
Supporting the Semantic Web
and Linked Data

Overview

•  Exposing
– Dereferenceable http URIs for resources
– Relationships using dereferenceable http

URIs
•  ... made possible by the new REST API
•  Extending the scope of relationships in

the resource index

Current situation - identifiers

•  Identifiers used
–  namespace:pid
–  info:fedora/namespace:pid
–  http://server:port/fedora/get/namespace:pid
–  http://server:port/objects/namespace:pid

•  Issues
–  identifier scope
– canonical

Current situation - relationships

•  Single graph
•  Fedora objects (or datastreams) as

subjects
•  Identifiers used are info:fedora/
•  No support for “arbitrary” RDF – eg

“lifting” of XML metadata
•  Specification of relationships are in

imperative code

Resource Identifiers [1, 2]

•  Deprecate the “LITE” APIs (/get)
– HTTP 301: Moved permanently
–  then remove in future release

•  Define canonical dereferenceable URIs
– using the REST API URIs

Support http URIs in relationships
[6]

•  Relationship:
•  <info:fedora/ns:pid1> <#isMemberOf> <info:fedora/ns:pid2>

•  Exposed as:
•  <http://server/fedora/objects/ns:pid1> <#isMemberOf>

http://server/fedora/objects/ns:pid2

•  Query / results rewriting?

•  Retain info:fedora for local/internal use
–  /risearch?type=tuples&query=...&scope=local|global

Support “arbitrary” RDF [3]

•  Issue
–  create: myns:pid1 : <s1> <p1> <o1>
–  create: myns:pid2 : <s1> <p1> <o1>
–  RI contains: <s1> <p1> <o1>
–  delete: myns:pid1
–  <s1> <p1> <o1> deleted but myns:pid2 still

asserts it
•  Solution

–  Named graphs

Named Graphs [3]

•  <#some:pid1> : graph containing triples
asserted by object some:pid1

•  <#some:pid2> : graph containing triples
asserted by object some:pid2

•  <#some:pidn> : graph containing triples
asserted by object some:pidn

•  <#ri> : defined as a view containing the
above graphs

•  Queries run over <#ri>

Named Graphs [3]

•  If the same triple is asserted by two
different objects, it appears in two
graphs

•  Query results contain one instance of
the triple

•  some:pid1 deleted: triple still present in
graph created for some:pid2

Mulgara and graphs [3]

•  Mulgara Models (graphs) can be
– A model containing triples
– Definition of a “view”: union (or

intersection) of other graphs
•  Other triple stores?

Issues [3]

•  Performance: Querying <#ri> involves querying a large number
of underlying graphs
–  test

•  Graph names
•  “Pollution” of resource index with arbitrary triples

–  Separate graphs for
•  <#ri> : “core” triples
•  <#riUser> : “user” triples
•  <#riFull> : <#ri> UNION <#riUser>

•  Free text graph(s)
•  Triple Store support – MPTStore?

–  disable “arbitrary” graphs if triple store does not support?
•  Hierarchy of graphs to use

Graph Hierarchy [3]

<#ri> - a view containing:

 <#some:pid> - object graph for some:pid, a view containing:
 <#some:pid/properties> - object properties triples
 <#some:pid/datastreams> - a view containing:
 <#some:pid/datastreams/rels-ext> - rels-ext triples
 <#some:pid/datastreams/rels-int> - rels-int triples
 <#some:pid/datastreams/dc> - DC triples
 <#some:pid/datastreams/{rdf datastream}> - triples from rdf datastream
 <#some:pid/datastreams/{dsid}/properties> - datastream properties
 <#some:otherpid> - object graph for some:otherpid, a view containing:
 <#some:otherpid/properties> - etc
 <#some:otherpid/datastreams> - etc

Only object graphs necessary to support main requirement

Specifying triples for objects [4]

•  Currently generated by code
– object and datastream properties, “default”

content model
–  “conversion” of DC to triples
– RELS-EXT, RELS-INT

Declarative specification of triples
[4]

•  Content model specifies which
datastreams to index
– RDF datastreams
– XSLT/GRDDL etc for XML (and other)

datastreams
– Object methods producing RDF

•  XSLT for object and datastream
properties

Mechanism [4]

•  System object methods for generating core
triples

•  User content model object methods for
generating user triples

•  eg expose through REST API
–  /objects/some:pid/relationships

•  Update triple store using these methods
–  Move out of core DOManager code, implement

using decorator?

REST API [6]

•  GET /objects/some:pid/relationships
–  /objects/some:pid/datastream/DC/relationships?
–  Content negotiation (Accept: application/rdf+xml)
–  URI parameter (?format=rdf)

•  Other verbs
–  POST: set of triples to add
–  DELETE: set of triples to delete
–  PUT: modification, eg SPARQL Update

•  Generic methods
–  update “core triples” (easy to identify source)
–  update arbitrary (specified) datastream
–  potential overlap between RELS-EXT and arbitrary datastream

•  Operate directly on objects (not on triple store)
•  SOAP API

Finally...

•  Fedora generally sits behind an
application

•  Resource identifers exposed by the
application may not be Fedora resource
URIs

•  /library/display?&resourceID=some%3Apid

