
1

DSpace Architectural Futures: A White Paper
Robert Tansley, 2006-04-27

1 Introduction

This document is an attempt to get down on paper the various thoughts that have been
bubbling around my head over the last 2-3 years on the DSpace architecture, with the
intention that it can provide a useful set of pointers and guidance to the DSpace
technical architecture committee in their deliberations. Time considerations mean
that it is not necessarily a fully-baked document with references and so forth, and I
just use technical terms (e.g. from OAIS) without a glossary, but should still prove a
useful document.
I’ve a feeling this paper will end up containing rather more questions than answers;
however this will probably more useful in terms of guiding future architecture work
than an architecture proposal.

The thinking in this paper has in mind a broad scope for DSpace; while the focus thus
far has been on “institutional repository” (as generally understood in the US, as
opposed to the more open access-centric UK view), uses of DSpace has broadened
considerably to areas such as museums, corporate use, and government organisations
such as law libraries. At each stage, how much effort is expended to support each
stakeholder should probably depend on how much that stakeholder itself can invest;
it’s probably not viable, for example, for government organisation use cases to be
supported if all resources for development and maintenance come from the academic
library community. However, for architectural visions and directions, to focus too
much on one silo of use and to exclude these other use cases would limit DSpace’s
potential impact. The governance advisory board produced a mission statement that
extends to this broader mission. The vision should be grand and broad.

Further, the kinds of data that are being stored and could potentially be stored by
DSpace are limitless. It really is an effort looking at how to manage and preserve the
new ways that people create and communicate. Don’t just think of sets of PDFs; what
about videos, satellite data, interactive objects, software? We will need to work out
how to manage and preserve these things (even though there is a tendency to be over-
paranoid about losing JPEG specs forever, or what a horrible loss it is if the photo
appears two pixels to the left of where it should in a future rendering).
All this said, one should not try and boil the ocean. There are always, always, always
trade-offs between flexibility, usefulness and simplicity. Refusal to accept limitations
and trade-offs is the fastest way to ensure that you end up with a bloated,
impenetrable mess of a system. This leads to the single biggest challenge that the
DSpace community faces moving forward:

2 The Balancing Act

As DSpace’s usage has increased, it’s not surprising that people have run into
limitations, accompanied by numerous questions as to why it doesn’t do versioning,

2

locking, support all metadata under the sun (whatever “support” means) and so forth.
While there are some aspects that can clearly be put out of scope, with most it’s a big
grey area, and in many areas, there is no established best practice or mature
knowledge about how to accomplish something. There are various dimensions that
DSpace needs to be carefully steered along.

2.1 Simple versus complex
Of course the most challenging is whether to make a simple, understandable system or
a complex, powerful system that has everyone scratching their heads. Throughout my
5 1/2 years on DSpace I’ve constantly pushed to keep things as simple, consistent
(and well documented) as possible, to lower the barriers to use and development.

There are different dimensions to simplicity and complexity.
One dimension is in terms of ease of management and use. Regardless of code
complexity, is it possible for a non-expert to bring up a DSpace and manage some
content in it over time? If they have to come up with their own data models (or
choose from a bewildering array), maintain a fine-grained, complex format registry, a
non-expert will soon get confused. Maybe such non-expert users aren’t in DSpace’s
target audience, and we really should be trying to make DSpace a heavyweight digital
curation tool that needs experts to manage – however, I think non-expert users form a
key part of the DSpace community right now and so the barriers should be kept low
(but the possibilities extended within this limitation).
In terms of technical architecture and code, complexity can be hidden, abstracted,
layered, “modularised” etc. etc. etc. but there are always trade-offs. For this open
source effort to succeed, developers need to be able to look inside DSpace and
understand what is going on, and the more complex it is, the harder this will be.
Likewise, for users, if DSpace is too complex to bring up, or figure out how to get
your stuff in and out of it, adoption and therefore investment will suffer.
Being too simple is no good either! It’s identifying the places where you don’t need
to be complex that’s the trick, and some well-meaning over-design can cause real
problems. Don’t be afraid to throw away old unneeded code.

2.2 Experimental versus proven
Even now some aspects of DSpace are rather more “experimental” than others, for
example the History system. Although DSpace is a pretty robust system right now, it
won’t be able to fulfil its mission, and will not exploit this open source research to
deployment channel I’ve droned on about, if there is not room for research and
experimentation. We should be careful to note which areas are more experimental
than others. Of course “make it modular” (easier said than done) will help here but
the project will have to make various fundamental calls at some time or other and
explore directions for the very core of DSpace so the issue won’t disappear.

2.3 Middleware versus Application
Right now DSpace is pretty firmly in the application domain – certainly not
middleware like Apache HTTPD, an application server or relational database. To
support the various emerging use cases, it seems clear that there needs to be a ‘core’
of functionality, with a periphery of application-specific components. The question

3

becomes which parts of this whole picture are “DSpace”? Which parts are the
responsibilities of the structured open source community to maintain? How can the
critical “out of the box” functionality be maintained?
Back in March 2004 I talked about the idea different DSpace “distributions”, with a
common core but with different configurations and installed/components. DSpace
would essentially become something more like GNOME than a single app, where a
set of core functionalities is built on by other components which provide the user
functionality. I still think this has merit, though it may take a while before we have
the maintenance bandwidth. In any case, the idea of which are components are
“supported” by the DSpace (community/federation/foundation), and which are
community contributed/maintained should be made clear.

2.4 Revolution versus Evolution
The ideas I laid out in March 2004 (which have largely been accepted with a couple
of minor changes) were never meant to be a “new” system, though of course calling
the new architecture it “DSpace 2.0” perhaps led people to think that way. It was
never going to work for someone to hive off and create a brand new system, call it
DSpace and expect the rest of the community to follow.
On the other hand, at the opposite end of the scale, changing a single line of code at a
time is unlikely to yield the advances in the core that are required. It will be
challenging to chart a course between large-scale refactoring and implementation
while maintaining community confidence and contribution.

I am increasingly convinced that focussed, centralised development efforts will be
required to move DSpace forward, but there should not be just one, and the efforts
must be closely coordinated.
So, evolution, with mini-revolutions occurring in strategically targeted areas.

3 What’s Right

Before delving any deeper into problems, issues and suggestions, it’s worth pausing to
reflect on what’s right about the DSpace architecture. It couldn’t have got this far
without something reasonably robust under the hood.
First and foremost DSpace is an easily understood, easily installed, “out of the box”
application. This has been critical to DSpace’s adoption. Largely, anyone with a
reasonable amount of system administration knowledge can bring up a functioning
DSpace system within half a day or so, and start experimenting. People can see it, put
stuff in it, play with it, and instantly have a handle on what it is and does. This low
barrier to adoption has enabled its use in diverse settings where such technology
might not previously have been considered, and established a foothold in that
application space. If DSpace is to continue to grow into new areas, it is essential not
to lose this property.

