Acceptance
tests for VIVO

Why "acceptance tests™?

= Comes from a military setting.

= Also know as
= ‘“integration tests”
= ‘“system tests”

= “end-to-end tests”

= Definitely not “unit tests”

What is Selenium?

= A browser driver
= Mimics having a user

= Commands like:
= Direct the browser to “http://localhost:8080/vivo”
= Click on a certain button
= Assert element is present on the page
= Assert text is present on the page

= ...and more...

Previous acceptance tests in VIVO

Add persons, publications, roles...

Use custom forms for awards, education, positions...
Test search results, search configuration, boosting...
Check access privileges

Exercise APls

Total: 28 “suites”

vV . -
Process with previous acceptance tests

= Use Selenium-IDE, a Firefox plugin

= Run manually
= Follow the checklist
= Setup for each suite
= Run the suite

= (Observe the results

= Requires about 3 hours

= Run manually

= Not consistent: timing issues
= Not portable: uploaded files
= Not isolated

= Difficult to write, difficult to maintain

Problems with previous acceptance
tests

= During the NIH grant: run by Cornell
= VIVO 1.8, 1.9: run by Cornell

= VIVO 1.10: not run

= "Not run” means “Not maintained”

Status of previous acceptance tests

= Fully automated
= Repeatable

= Portable

= Multi-browser

= Easier to write and maintain

Goals for new acceptance tests

The test harness

Tests written in Ruby, run under RSpec

Orthogonal:
= Triple-stores and search index wiped after each “suite” (now “test”)
Minimal setup:

= TDB, so no MySQL required

= Run in JettyRunner, so no Tomcat required

Setup goal:

= stub search engine, so no Solr required

Advantages of Ruby

= ... 0r any programming language

= Selenium also supports Python, Java, PHP, Perl, or C#
= Write sub-routines
= Login/logout

= Do things that are not provided by the existing vocabulary

= Wait for indexing, wait for AJAX

Converting the old tests

= 28 suites, 242 tests, and 18423 steps.

= Automated conversion, followed by curation

Test

shared _examples

Old tests

7 E—
pe JopnName eAdmin@concileds
L S — —

SLICCI VClassURI label=Librarian (vivo)
chckAndWm fhnput[C‘\ ralue="Add individual of this class’]

:
t) pc 1d=last*amt, m
T E—
[clickAndWait ~ [[css=header > #ARG_2000028 > a.add-ARG_2000028 > img.add-individual] |
wserfile e

New tests

shared_examples "Create a Librarian” do
it "logs in as Admin" do
vivo_login_from_home_page_as("testAdmin@mydomain.edu"”, "Password™)
end

1t "decides to add a librarian" do
$browser. find_element(:1ink_text, "Site Admin").click
expect(Sbrowser.title).to eq("VIVD Site Administration™)

$browser. find_element(:id, "V(lassURI"™)
browser_find_select_list({:id, "V(lassURI").select_by(:text, "Librarian (vivo)")
$browser. find_element(:1id, "submit™).click

expect(Sbrowser.title).to eq("Edit™)
expect(browser_page_text).to include("Create a new Librarian")
end

it "creates with the basic info" do
$browser. find_element(:1id, "firstName").send_keys("Lily")
$browser. find_element(:1d, "middleName").send_keys{"Lou")
$browser. find_element(:1d, "lastName").send_keys{"Librarian™)
$browser. find_element(:1id, "submit™).click
expect(Sbrowser.title).to eq("Librarian, Lily Lou™)

end

= 4 of 28 running

= 2 weeks to go

What success?

How to go forward?

= Run the tests on a regular basis
= |Include in continuous integration?

= Run the tests after each pull request?
= Write new tests for new functionality

= Improve the tests and the framework

How | plan to leave it

https://qgithub.com/j2blake/vivo-acceptance-tests

A “one-command” execution environment

A set of passing tests

= and perhaps some that still fail.
Instructions on how to install and run

Suggestions for additional work

https://github.com/j2blake/vivo-acceptance-tests

Discussion

