
Re-thinking Fedora’s storage layer: A new high-level interface to

remove old assumptions and allow novel use cases∗

Aaron Birkland1 and Asger Askov Blekinge2

1Cornell University Ithaca, NY USA
2State and University Library Aarhus, Denmark

March 1, 2010

Abstract

Traditionally, the pluggable storage interface in Fe-
dora has followed a “low-level” paradigm where ob-
jects and datastreams are presented to the storage
layer as independent, anonymous blobs of data. This
arrangement has proven simple, reliable, and gener-
ally flexible. In the past few years however, there has
been an increasing need for Fedora to mediate storage
in more complex scenarios.

Managing large numbers of big datastreams, mul-
tiplexing storage between different devices or cloud
storage, and archiving content in a transparent man-
ner are tasks that are difficult to achieve through Fe-
dora currently. One reason for difficulty is that all
storage, indexing, and transaction logic is essentially
hard-coded in Fedora, and storage plugins are limited
in what they can deduce from the anonymous blobs
they are given.

To evolve the current Fedora architecture and ad-
dress existing storage limitations, we present an alter-
nate “high-level” interface in which implementations
are aware of the structural semantics of a Fedora ob-
ject, and operations are performed on a whole-object
basis. Such an architecture pushes the storage logic
into external plugins, allowing greater flexibility in
adapting to the needs of preservation, performance,

∗Submitted to the Fedora users group at OR10: The 5th In-
ternational Conference on Open Repositories. Madrid, Spain.
6-9 July 2010

cloud, or analysis-oriented use cases. In addition to
storage concerns, this layer provides an appropriate
extensibility point for data-oriented approaches to in-
dexing (asynchronous or synchronous), caching, mes-
saging, policy enforcement, and locking or transac-
tion strategies.

The Fedora committers have agreed that further
development of the proposed high-level storage inter-
face is a logical next step in the evolution of Fedora’s
internal architecture. Besides presenting the current
state of design and implementation of the interface,
we hope to engage the community at large to solicit
feedback for current and future revisions.

1 Introduction

There are many ways to manage digital content
with the Fedora repository. Fedora objects provide
a mostly uniform encapsulation and service bind-
ing over content that can be stored and managed
in many different ways. Out of the box, Fedora of-
fers the capability to accept datastream content and
store/manage it itself in Managed datastreams, as
well as referencing content managed elsewhere in Ex-
ternal datastreams.

To date, Managed datastreams in Fedora have been
implemented in a very simple manner. Object XML
and datastreams are serialized as blobs with opaque
identifiers, and sent to a low-level storage module in a

1



series of independent operations. This low-level stor-
age module has always been a pluggable component -
many implementations have been written for various
storage devices.

Unfortunately, this architecture essentially hard-
codes several storage assumptions, and makes it dif-
ficult to store content in in a dynamic or intelligent
manner. For example, if one wanted to store content
in different devices based upon some criteria (multi-
plexing use case), it is not clear where this multiplex-
ing logic should be. The low level storage module is
given very little information about the nature of the
blobs it is asked to store, and would potentially need
to reflect into blob content in order to understand its
nature. In addition, storage logic is currently inter-
mixed with tasks such as object validation and main-
taining indexes.

Providing a simple high-level object interface be-
neath the management layer in Fedora allows for a
cleaner design that encourages modularity and sepa-
ration of concerns. Indeed, we conceive HighLevel-
Storage being implemented as a series of modules
adhering to the same (or similar) interface chained
together[1] into a pipeline, each performing a very
specific task such as lock management, caching, blob
serialization, blob storage and multiplexing (e.g. in
Akubra[2]), and providing data to synchronous or
asynchronous processing units such as an indexer or
messaging bus.

2 The HighlevelStorage layer

This paper proposes the addition of a high-level stor-
age layer between the object management code and
storage. This is an internal, fedora-specific interface
useful for developing Fedora storage models, and is
not intended to be a generic or portable storage in-
terface such as Akubra.

Perhaps it is best to describe this layer in terms of
Fedora architecture and separation of concerns. Be-
low is a description of various proposed or existing
components within Fedora, and the tasks that could
or should be performed within each layer. We start
with the highest-level management layer, and work
our way down to the lowest storage layer. Each layer

is characterized with a brief descriptive label, and the
most relevant internal java interfaces/components are
listed.

