

Version: 5
Date: 12/31/09
Creator: Mark Diggory

DSpace System Docu-
mentation
Mark Diggory

Created by a Scroll Wiki Exporter Community License - http://www.k15t.com/scroll

http://www.k15t.com/scroll

2

Table of Contents
1. Introduction .. 4
2. Functional Overview .. 4

2.1. Data Model .. 5
2.2. Plugin Manager .. 7
2.3. Metadata ... 7
2.4. Packager Plugins .. 8
2.5. Crosswalk Plugins ... 8
2.6. E-People and Groups ... 8
2.7. Authentication .. 9
2.8. Authorization ... 9
2.9. Ingest Process and Workflow .. 10
2.10. Supervision and Collaboration ... 12
2.11. Handles ... 12
2.12. Bitstream 'Persistent' Identifiers .. 13
2.13. Storage Resource Broker (SRB) Support .. 14
2.14. Search and Browse .. 14
2.15. HTML Support ... 14
2.16. OAI Support ... 15
2.17. OpenURL Support ... 15
2.18. Creative Commons Support ... 15
2.19. Subscriptions .. 16
2.20. Import and Export ... 16
2.21. Registration .. 16
2.22. Statistics .. 16
2.23. Checksum Checker .. 17
2.24. Usage Instrumentation .. 17

3. Installation ... 17
3.1. For the Impatient .. 17
3.2. Prerequisite Software ... 17
3.3. Installation Options ... 19
3.4. Advanced Installation ... 23
3.5. Windows Installation ... 29
3.6. Checking Your Installation ... 30
3.7. Known Bugs .. 30
3.8. Common Problems .. 30

4. Upgrading a DSpace Installation .. 32
4.1. Upgrading from 1.5.x to 1.6 .. 32
4.2. Upgrading From 1.5 or 1.5.1 to 1.5.2 .. 40
4.3. Upgrading From 1.4.2 to 1.5 ... 46
4.4. Upgrading From 1.4.1 to 1.4.2 ... 50
4.5. Upgrading From 1.4 to 1.4.x ... 50
4.6. Upgrading From 1.3.2 to 1.4.x ... 53
4.7. Upgrading From 1.3.1 to 1.3.2 ... 55
4.8. Upgrading From 1.2.x to 1.3.x ... 56
4.9. Upgrading From 1.2.1 to 1.2.2 ... 57
4.10. Upgrading From 1.2 to 1.2.1 ... 58
4.11. Upgrading From 1.1 (or 1.1.1) to 1.2 .. 59
4.12. Upgrading From 1.1 to 1.1.1 ... 62
4.13. Upgrading From 1.0.1 to 1.1 ... 62

5. Configuration and Customization .. 64
5.1. Input Conventions ... 64
5.2. Update Reminder .. 65
5.3. The dspace.cfg Configuration Properties File .. 65
5.4. Optional or Advanced Configuration Settings ... 123
5.5. DSpace Services Framework ... 135

3

5.6. DSpace Statistics ... 139
5.7. JSPUI Configuration and Customization .. 141
5.8. XMLUI Configuration and Customization .. 142

6. System Administration .. 148
6.1. Community and Collection Structure Importer .. 148
6.2. Package Importer and Exporter .. 149
6.3. Item Importer and Exporter ... 150
6.4. Transferring Items Between DSpace Instances .. 154
6.5. Item Update ... 154
6.6. Registering (Not Importing) Bitstreams ... 156
6.7. METS Tools ... 158
6.8. MediaFilters: Transforming DSpace Content ... 160
6.9. Sub-Community Management .. 161
6.10. Batch Metadata Editing ... 162
6.11. Checksum Checker ... 165

7. Storage ... 170
7.1. RDBMS ... 170
7.2. Bitstream Store ... 172

8. Directories .. 175
8.1. Overview ... 175
8.2. Source Directory Layout ... 176
8.3. Installed Directory Layout ... 177
8.4. Contents of JSPUI Web Application ... 178
8.5. Contents of XMLUI Web Application (aka Manakin) ... 178
8.6. Log Files ... 179

9. Architecture .. 180
9.1. Overview ... 180

10. Application ... 182
10.1. Web User Interface .. 182
10.2. OAI-PMH Data Provider ... 189
10.3. DSpace Command Launcher .. 192

11. Business ... 193
11.1. Core Classes ... 193
11.2. Content Management API ... 195
11.3. Plugin Manager ... 199
11.4. Workflow System .. 207
11.5. Administration Toolkit .. 207
11.6. E-person/Group Manager .. 208
11.7. Authorization .. 208
11.8. Handle Manager/Handle Plugin .. 209
11.9. Search .. 210
11.10. Browse API .. 211
11.11. Checksum checker .. 214
11.12. OpenSearch Support ... 214
11.13. Embargo ... 215

12. Submission .. 215
12.1. Understanding the Submission Configuration File .. 215
12.2. Reordering/Removing Submission Steps .. 218
12.3. Assigning a custom Submission Process to a Collection .. 218
12.4. Custom Metadata-entry Pages for Submission ... 219
12.5. Configuring the File Upload step .. 224
12.6. Creating new Submission Steps .. 224

13. Appendices ... 225
13.1. Appendix .. 225
13.2. DRI Schema Reference ... 230
13.3. History ... 262

Introduction

4

The DSpace System Documentation

1. Introduction
DSpace is an open source software platform that enables organisations to:

• capture and describe digital material using a submission workflow module, or a variety of programmatic
ingest options

• distribute an organisation's digital assets over the web through a search and retrieval system

• preserve digital assets over the long term
This system documentation includes a functional overview of the system, which is a good introduction
to the capabilities of the system, and should be readable by non-technical folk. Everyone should read this
section first because it introduces some terminology used throughout the rest of the documentation.

For people actually running a DSpace service, there is an installation guide, and sections on configuration
and the directory structure. Note that as of DSpace 1.2, the administration user interface guide is now on-
line help available from within the DSpace system.

Finally, for those interested in the details of how DSpace works, and those potentially interested in modifying
the code for their own purposes, there is a detailed architecture and design section.

Other good sources of information are:

• The DSpace Public API Javadocs. Build these with the command mvn javadoc:javadoc.

• The http://wiki.dspace.org/ contains stacks of useful information about the DSpace platform and the work
people are doing with it. You are strongly encouraged to visit this site and add information about your
own work. Useful Wiki areas are:

• http://wiki.dspace.org/DspaceResources (Web sites, mailing lists etc.)

• http://wiki.dspace.org/TechnicalFaq

• http://wiki.dspace.org/DspaceProjects

• http://wiki.dspace.org/ContributionGuidelines

• http://www.dspace.org/ has announcements and contains useful information about bringing up an instance
of DSpace at your organization.

• The # is the recommended place to ask questions, since a growing community of DSpace developers and
users is on hand on that list to help with any questions you might have. The e-mail archive of that list
is a useful resource.

• The #, for those developing with the DSpace with a view to contributing to the core DSpace code.

2. Functional Overview
The following sections describe the various functional aspects of the DSpace system.

Data Model

5

2.1. Data Model

Data Model Diagram

The way data is organized in DSpace is intended to reflect the structure of the organization using the DSpace
system. Each DSpace site is divided into communities, which can be further divided into sub-communities
reflecting the typical university structure of college, departement, research center, or laboratory.

Communities contain collections, which are groupings of related content. A collection may appear in more
than one community.

Each collection is composed of items, which are the basic archival elements of the archive. Each item is
owned by one collection. Additionally, an item may appear in additional collections; however every item
has one and only one owning collection.

Items are further subdivided into named bundles of bitstreams. Bitstreams are, as the name suggests, streams
of bits, usually ordinary computer files. Bitstreams that are somehow closely related, for example HTML
files and images that compose a single HTML document, are organised into bundles.

Data Model

6

In practice, most items tend to have these named bundles:

• ORIGINAL – the bundle with the original, deposited bitstreams

• THUMBNAILS – thumbnails of any image bitstreams

• TEXT – extracted full-text from bitstreams in ORIGINAL, for indexing

• LICENSE – contains the deposit license that the submitter granted the host organization; in other words,
specifies the rights that the hosting organization have

• CC_LICENSE – contains the distribution license, if any (a http://www.creativecommons.org license) as-
sociated with the item. This license specifies what end users downloading the content can do with the
content
Each bitstream is associated with one Bitstream Format. Because preservation services may be an im-
portant aspect of the DSpace service, it is important to capture the specific formats of files that users
submit. In DSpace, a bitstream format is a unique and consistent way to refer to a particular file format.
An integral part of a bitstream format is an either implicit or explicit notion of how material in that for-
mat can be interpreted. For example, the interpretation for bitstreams encoded in the JPEG standard for
still image compression is defined explicitly in the Standard ISO/IEC 10918-1. The interpretation of bit-
streams in Microsoft Word 2000 format is defined implicitly, through reference to the Microsoft Word
2000 application. Bitstream formats can be more specific than MIME types or file suffixes. For example,
application/ms-word and .doc span multiple versions of the Microsoft Word application, each of which
produces bitstreams with presumably different characteristics.

Each bitstream format additionally has a support level, indicating how well the hosting institution is likely to
be able to preserve content in the format in the future. There are three possible support levels that bitstream
formats may be assigned by the hosting institution. The host institution should determine the exact meaning
of each support level, after careful consideration of costs and requirements. MIT Libraries' interpretation
is shown below:

Supported The format is recognized, and the hosting institution
is confident it can make bitstreams of this format
useable in the future, using whatever combination of
techniques (such as migration, emulation, etc.) is ap-
propriate given the context of need.

Known The format is recognized, and the hosting institution
will promise to preserve the bitstream as-is, and al-
low it to be retrieved. The hosting institution will at-
tempt to obtain enough information to enable the for-
mat to be upgraded to the 'supported' level.

Unsupported The format is unrecognized, but the hosting institu-
tion will undertake to preserve the bitstream as-is and
allow it to be retrieved.

Each item has one qualified Dublin Core metadata record. Other metadata might be stored in an item as a
serialized bitstream, but we store Dublin Core for every item for interoperability and ease of discovery. The
Dublin Core may be entered by end-users as they submit content, or it might be derived from other metadata
as part of an ingest process.

Items can be removed from DSpace in one of two ways: They may be 'withdrawn', which means they re-
main in the archive but are completely hidden from view. In this case, if an end-user attempts to access
the withdrawn item, they are presented with a 'tombstone,' that indicates the item has been removed. For
whatever reason, an item may also be 'expunged' if necessary, in which case all traces of it are removed
from the archive.

Object Example

Plugin Manager

7

Community Laboratory of Computer Science; Oceanographic
Research Center

Collection LCS Technical Reports; ORC Statistical Data Sets

Item A technical report; a data set with accompanying de-
scription; a video recording of a lecture

Bundle A group of HTML and image bitstreams making up
an HTML document

Bitstream A single HTML file; a single image file; a source
code file

Bitstream Format Microsoft Word version 6.0; JPEG encoded image
format

2.2. Plugin Manager
The PluginManager is a very simple component container. It creates and organizes components (plugins),
and helps select a plugin in the cases where there are many possible choices. It also gives some limited
control over the lifecycle of a plugin.

