a handle to check

-b <bitstream-ids> Space separated list of bitstream IDs

-c or --count Check count

-d or --duration Checking duration

-h or --help Calls online help

-l or --looping Loop once through bitstreams

-p <prune> Prune old results (optionally using specified properties file for configuration

-v or --verbose Report all processing

There are three aspects of the Checksum Checker's operation that can be configured:

the execution mode
the logging output
the policy for removing old checksum results from the database
The user should refer to Chapter 5. Configuration for specific configuration beys in the file.dspace.cfg

Checker Execution Mode

Execution mode can be configured using command line options. Information on the options are found in the previous table above. The different modes are
described below.

Unless a particular bitstream or handle is specified, the Checksum Checker will always check bitstreams in order of the least recently checked bitstream.
(Note that this means that the most recently ingested bitstreams will be the last ones checked by the Checksum Checker.)

Available command line options

Limited-count mode: To check a specific number of bitstreams. The option if followed by an integer, [dspace]/bin/dspace checker -c -c
the number of bitstreams to check. Example: This is particularly useful for checking that the checker [dspace/bin/dspace checker -c 10
is executing properly. The Checksum Checker's default execution mode is to check a single bitstream, as if the option was -c 1
Duration mode: To run the Check for a specific period of time with a time argument. You may use any [dspace]/bin/dspace checker -d
of the time arguments below: Example: (Checker will run for 2 hours)[dspace/bin/dspace checker -d 2h

s Seconds

m Minutes

h Hours

d Days

w Weeks

y Years

1.
2.

The checker will keep starting new bitstream checks for the specific durations, so actual execution duration will be slightly longer than the
specified duration. Bear this in mind when scheduling checks.
Specific Bitstream mode: Checker will only look at the internal bitstream IDs. Example: [dspace]/bin/dspace checker -b [dspace]

 Checker will only check bitstream IDs 112, 113 and 4567./bin/dspace checker -b 112 113 4567
Specific Handle mode: Checker will only check bitstreams within the Community, Community or the [dspace]/bin/dspace checker -a
item itself. Example: Checker will only check this handle. If it is a Collection or [dspace]/bin/dspace checker -a 123456/999
Community, it will run through the entire Collection or Community.
Looping mode: or There are two modes. The lowercase 'el' (-[dspace]/bin/dspace checker -l [dspace]/bin/dspace checker -L
l) specifies to check every bitstream in the repository once. This is recommended for smaller repositories who are able to loop through all their
content in just a few hours maximum. An uppercase 'L' (-L) specifies to continuously loops through the repository. This is not recommended for
most repository systems. . For large repositories that cannot be completely checked in a couple of hours, we recommend the -d option Cron Jobs
in cron.
Pruning mode: The Checksum Checker will store the result of every check in the checksum_history [dspace]/bin/dspace checker -p
table. By default, successful checksum matches that are eight weeks old or older will be deleted when the -p option is used. (Unsuccessful ones
will be retained indefinitely). Without this option, the retention settings are ignored and the database table may grow rather large!

Checker Results Pruning

As stated above in "Pruning mode", the checksum_history table can get rather large, and that running the checker with the -p assists in the size of the
checksum_history being kept manageable. The amount of time for which results are retained in the checksum_history table can be modified by one of two
methods:

Editing the retention policies in See Chapter 5 Configuration for the property keys. OR[dspace]/config/dspace.cfg
Pass in a properties file containing retention policies when using the -p option.To do this, create a file with the following two property keys:

checker.retention.default = 10y
checker.retention.CHECKSUM_MATCH = 8w

You can use the table above for your time units. At the command line: [dspace]/bin/dspace checker -p retention_file_name
<ENTER>

Checker Reporting

Checksum Checker uses log4j to report its results. By default it will report to a log called , and it will report only on [dspace]/log/checker.log
bitstreams for which the newly calculated checksum does not match the stored checksum. To report on all bitstreams checked regardless of outcome, use
the (verbose) command line option:-v

[dspace]/bin/dspace checker -l -v (This will loop through the repository once and report in detail about every bitstream checked.