Operational logic (Management)

• Translate API operations into specific
change sets for an object

• API-oriented messages and policy enforce-
ment

• Manage timestamps and propagate writes
to DOManager

• Generate new audit entries

Object-level accounting (DOManager)

• Manage datastream versioning

• Add audit records to object

• Set properties or object state

• Internal registries

• RELS-EXT manipulation (add/purge rela-
tionship)

Data and Storage logic (HighlevelStorage)

• Assemble data for multiplexing decisions

• Grouping of components into file archives

• Transactions and atomicity, and locking
strategies

• Serializing

• Indexing and caching

• Data-oriented messages and policy enforce-
ment

• Sending data to storage implementation

Storage impl. (Akubra or non-blob storage)

• Connect to storage implementations

• Store bytes, manage failures

• Present storage device as a transactional re-
source

2



In order to perform functions such as multiplex-
ing decisions, serialization, locking, etc, this module
necessarily has to be aware of the logical structure of
fedora objects, and have an awareness of operations
in at least a whole-object scope. Thus, the interface
it presents to the object logic components must not
be blob-based.

interface ILowlevelStorage {

void addObject(
String objectKey,
InputStream content);

void replaceObject(
String objectKey,
InputStream content);

void removeObject(
String objectKey);

InputStream retrieveObject(
String objectKey);

void addDatastream(
String dsKey,
InputStream content);

void replaceDatastream(
String dsKey,
InputStream content);

void removeDatastream(
String dsKey);

InputStream retrieveDatastream(
String objectKey)

}

Figure 1: Existing low level storage interface
(abridged)

Figure 1 summarizes the existing low-level inter-
face, and figure 2 contains proposed high-level inter-

faces. As we can see, the proposed HighlevelStor-
age interface is oriented towards pid identifiers and
whole-object representations while the ILowlevel-
Storage is oriented toward opaque identifiers and In-
putStream blobs

interface HighlevelStorage {

Result add(
DigitalObject object);

Result update(
DigitalObject oldVers,
DigitalObject newVers);

Result remove(
DigitalObject oldVers);

DigitalObject read(
PID pid);

}

Figure 2: Proposed high level interface. May be
further split into Writable (upper) and Readable
(lower)

For the high level interface, DigitalObject is a
logical representation of the fedora object that also
serves as an access point to datastream content.
Result is some data structure that may contain rel-
evant information relevant to the current operation.
The intent is to return information such as an opera-
tion ID that may be used to determine status, coor-
dinate workflows or interact external processes that
may result from the given Fedora operation.

Please note that while the core concepts are un-
likely to change, we expect the continual evolution
of the high level interface as presented in figure 2.
As an example, there is discussion[3] in the Fedora
community related to object versioning. The idea
has been put forth that versioning is a storage-layer
concern and should not be part of the fedora ob-
ject model. If this discussion progresses and the

3



community supports the principle of storage-initiated
versioning, then the HighLevelStorage interface may
need to be extended accordingly.

Likewise, for development of add-on modules such
as indexing or messaging, it may make sense to
further split HighLevelStorage into Writable and
Readable as indicated in figure 2. The motivation
for this split is that some functionality, such as main-
taining an index, should not be be concerned with
retrieving object representations.

3 Conclusion

A high-level storage interface in Fedora would be an
enabler for a number of use cases that are currently
difficult to achieve in Fedora, such as

• Multiplexing, particularly when combined with
the Akubra blob store.

• Storing entire object and all datastreams in
self-contained file archives such as bag-it[4] or
AtomZip[5].

• Adopting non-blob storage paradigms such as an
XML database, column-oriented stores such as
HBase[6] and Vertica[7].

• Implementing lock-free storage strategies allow-
ing multiple fedora servers to operate against the
same data concurrently.

• Integrating a caching layer for objects or datas-
treams.

Certainly, Fedora is not going to be able to solve
these needs overnight. As envisioned, the new stor-
age layer interface and architecture will primarily be
an enabler, with well-defined extensibility points and
the ability for modules to be assembled together like
building blocks. The default configuration shipped
with Fedora will likely be as simple as possible, with
complexity available to those who need to adapt to
complex or challenging scenarios.

As it stands now, many driving use cases have been
mentioned by members of the Fedora community as
being desirable features. These have been kept in

mind while drafting initial proposals for the new stor-
age architecture. That being said, involvement of the
fedora community at large is essential in order to as-
sure that Fedora continues to evolve in a way that
allows its users to adapt to changes in technology.
We intend to present the concepts, progress, results,
and open questions relating to the high-level storage
effort in the hopes of eliciting community input and
seeding novel ideas or applications.

References

[1] Initial sketch of potential module
chaining configuration is illustrated in
http://prezi.com/kjpdt6zhcir6

[2] Akubra blob store, http://fedora-
commons.org/confluence/x/LAF2

[3] Discussion on storage-oriented versioning
originated at London committer meet-
ing, 23-24 February 2010. http://fedora-
commons.org/confluence/x/vB7S

[4] Bag-it specification available at
http://www.digitalpreservation.gov
/library/resources/tools/docs/bagitspec.pdf

[5] Atom and AtomZip serializations described at
http://fedora-commons.org/confluence/x/fgBI

[6] HBase is part of the Apache Hadoop project
http://hadoop.apache.org/hbase/

[7] Vertica is a proprietary column-oriented
database http://www.vertica.com/enterprise-
data-warehouse

4