A plugin is defined by a Java interface. The consumer of a plugin asks for its plugin by interface. A Plugin
is an instance of any class that implements the plugin interface. It is interchangeable with other implemen-
tations, so that any of them may be "plugged in".

The mediafilter is a simple example of a plugin implementation. Refer to the Business Logic Layer for more
details on Plugins.

2.3. Metadata
Broadly speaking, DSpace holds three sorts of metadata about archived content:

• Descriptive Metadata: DSpace can support multiple flat metadata schemas for describing an item. A
qualified Dublin Core metadata schema loosely based on the http://www.dublincore.org/documents/li-
brary-application-profile/ set of elements and qualifiers is provided by default. The http://dspace.org/
technology/metadata.html comes pre-configured with the DSpace source code. However, you can con-
figure multiple schemas and select metadata fields from a mix of configured schemas to describe your
items.Other descriptive metadata about items (e.g. metadata described in a hierarchical schema) may
be held in serialized bitstreams. Communities and collections have some simple descriptive metadata (a
name, and some descriptive prose), held in the DBMS.

• Administrative Metadata: This includes preservation metadata, provenance and authorization policy
data. Most of this is held within DSpace's relation DBMS schema. Provenance metadata (prose) is stored in
Dublin Core records. Additionally, some other administrative metadata (for example, bitstream byte sizes
and MIME types) is replicated in Dublin Core records so that it is easily accessible outside of DSpace.

• Structural Metadata: This includes information about how to present an item, or bitstreams within an
item, to an end-user, and the relationships between constituent parts of the item. As an example, consider a
thesis consisting of a number of TIFF images, each depicting a single page of the thesis. Structural meta-
data would include the fact that each image is a single page, and the ordering of the TIFF images/pages.
Structural metadata in DSpace is currently fairly basic; within an item, bitstreams can be arranged into
separate bundles as described above. A bundle may also optionally have a primary bitstream. This is
currently used by the HTML support to indicate which bitstream in the bundle is the first HTML file
to send to a browser.In addition to some basic technical metadata, bitstreams also have a 'sequence ID'
that uniquely identifies it within an item. This is used to produce a 'persistent' bitstream identifier for
each bitstream.Additional structural metadata can be stored in serialized bitstreams, but DSpace does not
currently understand this natively.

Packager Plugins

8

2.4. Packager Plugins
Packagers are software modules that translate between DSpace Item objects and a self-contained external
representation, or "package". A Package Ingester interprets, or ingests, the package and creates an Item. A
Package Disseminator writes out the contents of an Item in the package format.

A package is typically an archive file such as a Zip or "tar" file, including a manifest document which contains
metadata and a description of the package contents. The http://www.imsglobal.org/content/packaging/ is a
typical packaging standard. A package might also be a single document or media file that contains its own
metadata, such as a PDF document with embedded descriptive metadata.

Package ingesters and package disseminators are each a type of named plugin (see Plugin Manager), so it
is easy to add new packagers specific to the needs of your site. You do not have to supply both an ingester
and disseminator for each format; it is perfectly acceptable to just implement one of them.

Most packager plugins call upon Crosswalk plugins to translate the metadata between DSpace's object model
and the package format.

2.5. Crosswalk Plugins
Crosswalks are software modules that translate between DSpace object metadata and a specific external
representation. An Ingestion Crosswalk interprets the external format and crosswalks it to DSpace's internal
data structure, while a Dissemination Crosswalk does the opposite.

For example, a MODS ingestion crosswalk translates descriptive metadata from the MODS format to the
metadata fields on a DSpace Item. A MODS dissemination crosswalk generates a MODS document from
the metadata on a DSpace Item.

Crosswalk plugins are named plugins see Plugin Manager), so it is easy to add new crosswalks. You do not
have to supply both an ingester and disseminator for each format; it is perfectly acceptable to just implement
one of them.

There is also a special pair of crosswalk plugins which use XSL stylesheets to translate the external metadata
to or from an internal DSpace format. You can add and modify XSLT crosswalks simply by editing the
DSpace configuration and the stylesheets, which are stored in files in the DSpace installation directory.

The Packager plugins and OAH-PMH server make use of crosswalk plugins.

2.6. E-People and Groups
Although many of DSpace's functions such as document discovery and retrieval can be used anonymously,
some features (and perhaps some documents) are only available to certain "privileged" users. E-People and
Groups are the way DSpace identifies application users for the purpose of granting privileges. This identity is
bound to a session of a DSpace application such as the Web UI or one of the command-line batch programs.
Both E-People and Groups are granted privileges by the authorization system described below.

2.6.1. E-Person

DSpace hold the following information about each e-person:

• E-mail address

• First and last names

• Whether the user is able to log in to the system via the Web UI, and whether they must use an X509
certificate to do so;

Authentication

9

• A password (encrypted), if appropriate

• A list of collections for which the e-person wishes to be notified of new items

• Whether the e-person 'self-registered' with the system; that is, whether the system created the e-person
record automatically as a result of the end-user independently registering with the system, as opposed to
the e-person record being generated from the institution's personnel database, for example.

• The network ID for the corresponding LDAP record

2.6.2. Groups

Groups are another kind of entity that can be granted permissions in the authorization system. A group is
usually an explicit list of E-People; anyone identified as one of those E-People also gains the privileges
granted to the group.

However, an application session can be assigned membership in a group without being identified as an E-
Person. For example, some sites use this feature to identify users of a local network so they can read restricted
materials not open to the whole world. Sessions originating from the local network are given membership
in the "LocalUsers" group and gain the corresonding privileges.

Administrators can also use groups as "roles" to manage the granting of privileges more efficiently.

2.7. Authentication
Authentication is when an application session positively identifies itself as belonging to an E-Person and/
or Group. In DSpace 1.4, it is implemented by a mechanism called Stackable Authentication: the DSpace
configuration declares a "stack" of authentication methods. An application (like the Web UI) calls on the
Authentication Manager, which tries each of these methods in turn to identify the E-Person to which the
session belongs, as well as any extra Groups. The E-Person authentication methods are tried in turn until
one succeeds. Every authenticator in the stack is given a chance to assign extra Groups. This mechanism
offers the following advantages:

• Separates authentication from the Web user interface so the same authentication methods are used for
other applications such as non-interactive Web Services

• Improved modularity: The authentication methods are all independent of each other. Custom authentica-
tion methods can be "stacked" on top of the default DSpace username/password method.

• Cleaner support for "implicit" authentication where username is found in the environment of a Web re-
quest, e.g. in an X.509 client certificate.

2.8. Authorization
DSpace's authorization system is based on associating actions with objects and the lists of EPeople who can
perform them. The associations are called Resource Policies, and the lists of EPeople are called Groups.
There are two special groups: 'Administrators', who can do anything in a site, and 'Anonymous', which is
a list that contains all users. Assigning a policy for an action on an object to anonymous means giving ev-
eryone permission to do that action. (For example, most objects in DSpace sites have a policy of 'anony-
mous' READ.) Permissions must be explicit - lack of an explicit permission results in the default policy of
'deny'. Permissions also do not 'commute'; for example, if an e-person has READ permission on an item,
they might not necessarily have READ permission on the bundles and bitstreams in that item. Currently
Collections, Communities and Items are discoverable in the browse and search systems regardless of READ
authorization.

The following actions are possible:

Ingest Process and Workflow

10

Collection

ADD/REMOVE add or remove items (ADD = permission to submit
items)

DEFAULT_ITEM_READ inherited as READ by all submitted items

DEFAULT_BITSTREAM_READ inherited as READ by Bitstreams of all submitted
items. Note: only affects Bitstreams of an item at the
time it is initially submitted. If a Bitstream is added
later, it does not get the same default read policy.

COLLECTION_ADMIN collection admins can edit items in a collection, with-
draw items, map other items into this collection.

Table 1. Item

ADD/REMOVE add or remove bundles

READ can view item (item metadata is always viewable)

WRITE can modify item

Table 2. Bundle

ADD/REMOVE add or remove bitstreams to a bundle

Table 3. Bitstream

READ view bitstream

WRITE modify bitstream

Note that there is no 'DELETE' action. In order to 'delete' an object (e.g. an item) from the archive, one
must have REMOVE permission on all objects (in this case, collection) that contain it. The 'orphaned' item
is automatically deleted.

Policies can apply to individual e-people or groups of e-people.

2.9. Ingest Process and Workflow
Rather than being a single subsystem, ingesting is a process that spans several. Below is a simple illustration
of the current ingesting process in DSpace.

DSpace Ingest Process

Ingest Process and Workflow

11

The batch item importer is an application, which turns an external SIP (an XML metadata document with
some content files) into an "in progress submission" object. The Web submission UI is similarly used by an
end-user to assemble an "in progress submission" object.

Depending on the policy of the collection to which the submission in targeted, a workflow process may be
started. This typically allows one or more human reviewers or 'gatekeepers' to check over the submission
and ensure it is suitable for inclusion in the collection.

When the Batch Ingester or Web Submit UI completes the InProgressSubmission object, and invokes the
next stage of ingest (be that workflow or item installation), a provenance message is added to the Dublin
Core which includes the filenames and checksums of the content of the submission. Likewise, each time a
workflow changes state (e.g. a reviewer accepts the submission), a similar provenance statement is added.
This allows us to track how the item has changed since a user submitted it.

Once any workflow process is successfully and positively completed, the InProgressSubmission object is
consumed by an "item installer", that converts the InProgressSubmission into a fully blown archived item
in DSpace. The item installer:

• Assigns an accession date

• Adds a "date.available" value to the Dublin Core metadata record of the item

• Adds an issue date if none already present

• Adds a provenance message (including bitstream checksums)

• Assigns a Handle persistent identifier

• Adds the item to the target collection, and adds appropriate authorization policies

• Adds the new item to the search and browse indices Workflow Steps

A collection's workflow can have up to three steps. Each collection may have an associated e-person group
for performing each step; if no group is associated with a certain step, that step is skipped. If a collection
has no e-person groups associated with any step, submissions to that collection are installed straight into
the main archive.

In other words, the sequence is this: The collection receives a submission. If the collection has a group
assigned for workflow step 1, that step is invoked, and the group is notified. Otherwise, workflow step 1 is
skipped. Likewise, workflow steps 2 and 3 are performed if and only if the collection has a group assigned
to those steps.

When a step is invoked, the task of performing that workflow step put in the 'task pool' of the associated
group. One member of that group takes the task from the pool, and it is then removed from the task pool, to
avoid the situation where several people in the group may be performing the same task without realizing it.

The member of the group who has taken the task from the pool may then perform one of three actions:

Workflow Step Possible actions

1 Can accept submission for inclusion, or reject sub-
mission.

2 Can edit metadata provided by the user with the sub-
mission, but cannot change the submitted files. Can
accept submission for inclusion, or reject submis-
sion.

3 Can edit metadata provided by the user with the sub-
mission, but cannot change the submitted files. Must
then commit to archive; may not reject submission.

Supervision and Collaboration

12

Submission Workflow in DSpace

If a submission is rejected, the reason (entered by the workflow participant) is e-mailed to the submitter, and
it is returned to the submitter's 'My DSpace' page. The submitter can then make any necessary modifications
and re-submit, whereupon the process starts again.

If a submission is 'accepted', it is passed to the next step in the workflow. If there are no more workflow
steps with associated groups, the submission is installed in the main archive.