The data model underlying DSpace is simple, and pretty easily understood. This has
again been a key factor in its adoption. More complex object models inevitably raise
the barrier to successful adoption. Further, there is always a trade-off between
flexibility of a data model on the one side, and how quickly people can understand it

4

and start using it, and how easy it is to manage, manipulate and build meaningful
services on the other side. A model in which there are just arbitrary nested containers
and files is flexible, yes; you can store any sort of super-complex object in that.
However, it also leaves people scratching their heads as to how to put what they have
in it. Further, it is very difficult to even present a meaningful UI over that stuff; end
users probably won’t be able to make much sense of a big tree of abstract entities and
files. Approaches like providing standard templates can help here but the benefit that
having an easily understood, albeit limited model that everyone can instantly
understand and start chucking stuff into should not be understated.
The DSpace architecture is also cleanly defined – storage, business logic, interfaces
that interact with users or other systems. As far as I can recall, there has never been a
question on any of the mailing lists where people are confused about some aspect of
it. (People may question aspects, or assert they can do better, but these are universal
constants.) That said, there have been a few slips, for example where the storage
layer is accessed directly from the interface/application layer, and these should be
ironed out. (A few inconsistencies crept in during the early stages of DSpace open
source development – we initially set the bar for contribution very low to encourage
involvement.) Often people mention that there’s too much business logic in the UI
code – while this may be true, achieving a real separation of logic from UI is harder
than most think.

In the preservation aspect of its mission, DSpace seems have been essentially
successful thus far. This may of course be due to the fact that anyone who does lose
content or have it somehow mangled is not likely to be apt to advertise the fact
widely. However, significant losses in such public things as university repositories
are unlikely to go unnoticed, and given the sheer number of deployments we can be
reasonably sure that losses do not happen often.

Part of the reason for this is that it’s pretty hard to inadvertently screw up a DSpace
installation in a way that breaks the stored data. (Other than poking around with an
SQL or shell command line, but people generally appreciate that that sort of thing
should be done with immense care). It’s fully transactional, even at the bitstream
storage level – any amount of adding, deleting metadata or files can be rolled back,
ensuring the system is always in a consistent state.

The “Context” object (from org.dspace.core) is central to this, although in retrospect,
perhaps it could be better named. It stores user authentication info and the database
connection, and all in-memory Java objects that represent an object in the DSpace
instance are tired to a single Context object. When that Context object is terminated,
those in-memory Java objects are no longer valid (as e.g. getXXXX() methods will no
longer function as there is no longer a database connection). Some contributions have
started to move away from this model, principally due to some dissatisfaction with the
database access API, but this the Context object is and will remain a key concept in
DSpace architecture.
One more aspect of note is that the entire internal state of a DSpace instance is held in
the relational database and file system. (A minor exception is during an
authentication operation, whereby the parameters from the original request that
prompted authentication are stored, so that after successful authentication the request
can be transparently carried out.) This property also helps make DSpace robust – if
the server goes down, or is rebooted etc. DSpace springs right back up as if nothing

5

has happened. Also, this makes it easy to deploy DSpace on a cluster of servers
fronted by a load balancer – each individual server doesn’t have its own internal state.

I strongly suspect it may be necessary to change this particular aspect with a
publish/subscribe kind of model, but this should only be done in such a way as to
retain robustness and scalability in terms of clustering capability.

4 Areas of Responsibility

The DSpace community has a wide range of areas to cover, requiring a variety of
expertise:

• Managing developer tools (SourceForge, Wiki etc)

• Technical support, for deploying (upgrading, managing customisations) and
developers

• Educate and coordinate the community

• Develop end user functionality

• QA/bug fixing, code clean up

• Release management

• Documentation (for end users, curators/administrators, sysadmins, developers)

• Develop administrative/curatorial interfaces (key area and differentiator for
DSpace)

• Develop the architecture to support richer metadata and content needs and
support preservation

• Engineer an enterprise-scale application (robust, enabling clustering etc)
All of these areas need to be covered, and not all are receiving the attention they need.
In particular, the last 3 bullets in the list are not receiving the attention and effort they
deserve. These 3 are unlikely to be covered in an ad-hoc way; they will require
sustained, dedicated, centralised efforts to make progress to a point where wider
community participation can effectively take over.

5 The Data Model

While it’s not wrong as such, the DSpace data model does need a lot of work. Some
of the problems may be addressed by establishing best practices and processes and
updating the code, rather than reflecting any inadequacy of the data model itself.
For example, people constantly bemoan the fact that DSpace doesn’t “support”
anything other than Dublin Core. That depends what you mean by support. You can
add metadata in XML or RDF/XML or anything else as a bitstream. You can then
add a Media Filter that crosswalks that to DC (or another flat metadata schema) and
thus have it indexed. That’s as much as most systems manage. However the problem
is that there’s no standard place to put the metadata. So documentation and
established practices are needed.

6

In this section, I focus on the abstract data model, as opposed to its realisation in the
relational database or METS. When I am talking about that realisation, I’ll make it
clear in the text.

5.1 Bitstreams
Not too hard a concept, though I wish we’d called them something else. (“File”
would work just fine really.) But I think we’re stuck with “bitstream” now.

What these things definitely need are better identifiers. The “persistent” URL is
pretty fragile. An example bitstream ID is:

https://dspace.mit.edu/bitstream/1721.1/1564/1/foo.pdf
The key parts being of course the embedded Handle, and the sequence number inside
the item. The other parts are necessary for systems to access the file and for browsers
to do something sensible with the content.

This works fine for allowing other systems to directly access bitstreams, but is not
robust to transferring between repositories, server changes etc.

The info: URI provides an alternative to enable globally unique IDs. Bitstreams can
still be accessed via the above URL, but their main identifier should be something of
this form:
info:dspace/1721.1/1564/bitstream/1
The handle and sequence number are still embedded but this identifier is not tied to a
particular server or protocol.
This can be used e.g. in a METS packaging/manifest (whether SIP, AIP or DIP) to
refer to bitstreams in a way completely decoupled from the home repository. The
existing sequence number can be used. Nothing in the DSpace code really needs to
change except for perhaps some simple resolution mechanism.
Note that “changing” a bitstream actually results in a new bitstream with a new
identifier (even in DSpace today). Actually this is largely a side-effect of how the
APIs work but (debatably) it’s a desirable property.

(Of course, identifiers may themselves become a more ‘pluggable’ aspect themselves,
but the above relates to currently established best practice and thus desirable “out of
the box” functionality. To that end, you might want the bitstream and all other
identifiers to contain ‘hdl’ to indicate the use of handles, e.g.:)

info:dspace/hdl/1721.1/564/bitstream/1

5.2 Bundles
Initially Bundles were meant to be different representations of the same abstract
“work” (or maybe FRBR “expression”) – e.g. bundle A contains a PDF, bundle B
contains HTML + GIF images. It soon emerged that all representations are not equal
(you can’t assume contents of bundles are “equivalent”), and that other kinds of data
need to go in them (extracted full text, thumbnails, metadata). To help distinguish
them, bundles were given names, but their use has gradually emerged and changed in
an ad hoc way, and is the subject of confusion.