To change the location of the log, or to modify the prefix used on each line of output, edit the file [dspace]/config/templates/log4j.properties
and run .[dspace]/bin/install_configs

Cron or Automatic Execution of Checksum Checker

You should schedule the Checksum Checker to run automatically, based on how frequently you backup your DSpace instance (and how long you keep
those backups). The size of your repository is also a factor. For very large repositories, you may need to schedule it to run for an hour (e.g. option) -d 1h
each evening to ensure it makes it through your entire repository within a week or so. Smaller repositories can likely get by with just running it weekly.

Unix, Linux, or MAC OS. You can schedule it by adding a cron entry similar to the following to the crontab for the user who installed DSpace:

0 4 * * 0 [dspace]/bin/dspace checker -d2h -p

The above cron entry would schedule the checker to run the checker every Sunday at 400 (4:00 a.m.) for 2 hours. It also specifies to 'prune' the database
based on the retention settings in .dspace.cfg

Windows OS. You will be unable to use the checker shell script. Instead, you should use Windows Schedule Tasks to schedule the following command to
run at the appropriate times:

[dspace]/bin/dspace checker -d2h -p

(This command should appear on a single line).

Automated Checksum Checkers' Results

Optionally, you may choose to receive automated emails listing the Checksum Checkers' results to the email address specified in the configumail.admin
ration property. Schedule it to run the Checksum Checker has completed its processing (otherwise the email may not contain all the results). As of after
DSpace 4.1, an email is only generated if the selected report contains at least one bitstream needing attention.

Command used: [dspace]/bin/dspace checker-emailer

Java class: org.dspace.checker.DailyReportEmailer

Arguments short and (long) forms): Description

-a or --All Send all the results (everything specified below)

-d or --Deleted Send E-mail report for all bitstreams set as deleted for today.

-m or --Missing Send E-mail report for all bitstreams not found in assetstore for today.

-c or --Changed Send E-mail report for all bitstreams where checksum has been changed for today.

-u or --Unchanged Send the Unchecked bitstream report.

-n or --Not Processed Send E-mail report for all bitstreams set to longer be processed for today.

-h or --help Help

You can also combine options (e.g.) for combined reports.-m -c

Cron. Follow the same steps above as you would running checker in cron. Change the time but match the regularity. Remember to schedule this after
Checksum Checker has run. For an example cron setup, see .Scheduled Tasks via Cron

Database Query

A query like the following can be used to check the results of the checker (Postgres):

SELECT *
FROM checksum_history
WHERE date_trunc('day', process_start_date) = CURRENT_DATE
AND result != 'CHECKSUM_MATCH'
AND result != 'BITSTREAM_MARKED_DELETED';

Example of a more detailed query:

SELECT
 ch.process_start_date,
 ch.process_end_date,
 ch.result,
 ch.checksum_expected,
 ch.checksum_calculated,
 b.bitstream_id,
 bfr.short_description,
 b.store_number,
 substring(b.internal_id for 2) || '/' || substring(b.internal_id from 3 for 2) || '/' || substring(b.
internal_id from 5 for 2) || '/' || b.internal_id AS bitstream_path,
 hi.handle AS item_handle,
 hc.handle AS collection_handle
FROM checksum_history ch
JOIN bitstream b
ON ch.bitstream_id = b.uuid
JOIN bitstreamformatregistry bfr
ON b.bitstream_format_id = bfr.bitstream_format_id
LEFT JOIN bundle2bitstream bb
ON b.uuid = bb.bitstream_id
LEFT JOIN item2bundle ib
ON bb.bundle_id = ib.bundle_id
LEFT JOIN item i
ON ib.item_id = i.uuid
LEFT JOIN handle hi
ON i.uuid = hi.resource_id
AND hi.resource_type_id = 2
LEFT JOIN handle hc
ON i.owning_collection = hc.resource_id
AND hc.resource_type_id = 3
WHERE ch.result != 'CHECKSUM_MATCH'
AND date_trunc('day', process_start_date) = CURRENT_DATE
ORDER BY ch.check_id DESC;

https://wiki.lyrasis.org/display/DSDOC6x/Scheduled+Tasks+via+Cron

	Validating CheckSums of Bitstreams