One last possibility is that a workflow can be 'aborted' by a DSpace site administrator. This is accomplished
using the administration UI.

The reason for this apparently arbitrary design is that is was the simplist case that covered the needs of the
early adopter communities at MIT. The functionality of the workflow system will no doubt be extended
in the future.

2.10. Supervision and Collaboration
In order to facilitate, as a primary objective, the opportunity for thesis authors to be supervised in the prepa-
ration of their e-thesis, a supervision order system exists to bind groups of other users (thesis supervisors)
to an item in someone's pre-submission workspace. The bound group can have system policies associated
with it that allow different levels of interaction with the student's item; a small set of default policy groups
are provided:

• Full editorial control

• View item contents

• No policies
Once the default set has been applied, a system administrator may modify them as they would any other
policy set in DSpace

This functionality could also be used in situations where researchers wish to collaborate on a particular
submission, although there is no particular collaborative workspace functionality.

2.11. Handles
Researchers require a stable point of reference for their works. The simple evolution from sharing of citations
to emailing of URLs broke when Web users learned that sites can disappear or be reconfigured without
notice, and that their bookmark files containing critical links to research results couldn't be trusted long
term. To help solve this problem, a core DSpace feature is the creation of persistent identifier for every item,
collection and community stored in DSpace. To persist identifier, DSpace requires a storage- and location-
independent mechanism for creating and maintaining identifiers. DSpace uses the http://www.handle.net/
for creating these identifiers. The rest of this section assumes a basic familiarity with the Handle system.

Bitstream 'Persistent' Identifiers

13

DSpace uses Handles primarily as a means of assigning globally unique identifiers to objects. Each site
running DSpace needs to obtain a Handle 'prefix' from CNRI, so we know that if we create identifiers with
that prefix, they won't clash with identifiers created elsewhere.

Presently, Handles are assigned to communities, collections, and items. Bundles and bitstreams are not
assigned Handles, since over time, the way in which an item is encoded as bits may change, in order to
allow access with future technologies and devices. Older versions may be moved to off-line storage as a
new standard becomes de facto. Since it's usually the item that is being preserved, rather than the particular
bit encoding, it only makes sense to persistently identify and allow access to the item, and allow users to
access the appropriate bit encoding from there.

Of course, it may be that a particular bit encoding of a file is explicitly being preserved; in this case, the
bitstream could be the only one in the item, and the item's Handle would then essentially refer just to that
bitstream. The same bitstream can also be included in other items, and thus would be citable as part of a
greater item, or individually.

The Handle system also features a global resolution infrastructure; that is, an end-user can enter a Handle
into any service (e.g. Web page) that can resolve Handles, and the end-user will be directed to the object (in
the case of DSpace, community, collection or item) identified by that Handle. In order to take advantage of
this feature of the Handle system, a DSpace site must also run a 'Handle server' that can accept and resolve
incoming resolution requests. All the code for this is included in the DSpace source code bundle.

Handles can be written in two forms:

hdl:1721.123/4567
http://hdl.handle.net/1721.123/4567

The above represent the same Handle. The first is possibly more convenient to use only as an identifier;
however, by using the second form, any Web browser becomes capable of resolving Handles. An end-
user need only access this form of the Handle as they would any other URL. It is possible to enable some
browsers to resolve the first form of Handle as if they were standard URLs using http://www.handle.net/
resolver/index.html, but since the first form can always be simply derived from the second, DSpace displays
Handles in the second form, so that it is more useful for end-users.

It is important to note that DSpace uses the CNRI Handle infrastructure only at the 'site' level. For example,
in the above example, the DSpace site has been assigned the prefix '1721.123'. It is still the responsibility
of the DSpace site to maintain the association between a full Handle (including the '4567' local part) and
the community, collection or item in question.

2.12. Bitstream 'Persistent' Identifiers
Similar to handles for DSpace items, bitstreams also have 'Persistent' identifiers. They are more volatile than
Handles, since if the content is moved to a different server or organizaion, they will no longer work (hence
the quotes around 'persistent'). However, they are more easily persisted than the simple URLs based on
database primary key previously used. This means that external systems can more reliably refer to specific
bitstreams stored in a DSpace instance.

Each bitstream has a sequence ID, unique within an item. This sequence ID is used to create a persistent
ID, of the form:

dspace url/bitstream/handle/sequence ID/filename

For example:

https://dspace.myu.edu/bitstream/123.456/789/24/foo.html

The above refers to the bitstream with sequence ID 24 in the item with the Handle hdl:123.456/789. The
foo.html is really just there as a hint to browsers: Although DSpace will provide the appropriate MIME type,
some browsers only function correctly if the file has an expected extension.

Storage Resource Broker (SRB) Support

14

2.13. Storage Resource Broker (SRB) Support
DSpace offers two means for storing bitstreams. The first is in the file system on the server. The second is
using http://www.sdsc.edu/srb. Both are achieved using a simple, lightweight API.

SRB is purely an option but may be used in lieu of the server's file system or in addition to the file system.
Without going into a full description, SRB is a very robust, sophisticated storage manager that offers es-
sentially unlimited storage and straightforward means to replicate (in simple terms, backup) the content on
other local or remote storage resources.

2.14. Search and Browse
DSpace allows end-users to discover content in a number of ways, including:

• Via external reference, such as a Handle

• Searching for one or more keywords in metadata or extracted full-text

• Browsing though title, author, date or subject indices, with optional image thumbnails
Search is an essential component of discovery in DSpace. Users' expectations from a search engine are
quite high, so a goal for DSpace is to supply as many search features as possible. DSpace's indexing and
search module has a very simple API which allows for indexing new content, regenerating the index, and
performing searches on the entire corpus, a community, or collection. Behind the API is the Java freeware
search engine http://jakarta.apache.org/lucene/. Lucene gives us fielded searching, stop word removal,
stemming, and the ability to incrementally add new indexed content without regenerating the entire index.
The specific Lucene search indexes are configurable enabling institutions to customize which DSpace
metadata fields are indexed.

Another important mechanism for discovery in DSpace is the browse. This is the process whereby the user
views a particular index, such as the title index, and navigates around it in search of interesting items. The
browse subsystem provides a simple API for achieving this by allowing a caller to specify an index, and a
subsection of that index. The browse subsystem then discloses the portion of the index of interest. Indices
that may be browsed are item title, item issue date, item author, and subject terms. Additionally, the browse
can be limited to items within a particular collection or community.

2.15. HTML Support
For the most part, at present DSpace simply supports uploading and downloading of bitstreams as-is. This
is fine for the majority of commonly-used file formats – for example PDFs, Microsoft Word documents,
spreadsheets and so forth. HTML documents (Web sites and Web pages) are far more complicated, and this
has important ramifications when it comes to digital preservation:

• Web pages tend to consist of several files – one or more HTML files that contain references to each other,
and stylesheets and image files that are referenced by the HTML files.

• Web pages also link to or include content from other sites, often imperceptably to the end-user. Thus, in
a few year's time, when someone views the preserved Web site, they will probably find that many links
are now broken or refer to other sites than are now out of context. In fact, it may be unclear to an end-user
when they are viewing content stored in DSpace and when they are seeing content included from another
site, or have navigated to a page that is not stored in DSpace. This problem can manifest when a submitter
uploads some HTML content. For example, the HTML document may include an image from an external
Web site, or even their local hard drive. When the submitter views the HTML in DSpace, their browser
is able to use the reference in the HTML to retrieve the appropriate image, and so to the submitter, the
whole HTML document appears to have been deposited correctly. However, later on, when another user
tries to view that HTML, their browser might not be able to retrieve the included image since it may have
been removed from the external server. Hence the HTML will seem broken.

OAI Support

15

• Often Web pages are produced dynamically by software running on the Web server, and represent the
state of a changing database underneath it.
Dealing with these issues is the topic of much active research. Currently, DSpace bites off a small, tractable
chunk of this problem. DSpace can store and provide on-line browsing capability for self-contained, non-
dynamic HTML documents. In practical terms, this means:

• No dynamic content (CGI scripts and so forth)

• All links to preserved content must be relative links, that do not refer to 'parents' above the 'root' of the
HTML document/site:

• diagram.gif is OK

• image/foo.gif is OK

• ../index.html is only OK in a file that is at least a directory deep in the HTML document/site hierarchy

• /stylesheet.css is not OK (the link will break)

• _http://somedomain.com/content.html_ is not OK (the link will continue to link to the external site
which may change or disappear)

• Any 'absolute links' (e.g. _http://somedomain.com/content.html_) are stored 'as is', and will continue to
link to the external content (as opposed to relative links, which will link to the copy of the content stored
in DSpace.) Thus, over time, the content refered to by the absolute link may change or disappear.

2.16. OAI Support
The http://www.openarchives.org/ has developed a http://www.openarchives.org/OAI/
openarchivesprotocol.html. This allows sites to programmatically retrieve or 'harvest' the metadata from
several sources, and offer services using that metadata, such as indexing or linking services. Such a service
could allow users to access information from a large number of sites from one place.

DSpace exposes the Dublin Core metadata for items that are publicly (anonymously) accessible. Addition-
ally, the collection structure is also exposed via the OAI protocol's 'sets' mechanism. OCLC's open source
http://www.oclc.org/research/software/oai/cat.shtm framework is used to provide this functionality.

You can also configure the OAI service to make use of any crosswalk plugin to offer additional metadata
formats, such as MODS.

DSpace's OAI service does support the exposing of deletion information for withdrawn items, but not for
items that are 'expunged' (see above). DSpace also supports OAI-PMH resumption tokens.

2.17. OpenURL Support
DSpace supports the http://www.sfxit.com/OpenURL/ from http://www.sfxit.com/, in a rather simple fash-
ion. If your institution has an SFX server, DSpace will display an OpenURL link on every item page, au-
tomatically using the Dublin Core metadata. Additionally, DSpace can respond to incoming OpenURLs.
Presently it simply passes the information in the OpenURL to the search subsystem. A list of results is then
displayed, which usually gives the relevant item (if it is in DSpace) at the top of the list.

2.18. Creative Commons Support
Dspace provides support for Creative Commons licenses to be attached to items in the repository. They
represent an alternative to traditional copyright. To learn more about Creative Commons, visit http://
creativecommons.org. Support for the licenses is controlled by a site-wide configuration option, and since

http://somedomain.com/content.html_
http://somedomain.com/content.html_

Subscriptions

16

license selection involves redirection to the Creative Commons website, additional parameters may be con-
figured to work with a proxy server. If the option is enabled, users may select a Creative Commons license
during the submission process, or elect to skip Creative Commons licensing. If a selection is made a copy of
the license text and RDF metadata is stored along with the item in the repository. There is also an indication
- text and a Creative Commons icon - in the item display page of the web user interface when an item is
licensed under Creative Commons.

2.19. Subscriptions
As noted above, end-users (e-people) may 'subscribe' to collections in order to be alerted when new items
appear in those collections. Each day, end-users who are subscribed to one or more collections will receive
an e-mail giving brief details of all new items that appeared in any of those collections the previous day. If no
new items appeared in any of the subscribed collections, no e-mail is sent. Users can unsubscribe themselves
at any time. RSS feeds of new items are also available for collections and communities.