Right now (at least, the last time I looked, things may have changed) we have:

7

• ORIGINAL, which actually means all “content bitstreams”. In general, few
people store multiple (“equivalent”) representations of a single object in
DSpace, and when they do, they all go in ORIGINAL. This is more because
the UI and batch tools don’t comfortably allow the creation of a richer bundle
structure.

• TEXT, which is actually extracted full text. From which bitstream the text
came can be inferred by the filename (foo.doc -> foo.doc.txt), which of course
breaks if there are >1 bitstreams with the same filename

• THUMBNAIL – auto-generated thumbnails – correspondence with originals
as for TEXT

• LICENSE – deposit licence

• CC_LICENSE – Creative Commons licence (in no less than three separate
forms)

• METADATA – collection of metadata bitstreams. You’d better hope you’ve
some way of working out what metadata is related to which bitstream from the
metadata itself.

Clearly better and more uniform practices are needed, and potentially more structure.
Also better UI and batch tools – however in this case, the complexity must be very
carefully managed.

My suggestion for moving forward is to also give Bundles identifiers using the info:
URI scheme. For certain types of bundle with particular content, the identifier can
contain the (controlled vocabulary) name – this vocabulary should be carefully
controlled. However, since the semantics of ORIGINAL are unclear, I suggest
dropping that and using sequence numbers for all bundles that don’t fit into one of the
other categories. This means “named” bundles essentially contain metadata, and the
numbered bundles contain content (though the line does get blurry at times).
So bundle identifiers in a typical item would look like this:
info:dspace/1721.1/345/bundle/1
info:dspace/1721.1/345/bundle/2
info:dspace/1721.1/345/bundle/3

Content bitstreams (was
ORIGINAL)

info:dspace/1721.1/345/bundle/current_packaging Contains ONLY the latest
METS packaging
(manifest) bitstream

info:dspace/1721.1/345/bundle/old_packaging Any previous METS
packaging bitstreams being
kept

info:dspace/1721.1/345/bundle/thumbnails As THUMBNAILS now
info:dspace/1721.1/345/bundle/extracted_text As TEXT now
info:dspace/1721.1/345/bundle/deposit_license As LICENSE now
info:dspace/1721.1/345/bundle/distribution_license As CC_LICENSE now,

except single form of the
licence, and given an

8

appropriate bitstream
format that is different
from the deposit licence

info:dspace/1721.1/345/bundle/metadata Other metadata bitstreams

Note “packaging” is used in the bundle names instead of “manifest” to be more
consistent with the OAIS model.
Also note that we could decide to put the licenses straight in the METS packaging
bitstreams instead of having them as separate bitstreams.
Now that bundles have identifiers, they can be referred to elsewhere in the system and
outside. In particular, in the METS packaging and elsewhere it is possible to attach
metadata to them, for example, representation information.

This of course does not answer the question of how to enable a rich bundle structure
to be exploited. This is mainly a UI issue. The above changes require little or no
changes to the existing data model and UI (though there would be a minor migration
task to rename bundles and assign identifiers), but the changes open up a variety of
possibilities.

5.3 (OAIS) Representation Information
Right now DSpace does have a Bitstream Format registry. The original intention was
that this would be a very fine-grained registry – e.g. separate entries for different
versions of MS Word and so forth. However, as an initial hack to get the thing out of
the door, file extensions were originally used as the means to identify formats. This
was supposed to be very temporary but some things turn out to be rather less
temporary than others. Still, work is under way to address this using JHOVE etc.
The complexity issue must be managed here again – not everyone will be able to
maintain a fine-grained registry. There are global registries emerging and some sort
of synchronisation between the local DSpace and global registries will be needed
(perhaps via OAI-PMH?)
In the short term, it should be possible to assign identifiers to formats – at present they
don’t have any sort of identifier and they absolutely need one, possibly more.
A bitstream format might have a PRONOM identifier, a GDFR identifier, and a local
identifier. Easy to code, harder to manage, especially when the granularity varies –
one registry might have one entry for PDF, another 12 for different versions. If a
format entry in my DSpace is for all versions of PDF, that should not share the same
identifier as one or all of the finer-grained formats, because they aren’t the same
thing.
My recommendation would be to give Bitstream formats in DSpace an info: URI, e.g.

info:dspace/(site id)/format/12
The relationship between this and the global registry formats can be then managed
later on. (Note “site id” should uniquely identify the DSpace instance. Handle prefix
may be used, or perhaps assigning a DSpace repository a Handle itself is a good idea,
as a “root” object. Server DNS name is probably not ideal and too fragile.) In any
case, the DSpace data model/API can easily be extended to allow extra identifiers to

9

be assigned to bitstream formats (or rather, a map of global -> local registry format
identifiers), which should be used when importing/exporting.

(One could use only the identifiers from global registries; however local DSpace
might want to have extra formats, or hang extra information off the entries, or have
different granularity, hence this local ID + mapping approach).
However, simple bitstream formats aren’t enough. Datasets need data dictionaries;
.zip files and .avi files have constituent components that have their own format (the
compressed files or the audio and video streams).

It’s not a given that knowing the precise format of every file and constituent thereof in
the system is going to be crucial to preservation – one could instead focus on
maintaining tools and data that are good at identifying formats. However, being able
to store as rich representation information as possible feels like a direction that we
would be remiss to avoid, with the realisation that it will not always be possible or
even desirable to expend the effort required to have fine-grained knowledge of the
formats.
There are other kinds of representation information as well. The hardware and
software environment some interactive object needs to run in; descriptions of the
fields in an XML dataset; “attributes” of a format (e.g. character encoding) and so on.
It’s pretty clear that in many cases, a single bitstream format is just not enough.
Representation information itself is another set of data that need to be managed and
are likely to change in format, standard etc. over time. A further complication is that
some representation information relates to a set of bitstreams as opposed to just one.
However, the new bundle identifiers give us a hook there.
The PREMIS work offers an existing standard to keep this representation information
in. I propose taking advantage of that work. In the METS packaging, each bitstream
(and, potentially, bundle) can have some attached PREMIS metadata. (Alternatively,
this PREMIS metadata could be stored in a separate bitstream and the “format” of the
bitstream could be the identifier of that PREMIS bitstream; however this feels like it
would lead to an unnecessarily large number of bitstreams over time). The real
question when using the PREMIS standard is how much of it is specified in the
relational database and how much is only present in the METS packaging.
“Higher level” kinds of representation information (essentially the non-technical sort)
is treated as descriptive metadata in DSpace (or perhaps another item, with the
relationship specified in the metadata).