2.20. Import and Export
DSpace also includes batch tools to import and export items in a simple directory structure, where the Dublin
Core metadata is stored in an XML file. This may be used as the basis for moving content between DSpace
and other systems.

There is also a METS-based export tool, which exports items as METS-based metadata with associated
bitstreams referenced from the METS file.

2.21. Registration
Registration is an alternate means of incorporating items, their metadata, and their bitstreams into DSpace
by taking advantage of the bitstreams already being in accessible computer storage. An example might be
that there is a repository for existing digital assets. Rather than using the normal interactive ingest process
or the batch import to furnish DSpace the metadata and to upload bitstreams, registration provides DSpace
the metadata and the location of the bitstreams. DSpace uses a variation of the import tool to accomplish
registration.

2.22. Statistics
Various statistical reports about the contents and use of your system can be automatically generated by the
system. These are generated by analysing DSpace's log files. Statistics can be broken down monthly.

The report includes data such as:

• A customisable general summary of activities in the archive, by default including:

• Number of item views

• Number of collection visits

• Number of community visits

• Number of OAI Requests

• Customisable summary of archive contents

• Broken-down list of item viewings

• A full break-down of all system activity

Checksum Checker

17

• User logins

• Most popular searches
The results of statistical analysis can be presented on a by-month and an in-total report, and are available
via the user interface. The reports can also either be made public or restricted to administrator access only.

2.23. Checksum Checker
The purpose of the checker is to verify that the content in a DSpace repository has not become corrupted
or been tampered with. The functionality can be invoked on an ad-hoc basis from the command line, or
configured via cron or similar. Options exist to support large repositories that cannot be entirely checked in
one run of the tool. The tool is extensible to new reporting and checking priority approaches.

2.24. Usage Instrumentation
DSpace can report usage events, such as bitstream downloads, to a pluggable event processor. This can be
used for developing customized usage statistics, for example. Sample event processor plugins writes event
records to a file as tab-separated values or XML.

3. Installation

3.1. For the Impatient
Since some users might want to get their test version up and running as fast as possible, offered below is an
unsupported outline of getting DSpace to run quickly.

Only experienced unix admins should even attempt the following without going to Section 3.3

useradd -m dspace
gunzip -c dspace-1.x-src-release.tar.gz | tar -xf -
createuser -U postgres -d -A -P dspace
createdb -U dspace -E UNICODE dspace
cd [dspace-source]/dspace/config
vi dspace.cfg
mkdir [dspace]
chown dspace [dspace]
su - dspace
cd [dspace-source]/dspace
mvn package
cd [dspace-source]/dspace/target/dspace-<version>-build.dir
ant fresh_install
cp -r [dspace]/webapps/* [tomcat]/webapps
/etc/init.d/tomcat start
[dspace]/bin/create-administrator

3.2. Prerequisite Software
The list below describes the third-party components and tools you'll need to run a DSpace server. These
are just guidelines. Since DSpace is built on open source, standards-based tools, there are numerous other
possibilities and setups.

Also, please note that the configuration and installation guidelines relating to a particular tool below are
here for convenience. You should refer to the documentation for each individual component for complete
and up-to-date details. Many of the tools are updated on a frequent basis, and the guidelines below may
become out of date.

Prerequisite Software

18

3.2.1. UNIX-like OS or Microsoft Windows

• UNIX-like OS (Linux, HP/UX etc) : Many distributions of Linux/Unix come with some of the dependen-
cies below pre installed or easily installed via updates, you should consult your particular distributions
documentation to determine what is already available.

• Microsoft Windows: (see full Windows Instructions for full set of prerequisites)

3.2.2. Java JDK 5 or later (standard SDK is fine, you don't need
J2EE)

DSpace now required Java 5 or greater because of usage of new language capabilities introduced in 5 that
make coding easier and cleaner.

Java 5 or later can be downloaded from the following location: http://java.sun.com/javase/down-
loads/index.jsp

3.2.3. Apache Maven 2.0.8 or later (Java build tool)
Maven is necessary in the first stage of the build process to assemble the installation package for your DSpace
instance. It gives you the flexibility to customize DSpace using the exisitng Maven projects found in the
[dspace-source]/dspace/modules directory or by adding in your own Maven project to build the installation
package for DSpace, and apply any custom interface "overlay" changes.

Maven can be downloaded from the the following location: http://maven.apache.org/download.html

3.2.4. Apache Ant 1.7 or later (Java build tool)
Apache Ant is still required for the second stage of the build process. It is used once the installation package
has been constructed in [dspace-source]/dspace/target/dspace-<version>-build.dir and still uses some of
the familiar ant build targets found in the 1.4.x build process.

Ant can be downloaded from the following location: http://ant.apache.org/

3.2.5. Relational Database: (PostgreSQL or Oracle).

• *PostgreSQL 7.3 or greater*PostgreSQL can be downloaded from the following location: http://
www.postgresql.org/ Its highly recommended that you try to work with Postgres 8.x or greater, how-
ever, 7.3 or greater should still work. Unicode (specifically UTF-8) support must be enabled. This is
enabled by default in 8.0+. For 7.x, be sure to compile with the following options to the 'configure'
script:--enable-multibyte --enable-unicode --with-java_Once installed, you need to enable TCP/IP con-
nections (DSpace uses JDBC). For 7._x, edit postgresql.conf (usually in /usr/local/pgsql/data or /var/
lib/pgsql/data), and add this line:tcpip_socket = true_For 8.0+, in _postgresql.conf uncomment the line
starting:listen_addresses = 'localhost'_Then tighten up security a bit by editing _pg_hba.conf and adding
this line:_host dspace dspace 127.0.0.1 255.255.255.255 md5_Then restart PostgreSQL.

• Oracle 9 or greater*Details on acquiring Oracle can be downloaded from the following location:
http://www.oracle.com/database/ You will need to create a database for DSpace. Make sure that
the character set is one of the Unicode character sets. DSpace uses UTF-8 natively, and it is sug-
gested that the Oracle database use the same character set. You will also need to create a user ac-
count for DSpace (e.g. dspace,) and ensure that it has permissions to add and remove tables in the
database. Refer to the Quick Installation for more details.*NOTE: DSpace uses sequences to generate
unique object IDs - beware Oracle sequences, which are said to lose their values when doing a database
export/import, say restoring from a backup. Be sure to run the script etc/update-sequences.sql.For people
interested in switching from Postgres to Oracle, I know of no tools that would do this automatically. You
will need to recreate the community, collection, and eperson structure in the Oracle system, and then use
the item export and import tools to move your content over.

http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://maven.apache.org/download.html
http://ant.apache.org
http://www.postgresql.org/
http://www.postgresql.org/
http://www.oracle.com/database/

Installation Options

19

3.2.6. Servlet Engine: (Jakarta Tomcat 4.x, Jetty, Caucho Resin or
equivalent).

• Jakarta Tomcat 4.x or later.*Tomcat can be dowloaded from the following location: http://
tomcat.apache.org/whichversion.htmlNote that DSpace will need to run as the same user as Tom-
cat, so you might want to install and run Tomcat as a user called 'dspace'. Set the environment
variable TOMCAT_USER appropriately.You need to ensure that Tomcat has a) enough mem-
ory to run DSpace and b) uses UTF-8 as its default file encoding for international character
support. So ensure in your startup scripts (etc) that the following environment variable is set:
 JAVA_OPTS="-Xmx512M -Xms64M -Dfile.encoding=UTF-8"*Modifications in /[tomcat]/conf/
server.xml :You also need to alter Tomcat's default configuration to support searching and browsing of
multi-byte UTF-8 correctly. You need to add a configuration option to the <Connector> element in [tom-
cat]/config/server.xml: URIEncoding="UTF-8" e.g. if you're using the default Tomcat config, it should
read:

<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->
<Connector port="8080"
 maxThreads="150"
 minSpareThreads="25"
 maxSpareThreads="75"
 enableLookups="false"
 redirectPort="8443"
 acceptCount="100"
 connectionTimeout="20000"
 disableUploadTimeout="true"
 URIEncoding="UTF-8"/>

You may change the port from 8080 by editing it in the file above, and by setting the variable
CONNECTOR_PORT in server.xml

• *Jetty or Caucho Resin*DSpace will also run on an equivalent servlet Engine, such as Jetty (http://
www.mortbay.org/jetty/index.html) or Caucho Resin (http://www.caucho.com/.Jetty and Resin are con-
figured for correct handling of UTF-8 by default.

3.2.7. Perl (required for [dspace]/bin/dspace-info.pl)

3.3. Installation Options

3.3.1. Overview of Install Options
With the advent of a new Apache http://maven.apache.org/ based build architecture in DSpace 1.5.x, you
now have two options in how you may wish to install and manage your local installation of DSpace. If
you've used DSpace 1.4.x, please recognize that the initial build proceedure has changed to allow for more
customization. You will find the later 'Ant based' stages of the installation proceedure familiar. Maven is
used to resolve the dependencies of DSpace online from the 'Maven Central Repository' server.

It is important to note that the strategies are identical in terms of the list of proceedures required to complete
the build process, the only difference being that the Source Release includes "more modules" that will be
built given their presence in the distribution package.

• Default Release (dspace-<version>-release.zip)

• This distribution will be adequate for most cases of running a DSpace instance. It is intended to be the
quickest way to get DSpace installed and running while still allowing for customization of the themes
and branding of your DSpace instance.

• This method allows you to customize DSpace configurations (in dspace.cfg) or user interfaces, using
basic pre-built interface "overlays".

http://tomcat.apache.org
http://tomcat.apache.org
http://www.mortbay.org/jetty/index.html
http://www.mortbay.org/jetty/index.html

Installation Options

20

• It downloads "precompiled" libraries for the core dspace-api, supporting servlets, taglibraries, aspects
and themes for the dspace-xmlui, dspace-xmlui and other webservice/applications.

• This approach exposes the parts of the application that the DSpace commiters would prefer to see
customized. All other modules are downloaded from the 'Maven Central Repository' The directory
structure for this release is the following:

• [dspace-source]

• dspace/ - DSpace 'build' and configuration module

• pom.xml - DSpace Parent Project definition

• Source Release (dspace-<version>-src-release.zip)

• This method is recommended for those who wish to develop DSpace further or alter its underlying
capabilities to a greater degree.

• It contains all dspace code for the core dspace-api, supporting servlets, taglibraries, aspects and themes
for Manakin (dspace-xmlui), and other webservice/applications.

• Provides all the same capabilities as the normal release. The directory structure for this release is more
detailed:

• [dspace-source]

• dspace/ - DSpace 'build' and configuration module

• dspace-api/ - Java API source module

• dspace-jspui/ - JSP-UI source module

• dspace-oai - OAI-PMH source module

• dspace-xmlui - XML-UI (Manakin) source module

• dspace-lni - Lightweight Network Interface source module

• dspace-sword – SWORD (Simple Web-serve Offering Repository Deposit) deposit service source
module

• pom.xml - DSpace Parent Project definition

3.3.2. Overview of DSpace Directories

Before beginning an installation, it is important to get a general understanding of the DSpace directories and
the names by which they are generally referred. (Please attempt to use these below directory names when
asking for help on the DSpace Mailing Lists, as it will help everyone better understand what directory you
may be referring to.)

DSpace uses three separate directory trees. Although you don't need to know all the details of them in order
to install DSpace, you do need to know they exist and also know how they're referred to in this document:

1. The installation directory, referred to as _[dspace]_ . This is the location where DSpace is installed
and running off of it is the location that gets defined in the dspace.cfg as "dspace.dir". It is where all the
DSpace configuration files, command line scripts, documentation and webapps will be installed to.

2. The source directory, referred to as _[dspace-source]_ . This is the location where the DSpace release
distribution has been unzipped into. It usually has the name of the archive that you expanded such as

Installation Options

21

dspace-<version>release or dspace<version>-src-release. It is the directory where all of your "build"
commands will be run.

3. The web deployment directory. This is the directory that contains your DSpace web application(s).
In DSpace 1.5.x and above, this corresponds to _[dspace]/webapps_ by default. However, if you
are using Tomcat, you may decide to copy your DSpace web applications from _[dspace]/we-
bapps/_ to [tomcat]/webapps/ (with [tomcat] being wherever you installed Tomcat—also known as
$CATALINA_HOME).
For details on the contents of these separate directory trees, refer to directories.html. Note that the
[dspace-source] and [dspace] directories are always separate!

3.3.3. Installation

This method gets you up and running with DSpace quickly and easily. It is identical in both the Default
Release and Source Release distributions.

1. Create the DSpace user. This needs to be the same user that Tomcat (or Jetty etc.) will run as. e.g. as
root run:

useradd -m dspace

2. Download the http://sourceforge.net/projects/dspace/ There are two version available with each release
of DSpace: (dspace-1.x-release. and dspace-1.x-src-release.xxx); you only need to choose one. If you
want a copy of all underlying Java source code, you should download the dspace-1.x-src-release.xxx
Within each version, you have a choice of compressed file format. Choose the one that best fits your
environment.

3. Unpack the DSpace software. After downloading the software, based on the compression file format,
choose one of the following methods to unpack your software:

a. Zip file. If you downloaded dspace-1.6-release.zip do the following:

unzip dspace-1.6-release.zip

b. .gz file. If you downloaded dspace-1.6-release.tar.gz do the following:

gunzip -c dspace-1.6-release.tar.gz | tar -xf -

c. .bz2 file. If you downloaded _dspace-1.6-release.tar.bz2_do the following:

bunzip2 dspace-1.6-release.tar.bz | tar -xf -

For ease of reference, we will refer to the location of this unzipped version of the DSpace release as
[dspace-source] in the remainder of these instructions.After unpacking the file, the user may which
to change the ownership of the dspace-1.6-release to the 'dspace' user. (And you may need to change
the group).

4. Database SetupPostgreSQL:

a. A PostgreSQL 8.1-404 jdbc3 driver is configured as part of the default DSpace build. You no longer
need to copy any postgreSQL jars to get postgreSQL installed.

b. Create a dspace database, owned by the dspace PostgreSQL user (you are still logged in at 'root'):

createuser -U postgres -d -A -P dspace ; createdb -U dspace -E UNICODE dspace

You will be prompted for a password for the DSpace database. (This isn't the same as the dspace user's
UNIX password.)Oracle:

Installation Options

22

c. Setting up oracle is a bit different now. You will need still need to get a Copy of
the oracle JDBC driver, but instead of copying it into a lib directory you will need to
install it into your local Maven repository. You'll need to download it first from this
location: http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc_10201.html$
mvn install:install-file -Dfile=ojdbc14.jar -DgroupId=com.oracle \ -DartifactId=ojdbc14 -Dver-
sion=10.2.0.2.0 -Dpackaging=jar -DgeneratePom=true

d. Create a database for DSpace. Make sure that the character set is one of the Unicode character sets.
DSpace uses UTF-8 natively, and it is suggested that the Oracle database use the same character set.
Create a user account for DSpace (e.g. dspace,) and ensure that it has permissions to add and remove
tables in the database.

e. Edit the [dspace-source]/dspace/config/dspace.cfg database settings:

db.name = oracle
db.url = jdbc.oracle.thin:@//host:port/dspace
db.driver = oracle.jdbc.OracleDriver

5. Initial Configuration*Edit_[dspace-source]/dspace/config/dspace.cfg_, in particular you'll need to
set these properties:dspace.dir – must be set to the [dspace] (installation) directory.dspace.url
– complete URL of this server's DSpace home page.dspace.hostname – fully-qualified do-
main name of web server.dspace.name – "Proper" name of your server, e.g. "My Digital
Library".db.password – the database password you entered in the previous step.mail.server – ful-
ly-qualified domain name of your outgoing mail server.mail.from.address – the "From:" address to
put on email sent by DSpace.feedback.recipient – mailbox for feedback mail.mail.admin – mailbox
for DSpace site administrator.alert.recipient – mailbox for server errors/alerts (not essential but
very useful!)registration.notify – mailbox for emails when new users register (optional) *NOTE:
You can interpolate the value of one configuration variable in the value of another one. For example, to
set feedback.recipient to the same value as mail.admin, the line would look like:

feedback.recipient = ${mail.admin}

Refer to 5.2. General Configuration for details and examples of the above.

6. *DSpace Directory*Create the directory for the DSpace installation (i.e. [dspace]). As root (or a user
with appropriate permissions), run:

mkdir [dspace]
chown dspace [dspace]

(Assuming the dspace UNIX username.)

7. *Installation Package*As the dspace UNIX user, generate the DSpace installation package in the [dspace-
source]/dspace directory:

cd [dspace-source]/dspace/
mvn package

Note: without any extra arguments, the DSpace installation package is initialized for PostgreSQL. If you
want to use Oracle instead, you should build the DSpace installation package as follows:

mvn -Ddb.name=oracle package

8. *Build DSpace and Initialize Database*As the dspace UNIX user, initialize the DSpace database and
install DSpace to [dspace]:

cd [dspace-source]/dspace/target/dspace-[version]-build.dir

ant fresh_install

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc_10201.html

Advanced Installation

23

To see a complete list of build targets, run: ant help_The most likely thing to go wrong here is the database
connection. See the _3.7 Common Problems Section.

9. Deploy Web Applications*You have two choices or techniques for having Tomcat/Jetty/Resin serve
up your web applications. *Technique A. Simple and complete. You copy only (or all) of the DSpace
Web application(s) you wish to use from the [dspace]/webapps directory to the appropriate direcoty in
your Tomcat/Jetty/Resin installation. For example:cp -R [dspace]/webapps/* [tomcat]/webapps (This
will copy all the web applications to Tomcat.)cp -R [dspace]/webapps/jspui [tomcat]/webapps (This will
copy only the jspui web application to Tomcat.)_ *Technique B.*Tell your Tomcat/Jetty/Resin installa-
tion where to find your DSpace web application(s). As an example, in the <Host> section of your _[tom-
cat]/conf/server.xml you could add lines similar to the following (but replace [dspace] with your instal-
lation location:

<!-- Define the default virtual host
 Note: XML SChema validation will not work with Xerces 2.2.
 -->
 <Host name="localhost" appBase="[dspace]/webapps"

10.*Administrator Account*Create an initial administrator account:

[dspace]/bin/create-administrator

11.*Initial Startup!*Now the moment of truth! Start up (or restart) Tomcat/Jetty/Resin. Visit the base URL(s)
of your server, depending on which DSpace web applications you want to use. You should see the DSpace
home page. Congratulations! Base URLs of DSpace Web Applications:

• JSP User Interface - (e.g.) http://dspace.myu.edu:8080/jspui

• XML User Interface (aka. Manakin) - (e.g.) http://dspace.myu.edu:8080/xmlui

• OAI-PMH Interface - (e.g.) http://dspace.myu.edu:8080/oai/request?verb=Identify (Should return an
XML-based response)
In order to set up some communities and collections, you'll need to login as your DSpace Administrator
(which you created with create-administrator above) and access the administration UI in either the
JSP or XML user interface.

3.4. Advanced Installation
The above installation steps are sufficient to set up a test server to play around with, but there are a few other
steps and options you should probably consider before deploying a DSpace production site.

3.4.1. 'cron' Jobs
A couple of DSpace features require that a script is run regularly – the e-mail subscription feature that alerts
users of new items being deposited, and the new 'media filter' tool, that generates thumbnails of images and
extracts the full-text of documents for indexing.

To set these up, you just need to run the following command as the dspace UNIX user:

crontab -e

Then add the following lines:

Send out subscription e-mails at 01:00 every day
0 1 * * * [dspace]/bin/sub-daily
Run the media filter at 02:00 every day
0 2 * * * [dspace]/bin/filter-media
Run the checksum checker at 03:00
0 3 * * * [dspace]/bin/checker -lp
Mail the results to the sysadmin at 04:00

http://dspace.myu.edu:8080/jspui
http://dspace.myu.edu:8080/xmlui
http://dspace.myu.edu:8080/oai/request?verb=Identify

Advanced Installation

24

0 4 * * * [dspace]/bin/dsrun org.dspace.checker.DailyReportEmailer -c

Naturally you should change the frequencies to suit your environment.

PostgreSQL also benefits from regular 'vacuuming', which optimizes the indices and clears out any deleted
data. Become the postgres UNIX user, run crontab -e and add (for example):

Clean up the database nightly at 4.20am
20 4 * * * vacuumdb --analyze dspace > /dev/null 2>&1

In order that statistical reports are generated regularly and thus kept up to date you should set up the following
cron jobs:

Run stat analyses
0 1 * * * [dspace]/bin/stat-general
0 1 * * * [dspace]/bin/stat-monthly
0 2 * * * [dspace]/bin/stat-report-general
0 2 * * * [dspace]/bin/stat-report-monthly

Obviously, you should choose execution times which are most useful to you, and you should ensure that the
report scripts run a short while after the analysis scripts to give them time to complete (a run of around 8
months worth of logs can take around 25 seconds to complete); the resulting reports will let you know how
long analysis took and you can adjust your cron times accordingly.

3.4.2. Multilingual Installation
In order to deploy a multilingual version of DSpace you have to configure two parameters in [dspace-
source]/config/dspace.cfg:

default.locale, e. g. default.locale = en

webui.supported locales, e. g. webui.supported.locales = en, de

The Locales might have the form country, country_language, country_language_variant.

Accoding to the languages you wish to support, you have to make sure, that all the i18n related files are
available see the Multilingual User Interface Configuring MultiLingual Support section for the JSPUI or the
Multilingual Support for XMLUI in the configuration documentation.

3.4.3. DSpace over HTTPS
If your DSpace is configured to have users login with a username and password (as opposed to, say, client
Web certificates), then you should consider using HTTPS. Whenever a user logs in with the Web form (e.g.
dspace.myuni.edu/dspace/password-login) their DSpace password is exposed in plain text on the network.
This is a very serious security risk since network traffic monitoring is very common, especially at univer-
sities. If the risk seems minor, then consider that your DSpace administrators also login this way and they
have ultimate control over the archive.

The solution is to use HTTPS (HTTP over SSL, i.e. Secure Socket Layer, an encrypted transport), which
protects your passwords against being captured. You can configure DSpace to require SSL on all "authen-
ticated" transactions so it only accepts passwords on SSL connections.

The following sections show how to set up the most commonly-used Java Servlet containers to support
HTTP over SSL.