(Note: From a “clean modelling” perspective, it might seem nice that each bundle
and/or bitstream has a single “representation information” identifier. This could be
either a bitstream format or the Handle of the richer Rep. Info. object. However,
moving to a more pure Kahn/Wilensky model does introduce undesirable complexity
– it could be done at a later date, but right now, I think the ability to have the
representation information part of the same object with the same Handle is more
desirable.)

5.4 Communities and Collections
The community and collection structure has proved flexible enough to meet most
people’s needs without being at all confusing. The first thing I’d do with
communities and collections is standardise their metadata on DC or some other

10

standard, rather than having the bespoke, ad-hoc database columns they currently
have. A couple of things might be tricky to get in there, e.g. the item template, but a
standard should be used where possible (e.g. dc.title, dc.description).
Another easy win would be to enable Communities and Collections to be renamed
using the Messages.properties mechanism (have all mentions of “Community” or
“Communities” refer to one or two message keys.)

Communities and collections will definitely need METS packaging. This means they
could be versioned, and their metadata managed by the DSpace storage system
(including checksum checking etc.) (Whether they should also have Bundles is a
different matter – probably best to avoid this complexity in the first instance, though
later down the line, making DSpace objects internally look as similar as possible may
have benefits.)

I can also envisage moving to a more generic “container” model, where DSpace under
the hood is more raw Kahn/Wilensky architecture – digital objects contain other
digital objects, with some “types”. That should probably be done later, and with care
to avoid adding complexity.

5.5 Packaging
A short note about terminology: now I refer to the METS “package” or “manifest” as
the “METS packaging” because that seems to most closely and unambiguously
correspond with the OAIS model.
Back in March 2004 I first introduced the idea of using METS (or some other
standard) as the ‘native’ format in DSpace. This was met with a chorus of “what’s
wrong with the database” or “we’ll lose the transaction-safety of the database”. The
idea was never to get rid of the database, the idea was twofold:

• Get a canonical serialisation of the metadata, including bitstream references
and checksums, so that the metadata itself can be easily backed up, replicated,
checksummed, etc. etc.

• Provide a place to store more complex kinds of metadata that don’t easily fit
into a relational database.

I also had a hard time convincing people that treating these METS-based AIPs as the
authoritative version of content, and the database as a cache, was the right path
forward. The main (and valid) concern was synchronisation.

Maybe the original proposal seemed too radical, or the explanation was too focussed
on how it might be reflected in a simple file system implementation or the storage
API and implementation in general. I am still convinced (and most of the community
now seem convinced) of the validity of the approach; however instead of thinking at
all about a storage API, I propose staying with the one we have for now, because it
gives us that all-important transaction-safety.

While there are many possible packaging formats (METS, MPEG-21 DIDL, FOXML,
XFDU etc) I’ll assume METS is chosen to make the description easier below.

I suggest storing the METS packaging as a peer bitstream inside an item. This
instantly means it becomes part of the item, is backed up, its checksum is verified, its
format (which will likely change over time, just as other bitstreams) is tracked.

11

Naturally, other bitstreams in the item are included by reference, using their info:
identifier.

In terms of synchronisation, I propose that we try generating and storing the METS
packaging as part of the same transaction as any update to the database table. This
means all updates to both database and METS can be mediated by a single Java object
(org.dspace.content.Item), greatly reducing any chances of conflict. This should
probably be implemented as a prototype to uncover any performance or other issues.
I expect that it should probably be ‘illegal’ for anything to update the METS
packaging directly. In terms of performance, I’m reasonably confident that this won’t
prove a major bottleneck, particularly if indexing tasks are decoupled from the
item.update() call.
The major remaining issues, then, become:

• How to create an API that allows the increased flexibility of the METS
packaging to be exploited

• How to deal with the fact that not everything in the METS packaging will also
be in the database

There are numerous options here. Org.dspace.content.Item could only every update
(its internal cache of) the METS document, and the DB tables (Dublin Core etc) could
always be derived from that.

One more issue to think about is whether the METS packaging bitstream should
contain all of the metadata in-line, or whether it might include some by reference
(using the info: URI of the relevant metadata bitstream to do so). Intuitively, it feels
like having everything as part of the METS bitstream is simplest; however in the case
of non-XML Schema validating metadata, for example RDF, it makes sense to store
that in a separate bitstream. Again, managing complexity will be the key.

5.6 Versioning
The METS packaging approach provides a compelling answer to the ever-present
versioning issue. Note that by versioning, I mean revisions of a single item, for
example when the metadata has been changed, a format migrated, a new bitstream
added etc.

If two versions essentially constitute different works (e.g. the descriptive metadata is
going to be different because the two versions were initially published by different
means), my recommendation remains that each version be a separate item, with a
separate Handle and metadata, and that the “later version of” is expressed in the
descriptive metadata.
For different versions of a single item, I suggest introducing a new identifier, a
version identifier, again using the info URI scheme, for example:
info:dspace/1721.1/465/version/1

Note the embedded Handle. It doesn’t really matter what’s at the end; sequential
numbers is fine.

Each version is tied to a particular instance of the METS packaging. When an update
occurs, a new METS packaging bitstream is produced. Because new bitstreams
always get new identifiers, this new packaging will have a new identifier. The METS
packaging bitstream should contain the correspondence between previous version

12

identifiers and METS packaging bitstreams. The most current METS packaging
bitstream is always in the “current_packaging” bundle (see above) and older versions
(if retained) are stored in the “old_packaging” bundle.
Note that not all versions may be retrievable, depending on local policy. (This could
be implemented as simply as a config property or a checkbox on the ‘edit item’ page,
which says “retain old version”, with a default from dspace.cfg.)

(Note also that the bitstream identifiers of the METS packaging bitstreams themselves
could be used as version identifiers; however I think this would lead to confusion e.g.
when ‘retrieving’ or resolving the identifier – are you referring to the version or the
set of bits?)

To make this a bit clearer, here’s an example. This gets pretty nitty-gritty, but this
complexity should be hidden from the vast majority of users (including
admins/curators).
I create an item with a TIFF satellite image and some GIS metadata in XML. Of
course there is METS packaging, which refers to both of these bitstreams by their
info: identifier.

ID: hdl:123.456/789

TIFF image bitstream: info:dspace/123.456/789/bitstream/1

GIS metadata bitstream: info:dspace/123.456/789/bitstream/2

(Latest) Version ID: info:dspace/123.456/789/version/1

METS packaging: info:dspace/123.456/789/bitstream/3

Later, I update the GIS metadata to fix some mistakes and update its format. Now
there will be the following identifiers:

I create an item with a TIFF satellite image and some GIS metadata in XML.

ID: hdl:123.456/789

TIFF image bitstream: info:dspace/123.456/789/bitstream/1

Old GIS metadata bitstream: info:dspace/123.456/789/bitstream/2

Updated GIS metadata bitstream: info:dspace/123.456/789/bitstream/4

Version ID: info:dspace/123.456/789/version/1

METS packaging: info:dspace/123.456/789/bitstream/3

(Latest) Version ID: info:dspace/123.456/789/version/2

METS packaging: info:dspace/123.456/789/bitstream/5

Now we have all of the information about both versions. If we choose not to throw
any bitstreams away, we can reconstruct any version given the version identifier.
Local policy (which could be configured very simply) can decide whether to keep all
of the bitstreams (e.g. the old GIS metadata bitstream) or discard them; and whether
to keep the METS packaging for older versions, which would allow you to see how an
object has changed, even if you can’t retrieve every bitstream.

The main issues and challenges are:

13

• Maintaining correspondence between version IDs and METS packaging
bitstream IDs over time. This could be managed in the database, or the latest
METS packaging info:dspace/123.456/789/bitstream/5 contains a reference to
the old METS packaging (info:dspace/123.456/789/bitstream/3) and version
IDs, and each METS packaging bitstream could contain its own version ID.

• If information about older versions is held in more recent METS packaging
bitstreams, and we don’t retain every bitstream of every version, there will be
some references to bitstreams in the METS that don’t exist. This may confuse
automated integrity checking tools or any process of ingesting the DSpace
AIPs directly into another system. This situation would need to be clearly
documented.

• Creating a UI that makes accessing/managing different versions (and retention
policies) easy.

• Granularity of versions. Right now, interactions with DSpace usually take the
form of HTTP requests and responses in the Web UI. From a ‘logical’ point
of view, a set of those would constitute a single admin action (e.g. add this
bitstream, remove that, fix this metadata field, fix that) but it’s pretty hard to
work out which of the states the object is in during such an operation
represents a ‘version’. Some session logic may need to be introduced, or some
other means of working this out. An alternative overall approach would be to
have the versions (and attendant METS packaging generation) happen on a
periodic, polled basis, or only get tagged as versions after some period of
inactivity, so any if a rapid set of changes happens in the course of a single
hour, only one new version is created.

(Note that with the exception of the version identifiers, this is pretty much exactly the
approach I suggested in March 2004, but hopefully this explanation is much clearer).
Note that once Communities and Collections have METS packaging, this versioning
strategy can apply to them too.

5.7 Provenance
For a preservation-related system, DSpace probably doesn’t pay provenance due
diligence.
Right now in DSpace there are essentially two sets of data that could be described as
“provenance”. One is the text in the Dublin Core metadata record. Although this can
technically be entered and amended by a user, it’s generally mechanically generated,
including the checksums of bitstreams, the user who was currently authenticated when
the change was made, and the date. The second is the detailed logging information
stored in the History System.
The “History System” was named thus because there was some disagreement over
whether what is essentially detailed, structured log data was the same as information
about the chain of custody of an item.

There are a number of questions to ask here:

• Why the similar data in these two places?

14

• Should “history” (or better, audit trail) information be considered part of an
AIP/item, or should it be captured and managed elsewhere? Which is most
appropriate/secure?

• How best to capture the non-mechanical aspects? I.e. what was the user’s
intent? Where did the object come from prior to DSpace?

• What granularity of event should be captured? This is a similar (or maybe
even the same) issue to the granularity issues discussed in “versioning” above.
The current History system captures way too fine-grained information.

• When should we start capturing this information? On submit, or commit to
archive (full ingest?) The vast majority of the current History System data
was captured during the user submission process which is probably useless
data.

The METS packaging and versioning approach offers a good way to simplify some
aspects. Since a METS packaging bitstream includes the other bitstreams and
checksums by reference, it accurately represents the state of the whole item at a
moment in time. Thus, these packaging bitstreams (or identifiers +
digests/checksums) can be recorded in audit trails/the history system, without the need
to serialise a chunk of metadata.
My suggestion would be to radically simplify the History system to use the PREMIS
data model, and to store the checksums and identifiers of the METS packaging
bitstreams only. If being able to backtrack to previous versions for any purpose is
required, the retention policy of the system can be that the METS packaging
bitstreams for all (or key) versions of an item are kept.

An alternative is that the history system actually stores a copy of the METS packaging
bitstreams. This obviously increases the storage management issues but has
compelling advantages.
Exploration of these options and experimentation is probably required.

5.8 An Improved Data Model
Taking into account the above discussion and features, and our data model at the item
level looks something like this:

The Handle is still the primary identifier for the item. It identifies the latest version of
the item; it’s the OAIS Content Information identifier.

A version identifier uniquely identified separate versions of an item.
Associated with each version identifier is a METS packaging bitstream. The latest is
in the “current_packaging” bundle. Older versions (if retained) are in
“previous_packaging”. These packaging bitstreams can be used as the basis for
simplifying provenance-related tools and data models.
Bundles and bitstreams are given identifiers. Note that these identifiers do not
necessarily need to be explicitly stored anywhere in the database; most can be
examined to find the appropriate object. (e.g. info:dspace/1721.1/234/bitstream/1 can
be found using the Handle and sequence number.)
Communities and Collections are also given METS packaging, and their metadata
ported (where possible) to proper standards (e.g. DC).

15

All this is done with the existing, transactional storage system.
The biggest challenge then will be how to take advantage of the improved metadata
capabilities with a well-designed API that can keep the relational DB and METS
packaging in sync.

6 Modularity

Everyone has always wanted this, which of course is why it featured heavily in my
original March 2004 proposals. With good reason: many are struggling to keep their
customisations up to date with new DSpace versions, draining valuable resources
from the community.

Before blaming the architecture, it’s worth pointing out that following good practices
can make this much easier: e.g. don’t mess with the core classes in org.dspace, if you
need to alter the database only add new tables, never alter existing ones, and so forth,
avoid the temptation to re-invent wheels like database access (even if the existing
APIs aren’t ideal.) I mentioned much of this on the Wiki page
http://wiki.dspace.org/AddOnMechanism. In fact, many “plug in” frameworks are as
much about enforcing a set of practices as actual features.
There are numerous existing mechanisms, frameworks and so forth out there for
achieving all this – Spring, Excalibur, Java Plug-in Framework, etc. etc.
I think discussing these frameworks is putting the cart before the horse. There are
various decisions that need to be made first, and then the various frameworks can be
examined to find the one that fits best.

The primary needs are:

• Enable adopters and researchers to develop, maintain and distribute their
customisations independently of the core, not needing numerous complex
“merge” operations

• Enable the functionality of DSpace to vary from deployment to deployment to
suit local needs

• Better support a “divide and conquer” approach to maintenance and
development so that different teams and individuals can take responsibility for
clearly delineated areas of functionality

The tricky parts of realising this have always been:

• The relational database. These are optimised to be rather static structures.
Updating, independently-managed “sub-schemas” is difficult (and if modules
actually try to insert new columns in existing “core” tables, the situation
becomes untenable). This is a “best practice” issue, though it could be
supported/enforced by various mechanisms.