To enable the HTTPS support in Tomcat 5.0:

1. For Production use: Follow this procedure to set up SSL on your server. Using a "real" server
certificate ensures your users' browsers will accept it without complaints. In the examples below,
$CATALINA_BASE is the directory under which your Tomcat is installed.

a. Create a Java keystore for your server with the password changeit, and install your server certificate
under the alias "tomcat". This assumes the certificate was put in the file server.pem:

Advanced Installation

25

$JAVA_HOME/bin/keytool -import -noprompt -v -storepass changeit
 -keystore $CATALINA_BASE/conf/keystore -alias tomcat -file
 myserver.pem

b. Install the CA (Certifying Authority) certificate for the CA that granted your server cert, if necessary.
This assumes the server CA certificate is in ca.pem:

$JAVA_HOME/bin/keytool -import -noprompt -storepass changeit
 -trustcacerts -keystore $CATALINA_BASE/conf/keystore -alias ServerCA
 -file ca.pem

c. Optional – ONLY if you need to accept client certificates for the X.509 certificate stackable authen-
tication module See the configuration section for instructions on enabling the X.509 authentication
method. Load the keystore with the CA (certifying authority) certificates for the authorities of any
clients whose certificates you wish to accept. For example, assuming the client CA certificate is in
client1.pem:

$JAVA_HOME/bin/keytool -import -noprompt -storepass changeit
 -trustcacerts -keystore $CATALINA_BASE/conf/keystore -alias client1
 -file client1.pem

d. Now add another Connector tag to your server.xml Tomcat configuration file, like the example below.
The parts affecting or specific to SSL are shown in bold. (You may wish to change some details such
as the port, pathnames, and keystore password)

<Connector port="8443"
 maxThreads="150" minSpareThreads="25"
 maxSpareThreads="75"
 enableLookups="false"
 disableUploadTimeout="true"
 acceptCount="100" debug="0"
 scheme="https" secure="true" sslProtocol="TLS"
 keystoreFile="conf/keystore" keystorePass="changeit" clientAuth="true" - ONLY if
 using client X.509 certs for authentication!
 truststoreFile="conf/keystore" trustedstorePass="changeit" />

Also, check that the default Connector is set up to redirect "secure" requests to the same port as your
SSL connector, e.g.:

<Connector port="8080"
 maxThreads="150" minSpareThreads="25"
 maxSpareThreads="75"
 enableLookups="false"
 redirectPort="8443"
 acceptCount="100" debug="0" />

2. Quick-and-dirty Procedure for Testing: If you are just setting up a DSpace server for testing, or to
experiment with HTTPS, then you don't need to get a real server certificate. You can create a "self-signed"
certificate for testing; web browsers will issue warnings before accepting it but they will function exactly
the same after that as with a "real" certificate. In the examples below, $CATALINA_BASE is the directory
under which your Tomcat is installed.

a. Optional – ONLY if you don't already have a server certificate. Follow this sub-procedure to request
a new, signed server certificate from your Certifying Authority (CA):

• Create a new key pair under the alias name "tomcat". When generating your key, give the Distin-
guished Name fields the appropriate values for your server and institution. CN should be the ful-
ly-qualified domain name of your server host. Here is an example:

$JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA -keysize
 1024 \
 -keystore $CATALINA_BASE/conf/keystore -storepass changeit

Advanced Installation

26

 -validity 365 \
 -dname 'CN=dspace.myuni.edu, OU=MIT Libraries, O=Massachusetts
 Institute of Technology, L=Cambridge, S=MA, C=US'

• Then, create a CSR (Certificate Signing Request) and send it to your Certifying Authority. They
will send you back a signed Server Certificate. This example command creates a CSR in the file
tomcat.csr

$JAVA_HOME/bin/keytool -keystore $CATALINA_BASE/conf/keystore
 -storepass changeit \
 -certreq -alias tomcat -v -file tomcat.csr

• Before importing the signed certificate, you must have the CA's certificate in your keystore as a
trusted certificate. Get their certificate, and import it with a command like this (for the example
mitCA.pem):

$JAVA_HOME/bin/keytool -keystore $CATALINA_BASE/conf/keystore
 -storepass changeit \
 -import -alias mitCA -trustcacerts -file mitCA.pem

• Finally, when you get the signed certificate from your CA, import it into the keystore with a com-
mand like the following example: (cert is in the file signed-cert.pem)

$JAVA_HOME/bin/keytool -keystore $CATALINA_BASE/conf/keystore
 -storepass changeit \
 -import -alias tomcat -trustcacerts -file signed-cert.pem

Since you now have a signed server certificate in your keystore, you can, obviously, skip the next
steps of installing a signed server certificate and the server CA's certificate.

b. Create a Java keystore for your server with the password changeit, and install your server certificate
under the alias "tomcat". This assumes the certificate was put in the file server.pem:

$JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA -keystore
 $CATALINA_BASE/conf/keystore -storepass changeit

When answering the questions to identify the certificate, be sure to respond to "First and last name"
with the fully-qualified domain name of your server (e.g. test-dspace.myuni.edu). The other questions
are not important.

c. Optional – ONLY if you need to accept client certificates for the X.509 certificate stackable authen-
tication module See the configuration section for instructions on enabling the X.509 authentication
method. Load the keystore with the CA (certifying authority) certificates for the authorities of any
clients whose certificates you wish to accept. For example, assuming the client CA certificate is in
client1.pem:

$JAVA_HOME/bin/keytool -import -noprompt -storepass changeit
 -trustcacerts -keystore $CATALINA_BASE/conf/keystore -alias client1
 -file client1.pem

d. Follow the procedure in the section above to add another Connector tag, for the HTTPS port, to your
server.xml file.

To use SSL on Apache HTTPD with mod_jk:
If you choose http://httpd.apache.org/ as your primary HTTP server, you can have it forward requests to
the http://tomcat.apache.org/ via http://tomcat.apache.org/connectors-doc/. This can be configured to work
over SSL as well. First, you must configure Apache for SSL; for Apache 2.0 see [http://httpd.apache.org/
docs/2.0/ssl/|Apache SSL/TLS Encryption] for information about using http://httpd.apache.org/docs/2.0/
mod/mod_ssl.html.

Advanced Installation

27

If you are using X.509 Client Certificates for authentication: add these configuration options to the appro-
priate httpd configuration file, e.g. ssl.conf, and be sure they are in force for the virtual host and namespace
locations dedicated to DSpace:

SSLVerifyClient can be "optional" or
 "require"
 SSLVerifyClient optional
 SSLVerifyDepth 10
 SSLCACertificateFile
 path-to-your-client-CA-certificate
 SSLOptions StdEnvVars ExportCertData

Now consult the http://tomcat.apache.org/connectors-doc/ documentation to configure the mod_jk (note:
NOTmod_jk2) module. Select the AJP 1.3 connector protocol. Also follow the instructions there to configure
your Tomcat server to respond to AJP.

To use SSL on Apache HTTPD with mod_webapp consult the DSpace 1.3.2 documentation. Apache have
deprecated the mod_webapp connector and recommend using mod_jk.

To use Jetty's HTTPS support consult the documentation for the relevant tool.

3.4.4. The Handle Server
First a few facts to clear up some common misconceptions:

• You don't have to use CNRI's Handle system. At the moment, you need to change the code a little to use
something else (e.g PURLs) but that should change soon.

• You'll notice that while you've been playing around with a test server, DSpace has apparently been creating
handles for you looking like hdl:123456789/24 and so forth. These aren't really Handles, since the global
Handle system doesn't actually know about them, and lots of other DSpace test installs will have created
the same IDs.They're only really Handles once you've registered a prefix with CNRI (see below) and have
correctly set up the Handle server included in the DSpace distribution. This Handle server communicates
with the rest of the global Handle infrastructure so that anyone that understands Handles can find the
Handles your DSpace has created.
If you want to use the Handle system, you'll need to set up a Handle server. This is included with DSpace.
Note that this is not required in order to evaluate DSpace; you only need one if you are running a production
service. You'll need to obtain a Handle prefix from http://www.handle.net/.

A Handle server runs as a separate process that receives TCP requests from other Handle servers, and issues
resolution requests to a global server or servers if a Handle entered locally does not correspond to some local
content. The Handle protocol is based on TCP, so it will need to be installed on a server that can broadcast
and receive TCP on port 2641.

1. To configure your DSpace installation to run the handle server, run the following command: [dspace]/
bin/dspace make-handle-config_Ensure that _[dspace]/handle-server matches whatever you have in
dspace.cfg for the handle.dir property.

2. Edit the resulting [dspace]/handle-server/config.dct file to include the following lines in the
"server_config" clause:

"storage_type" = "CUSTOM"
"storage_class" = "org.dspace.handle.HandlePlugin"

This tells the Handle server to get information about individual Handles from the DSpace code.

3. Once the configuration file has been generated, you will need to go to http://hdl.handle.net/4263537/5014
to upload the generated sitebndl.zip file. The upload page will ask you for your contact information.
An administrator will then create the naming authority/prefix on the root service (known as the Global
Handle Registry), and notify you when this has been completed. You will not be able to continue the
handle server installation until you receive further information concerning your naming authority.

http://hdl.handle.net/4263537/5014

Advanced Installation

28

4. When CNRI has sent you your naming authority prefix, you will need to edit the config.dct file. The file
will be found in /[dspace]/handle-server. Look for "300:0.NA/YOUR_NAMING_AUTHORITY"_Replace
_YOUR_NAMING_AUTHORITY with the assigned naming authority prefix sent to you.

5. Now start your handle server (as the dspace user):

[dspace]/bin/start-handle-server

Note that since the DSpace code manages individual Handles, administrative operations such as Handle
creation and modification aren't supported by DSpace's Handle server.

Updating Existing Handle Prefixes

If you need to update the handle prefix on items created before the CNRI registration process you can run
the [dspace]/bin/update-handle-prefix script. You may need to do this if you loaded items prior to CNRI
registration (e.g. setting up a demonstration system prior to migrating it to production). The script takes the
current and new prefix as parameters. For example:

[dspace]/bin/update-handle-prefix 123456789 1303

This script will change any handles currently assigned prefix 123456789 to prefix 1303, so for example
handle 123456789/23 will be updated to 1303/23 in the database.

3.4.5. Google and HTML sitemaps
To aid web crawlers index the content within your repository, you can make use of sitemaps. There are
currently two forms of sitemaps included in DSpace; Google sitemaps and HTML sitemaps.

Sitemaps allow DSpace to expose it's content without the crawlers having to index every page. HTML
sitemaps provide a list of all items, collections and communities in HTML format, whilst Google sitemaps
provide the same information in gzipped XML format.

To generate the sitemaps, you need to run [dspace]/bin/generate-sitemaps This creates the sitemaps in
[dspace]/sitemaps/

The sitemaps can be accessed from the following URLs:

• http://dspace.example.com/dspace/sitemap - Index sitemap

• http://dspace.example.com/dspace/sitemap?map=0 - First list of items (up to 50,000)

• http://dspace.example.com/dspace/sitemap?map=n - Subsequent lists of items (e.g. 50,0001 to 100,000)
etc...
HTML sitemaps follow the same procedure:

• http://dspace.example.com/dspace/htmlmap - Index sitemap

• etc...