• People keep editing core classes, adding new methods or opening up
private/protected methods. This may or may not be necessary to make a
particular piece of functionality work, but I get the feeling people haven’t
done due diligence to isolating their changes to e.g. the Web UI. Again it’s a
best practice issue that can be supported or enforced, for example by actually

16

separating the core code from the application/interface code in CVS so that
people have to submit patches to each separately.

• The Web UI JSPs. Adding some new UI functionality generally involved
editing a few bits and pieces of JSPs, to add links here, buttons there and so
forth. Manakin should help address this. It feels like what people are really
after is a kind of portal-style UI approach to DSpace.

• Working out what the appropriate APIs and interactions are, especially what’s
“core”. I made a vague stab at this back in March 2004, but people got caught
up in discussions about the means rather than trying to work out what the
modules and interfaces should be. But this will be much, much trickier than
selecting which uber-framework to use.

The plug-in manager and add-on mechanism are steps in the right direction. For the
add-on mechanism, my strong recommendation is to get something simple that
improves the current situation out as soon as possible, instead of trying to boil the
ocean and try and make it “the” modularity answer. There will always be limitations
to what any modularisation mechanism will let you achieve: live with it.
There are further aspects of modularity that should be examined before a
framework/approach is decided:

• Network vs in-process APIs. DSpace interacts with other systems via network
protocols. Potentially, network APIs could also be used by DSpace internally,
so that different modules could run on different machines. (Usually referred
to as Service Oriented Architecture, specifically meaning Web Services.) This
approach has its own issues, particularly in terms of complexity of
deployment, and performance under heavy load as each component requires
network resources to access others, and many network interactions may be
needed to meet a single user request. It could well be that a cluster of
“parallel” servers works better. A further issue with network APIs is that right
now, there really aren’t any suitable standards for many of the kinds of
interface and data interchange we need. We wouldn’t necessarily be opening
DSpace up to external systems in the way we’d like; we’d just have a set of
proprietary DSpace APIs that happen to be network-based rather than in-
process Java API based. So, although I’m not saying it should never happen,
using network APIs inside DSpace is a step that should be thought through
very carefully.

• “Supported” versus non-supported (user-contributed) modules, as discussed in
section 2.3.

• Trade-offs between clean separation of modules, complexity, and
performance. This will be a tricky thing to balance. Total separation of
modules (e.g. no shared database access at all) is likely to have an impact on
performance under load by increasing the amount of data being moved around.
Less than clean separation probably increases complexity of management and
so forth.

• Versions of each. Certainly for the core APIs, and probably for others, it will
be necessary to strictly version them, and maintain compatibility matrices.
Upgrades will also be tricky. What happens if you upgrade the core but an
application module stops working? What happens if a core upgrade causes

17

some database schema migration that triggers constraint violations in a
module’s (separate) database tables? What order should upgrades be done in?
Again, frameworks like Spring etc aren’t likely to fix this – it’s down to
establishing and following a set of practices and that will take management.

6.1 Publish/subscribe
I’d hate to talk about modularity without making at least one concrete suggestion.
One of the first ideas in the “DSpace 2.0” proposal I made in March 2004 to attract
animated criticism was that instead of managing the complexity of publish/subscribe
messaging (with attendant issues around robust message delivery etc) we take a
polling approach to allow decoupled modules to keep in sync with the asset store. I
still think there’s merit in that approach, and certainly it’s the only approach I’d
consider for any widely distributed system (like the China Digital Museum project).

However, the other approach, despite its complexities is still worth pursuing. (And as
I point out in http://wiki.dspace.org/RobsAssetStorePrototype each can be built on the
other).
To that end, I’d suggest a publish/subscribe model be introduced, initially just for
item (or maybe ‘object’) creation, updates and deletion. Other event types could be
added later.
This achieves two things:

• Modules interested in getting updates can be decoupled from the core code,
without for example having to insert code into Item.update().

• Processes currently that happen in serial with item updates (including batch
ingests) can be run in parallel on another CPU/server, or at a lower priority, or
otherwise scheduled. People have run into problems with batch ingests taking
a long time. This is because DSpace is going ingest, index, ingest, index, …
and if the index doesn’t finish quickly the whole process gets bogged down.

Of course, the tricky part is that this introduces significant complexity. The system
suddenly has internal state – messages need to be reliably delivered, a broker will
probably will need to be running, and components will need a initialise/terminate
lifecycle, making things like crash recovery more difficult; clustering servers may
become much more difficult.
That said, all this stuff is essentially a solved problem, with existing best practices and
technologies (including open source implementations) for dealing with this. If we can
build the system in such a way as to hide these complexities from most “lightweight”
users, this could be a good route forward. One could envisage other areas of the
system benefiting from a publish/subscribe mechanism, for example it could form an
element of the ingest workflow system.
When choosing a technology for this (I’d suggest “rolling our own” definitely is not
the way to go), we’ll need to decide whether to go for a Java-based approach such as
JMS/ActiveMQ or a more platform-neutral approach based on WS-Notify etc.

When it comes to addressing that transaction-safety, the Context object will continue
to be crucial. Instead of instantly despatching messages, the messages can be lined up
in the Context object. The messages can be fired off only when the Context object is
successfully committed.

18

One more tricky issue is to do with a potential “infinite loop”. If a subscriber changes
an item when they hear it’s been changed, that will trigger a further “item changed”
message. E.g. if I have a subscriber that adds a provenance metadata field; someone
changes the item, meaning an “item changed” message is issued, which means the
provenance is added, and another “item changed” message is issued. Will need to
watch out for this one.

7 Authorisation

Clearly many issues here, in various dimensions:

• “ResourcePolicy” table needs renaming – they’re permissions, not policies

• Granularity of permissions. READ, WRITE, ADD, REMOVE don’t seem
sufficient. E.g. does not having READ permission mean I’m not allowed to
know of an object’s existence?

• Conflation of roles and permissions. Some of the “permissions” or “policies”
in that ResourcePolicy table are really roles, e.g. workflow step 1, admin etc.
This makes management very difficult. Separating roles from permissions
(and maybe having policies as a further separate entity) may greatly simplify
things.

• Management tools. We really need good interfaces and other tools (e.g. to
integrate with personnel/roles DBs) to make managing permissions easy,
regardless of the underlying implementation. This will be difficult, as there
are tricky issues like inheritance of permissions and default permissions for
new objects to take into account.

There are options for taking “off-the-shelf” technologies like Shibboleth, but these
might not be appropriate for all. What is probably needed is a good conceptual model
(role-based) and an API or set of APIs that enable different implementations to be
used for different organisations.

8 Collection Management, Curation, Administration

Digital preservation is a process, not a technology. I’m not quite sure where claims
that DSpace is “OAIS compliant” came from, but since OAIS talks about processes,
communities and responsibilities, DSpace itself can no more be “OAIS compliant”
than a set of pliers can be a certified electrician.
In addition to the technological means needed to assist the process (e.g. checksum
checking, provenance), collection managers and curators (who will probably not be
system administrators) need tools and interfaces to carry out the preservation
processes, as well as perform other administrative functions like manage
authorisations and users, orchestrate federation/replication agreements and so forth.

DSpace does have some collection management/curation functionality and it is a key
differentiator for the DSpace system, as well as being a critical area for research.
However, as of yet, it hasn’t received the attention it needs.

The critical areas are:

19

• The edit item form. It’s pretty hard to use, and doesn’t capture any
provenance information. It’s only one step away from hacking the database
directly with SQL. It needs a lot of work.

• The authorisation administration UI – it’s pretty awkward to see what’s going
on, and who has what permissions, as described above. I don’t know how
you’d tell if there was a glaring security hole.

• Strongly related to the above, epeople and group membership

• Managing archive consistency, deletions and so forth

• Capturing provenance for admin operations
There’s enough room for a slew of research projects here.

9 Internationalisation

It’s come a long way, but issues still remain in various areas. Some contributions
may address some of these:

• Emails

• Users being able to select interactively, and their preference stored for emails
etc

• Descriptive metadata – the database + APIs can capture multi-lingual
metadata, but the UI doesn’t comfortably allow this. Perhaps an extra “initial
question” in the submit UI (“the metadata is in multiple languages” or some
such)

• Content – can only have one item-level dc.language field. What if there’s a
French PDF and a German PDF in one item?

• Browse: the browse controls (“A-Z” doesn’t work for everyone) and ordering

• Search: multilingual search. I asked on the Lucene list a while ago what
would be the best approach, see:

http://mail-archives.apache.org/mod_mbox/lucene-java-user/200505.mbox/browser
http://mail-archives.apache.org/mod_mbox/lucene-java-user/200506.mbox/browser
Approaches include:

• A single index

• Different analyzers/indexes for each language

• Language being a field in a (Lucene) document, and a separate document for
each language

• Each field name in the Lucene document being of the form
fieldname_language

No clear best practice emerged, but people mentioned success using a single index
with an extra field for language.

• On-line help

20

• System documentation etc

• Installation and sysadmin script output

• How to manage all this when there are many different modules

• Managing “localisations” during updates, perhaps having a local ‘override’
file that overrides message keys but doesn’t specify those keys where the
default is OK

10 Scalability

I’ve mentioned this several times in the preceding sections. Any specific questions
about DSpace scalability (how many objects can it store, how many users can it serve)
don’t make much sense, it’s kind of like asking “how many files can a hard disk
store”. It of course all depends on the hardware and storage. It’s not really
reasonable to expect to run an enterprise-scale system with millions of objects and
terabytes of storage on a single server. DSpace can be run on a cluster and can be
made to scale to manage numbers of users as required.
There are various dimensions of scale to consider:

• Number of concurrent users

• Amount of storage

• Performance with large numbers of objects (indexing, ingest, search/browse
response times)

• Size of individual objects (e.g. 100Gb data files)

• Administrative and curatorial workload (number of FTE/number of objects)

• Barrier to deposit vs quality of deposits (easy to get lots of bad content)
There are clearly bottlenecks in the system that should be addressed, however.

• The browse system indexing performance in particular degrades badly as the
number of objects increases. As described above, decoupling the indexing
process from the batch ingest process would also help.

• There has been talk of optimising by looking at the database schema: Some
profiling work by John Hopkins University amongst others uncovered the
worst issues. The focus should now be on ensuring that the code itself does
not issue more SQL queries than necessary: I suspect that far more queries are
being issued than necessary.

• The database access API/mechanism could be refactored to make use of
PreparedStatements.

• The in-memory object cache of the Context object can get rather large,
hogging memory. Weak reference hashmaps and “lazy initialisation” help but
more may need to be done.

• More caching in general could be done at the UI layer. This is pretty tricky in
the pseudo-MVC Servlet/JSP environment – you can cache JSPs but since
most of the work is done in Servlets, you don’t gain that much. Hopefull

21

Manakin can help. Also other things can help like sitemaps or static pages
optimised for Web crawlers to minimise their impact.

• The OAI-PMH harvesting could do with optimisation, perhaps by caching
results.

• More in-memory caching of objects in general may help. However this might
be tricky to achieve with the Context object mechanism (which has proved
immensely useful in other aspects).

11 Storage

In this document I’ve expressly separated issues of data model, AIPs, METS
packaging etc. from storage – I think their conflation in my original DSpace 2.0
proposal and the ensuing prototypes was a big problem.

In general, the current DSpace storage is fine in that it’s transactional. However, the
initial, minimal hack approach to having several asset stores has remained and not
been fixed. Java’s current lack of a way to find out free disk space is an issue there,
but I believe that is being addressed in a future Java version.

Grid-style storage offers a great potential to scale up DSpace storage. The existing
SRB storage mechanism is OK as a proof-of-concept, though ideally should be
separated out from the file system-based storage code as a separate plug-in/module.
It’s another balancing act as to how much DSpace is responsible for managing storage
and policies versus the underlying technology (which is likely to vary). E.g. SRB will
be managed differently from LOCKSS, ChinaGrid, or some off the shelf HSM system
(online, near-line, off-line). DSpace could give storage “hints” or policies through
some neutral, standard language which could be acted upon by the underlying storage
technology (or management tools thereof). The key is to keep DSpace simple so that
it can work with a simple file system, but to enable it to take advantage of the various
storage technologies available. SRB is just one answer, and is not fully open source
so alternatives should be available.

11.1The Relational Database
I’ve grown a little concerned at the over-use of the relational database, even for things
like constants that could happily live in Java class files. New relations and columns
should be added to the database only when necessary – managing schema upgrades
and so forth is a big challenge. This is particularly true where the volume of data will
grow quickly, for example usage logs.

12 “Standard” metadata

The Dublin Core profile that DSpace uses is based on a very early draft of the Library
Application Profile. This contains several non-standard qualifiers, including of course
the choice of “contributor.author” which has ruffled so many feathers. It’s a fair point
– DSpace, at least in the “out of the box” configuration should probably accurately
follow the latest standard. For existing users there’s potentially an “upgrade

22

crosswalk” that might be required. Really the metadata, just as the content bitstreams,
might be subject to preservation migrations as standards evolve; that’s one reason
why having the METS packaging as a bitstream in the item is so appealing.
Anyway, the specific problems in the use of DC in DSpace are:

• Use of non-standard qualifiers, which make expression in XML difficult

• Some fields relate to bitstreams as opposed to the item level, and in multi-
bitstream items this means they are meaningless. For example, items may
have several format.extent and format.mimetype elements, with no way of
corresponding values to individual bitstreams.

Of course, this is compounded by people inventing their own qualifiers etc. That’s
what the “multiple metadata schema” mechanism was intended to allow – use DC or
other standard namespace metadata values where you can, and if you have to invent
something, at least do it in your own namespace so you can tell it’s not really DC.
However, this needs people to have the expertise and will to enforce this, and tools to
make changes in this area don’t yet exist.