When running [dspace]/bin/generate-sitemaps the script informs Google that the sitemaps have been up-
dated. For this update to register correctly, you must first register your Google sitemap index page (/dspace/
sitemap) with Google at http://www.google.com/webmasters/sitemaps/. If your DSpace server requires the
use of a HTTP proxy to connect to the Internet, ensure that you have set http.proxy.host and http.proxy.port
in [dspace]/config/dspace.cfg

The URL for pinging Google, and in future, other search engines, is configured in [dspace-space]/con-
fig/dspace.cfg using the sitemap.engineurls setting where you can provide a comma-separated list of URLs
to 'ping'.

You can generate the sitemaps automatically every day using an additional cron job:

Generate sitemaps

http://dspace.example.com/dspace/sitemap
http://dspace.example.com/dspace/sitemap?map=0
http://dspace.example.com/dspace/sitemap?map=n
http://dspace.example.com/dspace/htmlmap
http://www.google.com/webmasters/sitemaps/

Windows Installation

29

0 6 * * * [dspace]/bin/generate-sitemaps

3.5. Windows Installation

3.5.1. Pre-requisite Software
You'll need to install this pre-requisite software:

• http://java.sun.com/ or later (standard SDK is fine, you don't need J2EE)

• http://www.postgresql.org/ftp/ OR http://www.oracle.com/database/.

• If you install PostgreSQL, it's recommended to select to install the pgAdmin III tool

• http://ant.apache.org/. Unzip the package in C:_ and add _C:\apache-ant-1.6.2\bin to the PATH environ-
ment variable. For Ant to work properly, you should ensure that JAVA_HOME is set.

• http://tomcat.apache.org/

• http://maven.apache.org/

3.5.2. Installation Steps

1. Download the DSpace source from http://sourceforge.net/projects/dspace and untar it (http://
www.winzip.com/ will do this)

2. Ensure the PostgreSQL service is running, and then run pgAdmin III (Start -> PostgreSQL 8.0 -> pgAd-
min III). Connect to the local database as the postgres user and:

• Create a 'Login Role' (user) called dspace with the password dspace

• Create a database called dspace owned by the user dspace, with UTF-8 encoding

3. Update paths in [dspace-source]\dspace\config\dspace.cfg. Note: Use forward slashes / for path separa-
tors, though you can still use drive letters, e.g.:_dspace.dir = C:/DSpace_Make sure you change all of the
parameters with file paths to suit, specifically:

dspace.dir
 config.template.log4j.properties
 config.template.log4j-handle-plugin.properties
 config.template.oaicat.properties
 assetstore.dir
 log.dir
 upload.temp.dir
 report.dir
 handle.dir

4. Create the directory for the DSpace installation (e.g. C:\DSpace)

5. Generate the DSpace installation package by running the following from commandline (cmd) from your
[dspace-source]/dspace/ directory:

mvn package

Note #1: This will generate the DSpace installation package in your [dspace-source]/dspace/tar-
get/dspace-[version]-build.dir/ directory.Note #2: Without any extra arguments, the DSpace installation
package is initialized for PostgreSQL. If you want to use Oracle instead, you should build the DSpace
installation package as follows:

Checking Your Installation

30

mvn -Ddb.name=oracle package

6. Initialize the DSpace database and install DSpace to [dspace] (e.g. C:\DSpace) by running the following
from commandline from your [dspace-source]/dspace/target/dspace-[version]-build.dir/ directory:

ant fresh_install

Note: to see a complete list of build targets, run

ant help

7. Create an administrator account, by running the following from your [dspace] (e.g. C:\DSpace)
directory_[dspace]\bin\dsrun org.dspace.administer.CreateAdministrator_and enter the required infor-
mation

8. Copy the Web application directories from [dspace]\webapps_ to Tomcat's webapps dir, which should
be somewhere like _C:\Program Files\Apache Software Foundation\Tomcat 5.5\webapps

• Alternatively, Tell your Tomcat installation where to find your DSpace web application(s). As an
example, in the <Host> section of your [tomcat]/conf/server.xml you could add lines similar to the
following (but replace [dspace] with your installation location):

<!-- DEFINE A CONTEXT PATH FOR DSpace JSP User Interface -->
<Context path="/jspui" docBase="[dspace]\webapps\jspui" debug="0"
 reloadable="true" cachingAllowed="false"
 allowLinking="true"/>

<!-- DEFINE A CONTEXT PATH FOR DSpace OAI User Interface -->
<Context path="/oai" docBase="[dspace]\webapps\oai" debug="0"
 reloadable="true" cachingAllowed="false"
 allowLinking="true"/>

9. Start the Tomcat service

10.Browse to either _http://localhost:8080/jspui_ or _http://localhost:8080/xmlui_. You should see the
DSpace home page for either the JSPUI or XMLUI, respectively.

3.6. Checking Your Installation
TODO

3.7. Known Bugs
In any software project of the scale of DSpace, there will be bugs. Sometimes, a stable version of DSpace
includes known bugs. We do not always wait until every known bug is fixed before a release. If the software
is sufficiently stable and an improvement on the previous release, and the bugs are minor and have known
workarounds, we release it to enable the community to take advantage of those improvements.

The known bugs in a release are documented in the KNOWN_BUGS file in the source package.

Please see the # for further information on current bugs, and to find out if the bug has subsequently been
fixed. This is also where you can report any further bugs you find.

3.8. Common Problems
In an ideal world everyone would follow the above steps and have a fully functioning DSpace. Of couse, in
the real world it doesn't always seem to work out that way. This section lists common problems that people

http://localhost:8080/jspui_
http://localhost:8080/xmlui_

Common Problems

31

encounter when installing DSpace, and likely causes and fixes. This is likely to grow over time as we learn
about users' experiences.

• Database errors occur when you run ant fresh_install: There are two common errors that occur. If
your error looks like this--

[java] 2004-03-25 15:17:07,730 INFO
 org.dspace.storage.rdbms.InitializeDatabase @ Initializing Database
[java] 2004-03-25 15:17:08,816 FATAL
 org.dspace.storage.rdbms.InitializeDatabase @ Caught exception:
[java] org.postgresql.util.PSQLException: Connection refused. Check
 that the hostname and port are correct and that the postmaster is
 accepting TCP/IP connections.
[java] at
 org.postgresql.jdbc1.AbstractJdbc1Connection.openConnection(AbstractJd
bc1Connection.java:204)
[java] at org.postgresql.Driver.connect(Driver.java:139)

it usually means you haven't yet added the relevant configuration parameter to your PostgreSQL con-
figuration (see above), or perhaps you haven't restarted PostgreSQL after making the change. Also,
make sure that the db.username and db.password properties are correctly set in [dspace-source]/con-
fig/dspace.cfg.An easy way to check that your DB is working OK over TCP/IP is to try this on the com-
mand line:

psql -U dspace -W -h localhost

Enter the dspacedatabase password, and you should be dropped into the psql tool with a dspace=>
prompt.Another common error looks like this:

[java] 2004-03-25 16:37:16,757 INFO
 org.dspace.storage.rdbms.InitializeDatabase @ Initializing Database
[java] 2004-03-25 16:37:17,139 WARN
 org.dspace.storage.rdbms.DatabaseManager @ Exception initializing DB
 pool
[java] java.lang.ClassNotFoundException: org.postgresql.Driver
[java] at java.net.URLClassLoader$1.run(URLClassLoader.java:198)
[java] at java.security.AccessController.doPrivileged(Native
 Method)
[java] at
 java.net.URLClassLoader.findClass(URLClassLoader.java:186)

This means that the PostgreSQL JDBC driver is not present in [dspace-source]/lib. See above.

• Tomcat doesn't shut down: If you're trying to tweak Tomcat's configuration but nothing seems to make
a difference to the error you're seeing, you might find that Tomcat hasn't been shutting down properly,
perhaps because it's waiting for a stale connection to close gracefully which won't happen. To see if this
is the case, try:

ps -ef | grep java

and look for Tomcat's Java processes. If they stay arround after running Tomcat's shutdown.sh script,
trying kill_ing them (with _-9 if necessary), then starting Tomcat again.

• Database connections don't work, or accessing DSpace takes forever: If you find that when you try
to access a DSpace Web page and your browser sits there connecting, or if the database connections fail,
you might find that a 'zombie' database connection is hanging around preventing normal operation. To
see if this is the case, try:

ps -ef | grep postgres

You might see some processes like this

dspace 16325 1997 0 Feb 14 ? 0:00 postgres: dspace dspace

Upgrading a DSpace Installation

32

 127.0.0.1 idle in transaction

This is normal--DSpace maintains a 'pool' of open database connections, which are re-used to avoid the
overhead of constantly opening and closing connections. If they're 'idle' it's OK; they're waiting to be
used. However sometimes, if something went wrong, they might be stuck in the middle of a query, which
seems to prevent other connections from operating, e.g.:

dspace 16325 1997 0 Feb 14 ? 0:00 postgres: dspace dspace
 127.0.0.1 SELECT

This means the connection is in the middle of a SELECT operation, and if you're not using DSpace right
that instant, it's probably a 'zombie' connection. If this is the case, try _kill_ing the process, and stopping
and restarting Tomcat.

4. Upgrading a DSpace Installation

4.1. Upgrading from 1.5.x to 1.6
In the notes below [dspace] refers to the install directory for your existing DSpace installation, and [dspace-
source] to the source directory for DSpace 1.5. Whenever you see these path references, be sure to replace
them with the actual path names on your local system.

1. Backup Your DSpace. First, and foremost, make a complete backup of your system, including:

• A snapshot of the database. _To have a "snapshot" of the PostgreSQL database, you need to shut it
down during the backup. You should also have your regular Postgresql Backup output. _

• The asset store ([dspace]/assetstore by default)

• Your configuration files and customizations to DSpace (including any customized scripts).

2. Download DSpace 1.6. Retrieve the new DSpace 1.6 source code either as a download from http://
www.dspace.org/current-release/latest-release/ or check it out directly from the http://scm.dspace.org/
svn/repo/dspace/trunk. If you downloaded DSpace do not unpack it on top of your existing
installation.Refer to Chapter 3.3.3 Installation, Step 3 for unpacking directives.

3. Stop Tomcat. Take down your servlet container. For Tomcat, use the $CATALINA/shutdown.sh script.
(Many installations will have a startup/shutdown script in the /etc/init.d or /etc/rc.d directories.