13 Dissemination Architecture

There has long been talk of “dissemination architecture” for complex objects, on-the-
fly migration/conversions, integrated streaming servers and so forth. This is another
balancing act – how much into “publishing” should the DSpace system itself get? I
don’t think decoupling access from storage/archiving and collection management is
necessarily a good idea from a digital preservation perspective. Unlike in the physical
preservation world, constant human access of the digital material is a good thing
because people will uncover problems that automated processes might not.

14 Automated Testing

It’s often been pointed out that automated testing (or unit or regression testing) would
greatly ease the contribution inclusion process by automating part of the evaluation
process. This is definitely true. It’s worth pointing out that automated testing can be
achieved without necessarily refactoring the code or architecture (and let’s get away
from this “we’ll fix it in version 2” syndrome which has meant various hard problems
haven’t been looked at.) There's no reason we can't do this with the current
architecture. I think a 'test' corpus, with diverse enough content and metadata and
unencumbered by restrictive usage rights is the first requirement; once this is in place,
it should be possible to write lots of tests to give the org.dspace.content and other
APIs a workout given that you know the expected behaviour. It might not be fast or
pretty as the corpus would need to be 'reset' each time, but would help with our QA
and patch testing processes immeasurably.

15 Code Management

There are various issues or areas of concern regarding management of the code itself.

23

• SourceForge has served us well thus far, however as we search for ways to
better support the distributed developer community we might want to examine
other options. What SourceForge doesn’t comfortably let us do is give
different groups different permissions on parts of the source tree. Such a
capability would let us set up focussed committer groups with responsibilities
for particular aspects of the system. Also it would let us set up areas for
members of the community to use for their own projects, making them
available to all and freeing them of the burden of running their own local
development infrastructure.

• The code really needs regular “housekeeping” or “vacuuming” to look for
parts which need cleaning up, documenting, fixing up. The biggest problem
here is motivating people to do it – people like to build new stuff, not fix
others’. http://wiki.dspace.org/CleanupTasks lists some areas.

• Maintaining consistency. Very tricky in a big, distributed open source dev
community. However the source of the problem is also the reason why
consistency is so critical – we need there to be one clear way to access the
database, do authorisation/transactions, do logging etc. In some areas this has
started to ‘creep’ as multiple ways of doing things emerge. These should be
cleaned up over time, as they will lead to confusion and less manageable code
over time.

• Platform independence. Really this relies on enough active people using the
given platform (be it Windows/MacOS or Oracle) to be able to report and fix
problems and keep things in sync. Various steps can be taken to mitigate the
difficulties. As far as is possible, vendor-neutral SQL should be used. I also
think we should remove as much Perl etc. as possible, not because it’s a poor
language, but to reduce the number of languages that a DSpace developer
needs to know and that a platform has to support.

16 Ingest and workflow

DSpace has a pretty simple ingest system with a very simple submission workflow. A
more pipeline-oriented approach would be good, but care should be taken not to make
this too generic – we did at one point have a very flexible, generic workflow engine
but it proved impenetrable and unmanageable by anyone other than the guy who
wrote it.

We definitely need better format identification and verification, the ability to
automatically extract metadata (both technical and descriptive), do things like create
and store digital signatures for provenance reasons and so forth. Ingest processes are
likely to vary greatly, so we need flexibility here, but always bearing in mind the
“lightweight” users who shouldn’t be overwhelmed with complex options.

17 Logging and stats

Way back when, we decided on a particular format for log files for better analysis and
statistic collecting. The basic form is:

24

email-address:session_id=XXX:ip_addr=YYY:<action>:<parameters>

<action> is intended to be a controlled vocabulary, and parameters a comma-
separated list of key/value pairs that correspond to the action. This notion seems to
have been lost somewhat, but I think it has value. (Again, the Context object is relied
upon). Knowing exactly where to but WARN, INFO and DEBUG-level statements is
of course rather difficult, but critical to debugging and statistics.

With statistic-generating, I’m a little concerned about the idea to have loads of
statistics stored in the database. As mentioned above, such data will tend to grow and
grow, and become a management burden (both for developers and sys admins) over
time. My own preference would be for a more regular log analysis approach, where
existing log rotation/management tools can be used. Many tools have incremental
analysis mechanisms so that it isn’t necessary to process all of the logs to update
statistics. However, it’s not a huge issue either way; there are more pressing issues.

18 Deployment and configuration issues

Deploying DSpace is pretty easy (despite the occasional grumble on the lists).
Managing configurations is a little trickier. Once you install one version, you already
have to sets of config files – in the source tree and in the installation. When you
download another version, you have three, which are probably out of sync.
Maybe this isn’t as much of an issue as I think, because there haven’t been too many
problems reported on the list. However as the system becomes more modular it might
become an issue. Do we want a single dspace.cfg file or an archipelago in a
directory? Are property files OK or do we want to move to XML? (XML in general
seems more suited to computers than people, though friendly tools could be build on
top of them.) To what extent should defaults be embedded in the code? Should we
always have a fall-back “dspace-default.cfg” that is part of the source code and never
changed, with a local dspace.cfg file being essentially a set of diffs? There are
numerous options here, and probably examples in other systems to look at.

19 Conclusion

Due to time, this got a bit hurried in the end. But that’s probably OK, because I think
I focussed on the big problems first, particularly the data model one.
I’ll finish with some procedural and structural recommendations about how to move
forward.
There are currently two really critical areas where DSpace needs to be taken to the
next level: the data model to support more complex metadata and objects and
versioning, and modularisation. Following that, the critical issue is improving
collection management and administrative UI capabilities.
I think two surveys need to be done, resulting in a summary report:

• A comparative summary of existing data models and packaging formats –
MPEG-21 DIDL, XFDU, METS etc.

25

• A comparative summary of existing modularisation mechanisms, frameworks
and so forth.

These could serve as input to two further activities/groups:

• A data model survey group, to look at the requirements for DSpace, and make
a recommendation looking something like what I’ve written above but
obviously going further and more concrete

• A modularisation report group, looking at the needs of DSpace, identifying
what the key APIs are likely to be and how they should interact, then
recommending an approach, possibly employing one of the
mechanisms/frameworks

These two activities could then provide valuable input to the main technical working
group. A further project looking at the collection mgmt UI would be a great idea.

As I mention in the section on Revolution vs Evolution, I think some focussed, and
centralised projects will be needed to do the heavy lifting on these activities.
“Volunteer” and contributed developer resources will be extremely helpful in
validating ideas, quality assurance and so forth, but to make the progress we need, co-
located teams may be essential. There is funding out there for this – JISC, NSF,
Mellon, the EU, DLF, financial contributions from adopter organisations.

I remember a long time ago saying that if DSpace is successful, the initial 2 year
development effort will be a very small part of DSpace’s life. I hope that will be true,
and I hope I’ve done my part to make it happen.