4. Apply any customizations. If you have made any local customizations to your DSpace installation they
will need to be migrated over to the new DSpace. These are housed in one of the following places:JSPUI
modifications: [dspace-source]/dspace-jspui/dspace-jspui-webapp/src/main/webapp/_XMLUI modifi-
caitons: _[dspace-source]/dspace-xmlui/dspace-xmlui-webbapp/src/main/webbapp

5. Update Configuration Files. Some of the parameters have change and some are new. Changes will be
noted below:

• The base url and oai urls property keys are set differently **CHANGE**

DSpace host name - should match base URL. Do not include port number
dspace.hostname = localhost

DSpace base host URL. Include port number etc.
dspace.baseUrl = http://localhost:8080

DSpace base URL. Include port number etc., but NOT trailing slash
Change to xmlui if you wish to use the xmlui as the default, or remove
"/jspui" and set webapp of your choice as the "ROOT" webapp in
the servlet engine.
dspace.url = ${dspace.baseUrl}/xmlui

Upgrading from 1.5.x to 1.6

33

The base URL of the OAI webapp (do not include /request).
dspace.oai.url = ${dspace.baseUrl}/oai

• The PostgreSQL database property key has changed **CHANGE**

URL for connecting to database
#db.url = ${default.db.url}
db.url = jdbc:postgresql://localhost:5432/dspace-services

• New email options:

A comma separated list of hostnames that are allowed to refer browsers to email
 forms.
Default behaviour is to accept referrals only from dspace.hostname
#mail.allowed.referrers = localhost

Pass extra settings to the Java mail library. Comma separated, equals sign between
the key and the value.
#mail.extraproperties = mail.smtp.socketFactory.port=465, \

 mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory, \
mail.smtp.socketFactory.fallback=false

An option is added to disable the mailserver. By default, this property is set to
 false
By setting mail.server.disabled = true, DSpace will not send out emails.
It will instead log the subject of the email which should have been sent
This is especially useful for development and test environments where production
 data is used when testing functionality.
#mail.server.disabled = false

• New Authorization levels and parameters. See Section 5.2.45 in Configuration for further information.

Authorization system configuration - Delegate ADMIN

COMMUNITY ADMIN configuration
subcommunities and collections
#core.authorization.community-admin.create-subelement = true
#core.authorization.community-admin.delete-subelement = true
his community
#core.authorization.community-admin.policies = true
#core.authorization.community-admin.admin-group = true
collections in his community
#core.authorization.community-admin.collection.policies = true
#core.authorization.community-admin.collection.template-item = true
#core.authorization.community-admin.collection.submitters = true
#core.authorization.community-admin.collection.workflows = true
#core.authorization.community-admin.collection.admin-group = true
item owned by collections in his community
#core.authorization.community-admin.item.delete = true
#core.authorization.community-admin.item.withdraw = true
#core.authorization.community-admin.item.reinstatiate = true
#core.authorization.community-admin.item.policies = true
also bundle...
#core.authorization.community-admin.item.create-bitstream = true
#core.authorization.community-admin.item.delete-bitstream = true
#core.authorization.community-admin.item-admin.cc-license = true

COLLECTION ADMIN
#core.authorization.collection-admin.policies = true
#core.authorization.collection-admin.template-item = true
#core.authorization.collection-admin.submitters = true
#core.authorization.collection-admin.workflows = true
#core.authorization.collection-admin.admin-group = true
item owned by his collection
#core.authorization.collection-admin.item.delete = true
#core.authorization.collection-admin.item.withdraw = true
#core.authorization.collection-admin.item.reinstatiate = true

Upgrading from 1.5.x to 1.6

34

#core.authorization.collection-admin.item.policies = true
also bundle...
#core.authorization.collection-admin.item.create-bitstream = true
#core.authorization.collection-admin.item.delete-bitstream = true
#core.authorization.collection-admin.item-admin.cc-license = true

ITEM ADMIN
#core.authorization.item-admin.policies = true
also bundle...
#core.authorization.item-admin.create-bitstream = true
#core.authorization.item-admin.delete-bitstream = true
#core.authorization.item-admin.cc-license = true

• METS ingester has been revised. **CHANGE**

Option to make use of collection templates when using the METS ingester (default
 is false)
mets.submission.useCollectionTemplate = false

Crosswalk Plugins:
plugin.named.org.dspace.content.crosswalk.IngestionCrosswalk = \
 org.dspace.content.crosswalk.PREMISCrosswalk = PREMIS \
 org.dspace.content.crosswalk.OREIngestionCrosswalk = ore \
 org.dspace.content.crosswalk.NullIngestionCrosswalk = NIL \
 org.dspace.content.crosswalk.QDCCrosswalk = qdc \
 org.dspace.content.crosswalk.OAIDCIngestionCrosswalk = dc \
 org.dspace.content.crosswalk.DIMIngestionCrosswalk = dim

plugin.selfnamed.org.dspace.content.crosswalk.IngestionCrosswalk = \
 org.dspace.content.crosswalk.XSLTIngestionCrosswalk

plugin.named.org.dspace.content.crosswalk.DisseminationCrosswalk = \
 org.dspace.content.crosswalk.SimpleDCDisseminationCrosswalk = DC \
 org.dspace.content.crosswalk.SimpleDCDisseminationCrosswalk = dc \
 org.dspace.content.crosswalk.PREMISCrosswalk = PREMIS \
 org.dspace.content.crosswalk.METSDisseminationCrosswalk = METS \
 org.dspace.content.crosswalk.METSDisseminationCrosswalk = mets \
 org.dspace.content.crosswalk.OREDisseminationCrosswalk = ore \
 org.dspace.content.crosswalk.QDCCrosswalk = qdc \
 org.dspace.content.crosswalk.DIMDisseminationCrosswalk = dim

• Event Settings have had the following revision with the addition of 'harvester': **CHANGE**

Event System Configuration

default synchronous dispatcher (same behavior as traditional DSpace)
event.dispatcher.default.class = org.dspace.event.BasicDispatcher
event.dispatcher.default.consumers = search, browse, eperson, harvester

also:

consumer to clean up harvesting data
event.consumer.harvester.class = org.dspace.harvest.HarvestConsumer
event.consumer.harvester.filters = Item+Delete

• New option for the Embargo of Thesis and Disserations.

Embargo Settings
DC metadata field to hold the user-supplied embargo terms
embargo.field.terms = SCHEMA.ELEMENT.QUALIFIER

DC metadata field to hold computed "lift date" of embargo
embargo.field.lift = SCHEMA.ELEMENT.QUALIFIER

string in terms field to indicate indefinite embargo
embargo.terms.open = forever

Upgrading from 1.5.x to 1.6

35

implementation of embargo setter plugin - replace with local implementation if
 applicable
plugin.single.org.dspace.embargo.EmbargoSetter =
 org.dspace.embargo.DefaultEmbargoSetter

implementation of embargo lifter plugin - - replace with local implementation if
 applicable
plugin.single.org.dspace.embargo.EmbargoLifter =
 org.dspace.embargo.DefaultEmbargoLifter

• New option for using the Batch Editing capabilities. See Section 5.2.46 in Configuration and also 8.10
in System Administration

Bulk metadata editor settings
The delimiter used to separate values within a single field (defaults to a double
 pipe ||)
bulkedit.valueseparator = ||

The delimiter used to serarate fields (defaults to a comma for CSV)
bulkedit.fieldseparator = ,

A hard limit of the number of items allowed to be edited in one go in the UI
(does not apply to the command line version)
bulkedit.gui-item-limit = 20

Metadata elements to exclude when exporting via the user interfaces, or when using
 the
command line version and not using the -a (all) option.
bulkedit.ignore-on-export = dc.date.accessioned, dc.date.available, \
dc.date.updated, dc.description.provenance

• Ability to hide metadata fields is now available.

Hide Item Metadata Fields
Fields named here are hidden in the following places UNLESS the
logged-in user is an Administrator:
1. XMLUI metadata XML view, and Item splash pages (long and short views).
2. JSPUI Item splash pages
3. OAI-PMH server, "oai_dc" format.
(NOTE: Other formats are _not_ affected.)
To designate a field as hidden, add a property here in the form:
metadata.hide.SCHEMA.ELEMENT.QUALIFIER = true
#
This default configuration hides the dc.description.provenance field,
since that usually contains email addresses which ought to be kept
private and is mainly of interest to administrators:
metadata.hide.dc.description.provenance = true

• New Choice Control and Authority Control options are available

example of authority-controlled browse category - see authority control config
#webui.browse.index.5 = lcAuthor:metadataAuthority:dc.contributor.author:authority

And also:

Authority Control Settings

#plugin.named.org.dspace.content.authority.ChoiceAuthority = \
org.dspace.content.authority.SampleAuthority = Sample, \
org.dspace.content.authority.LCNameAuthority = LCNameAuthority, \
org.dspace.content.authority.SHERPARoMEOPublisher = SRPublisher, \
org.dspace.content.authority.SHERPARoMEOJournalTitle = SRJournalTitle

This ChoiceAuthority plugin is automatically configured with every
value-pairs element in input-forms.xml, namely:
common_identifiers, common_types, common_iso_languages
#plugin.selfnamed.org.dspace.content.authority.ChoiceAuthority = \
org.dspace.content.authority.DCInputAuthority

Upgrading from 1.5.x to 1.6

36

configure LC Names plugin
#lcname.url = http://alcme.oclc.org/srw/search/lcnaf

configure SHERPA/RoMEO authority plugin
#sherpa.romeo.url = http://www.sherpa.ac.uk/romeo/api24.php

##
This sets the default lowest confidence level at which a metadata value is
 included
in an authority-controlled browse (and search) index. It is a symbolic
keyword, one of the following values (listed in descending order):
accepted
uncertain
ambiguous
notfound
failed
rejected
novalue
unset
See manual or org.dspace.content.authority.Choices source for descriptions.
authority.minconfidence = ambiguous

demo: use LC plugin for author
#choices.plugin.dc.contributor.author = LCNameAuthority
#choices.presentation.dc.contributor.author = lookup
#authority.controlled.dc.contributor.author = true
##
This sets the lowest confidence level at which a metadata value is included
in an authority-controlled browse (and search) index. It is a symbolic
keyword from the same set as for the default "authority.minconfidence"
#authority.minconfidence.dc.contributor.author = accepted

Demo: publisher name lookup through SHERPA/RoMEO:
#choices.plugin.dc.publisher = SRPublisher
#choices.presentation.dc.publisher = suggest

demo: journal title lookup, with ISSN as authority
#choices.plugin.dc.title.alternative = SRJournalTitle
#choices.presentation.dc.title.alternative = suggest
#authority.controlled.dc.title.alternative = true

demo: use choice authority (without authority-control) to restrict dc.type on
 EditItemMetadata page
choices.plugin.dc.type = common_types
choices.presentation.dc.type = select

demo: same idea for dc.language.iso
choices.plugin.dc.language.iso = common_iso_languages
choices.presentation.dc.language.iso = select

Change number of choices shown in the select in Choices lookup popup
#xmlui.lookup.select.size = 12

• RSS Feeds now support Atom 1.0

Syndication Feed (RSS) Settings

enable syndication feeds - links display on community and collection home pages
(This setting is not used by XMLUI, as you enable feeds in your theme)
webui.feed.enable = false
number of DSpace items per feed (the most recent submissions)
webui.feed.items = 4
maximum number of feeds in memory cache
value of 0 will disable caching
webui.feed.cache.size = 100
number of hours to keep cached feeds before checking currency
value of 0 will force a check with each request
webui.feed.cache.age = 48
which syndication formats to offer

Upgrading from 1.5.x to 1.6

37

use one or more (comma-separated) values from list:
rss_0.90, rss_0.91, rss_0.92, rss_0.93, rss_0.94, rss_1.0, rss_2.0
webui.feed.formats = rss_1.0,rss_2.0,atom_1.0
URLs returned by the feed will point at the global handle server (e.g. http://
hdl.handle.net/123456789/1)
Set to true to use local server URLs (i.e. http://myserver.myorg/
handle/123456789/1)
webui.feed.localresolve = false

Customize each single-value field displayed in the
feed information for each item. Each of
the below fields takes a *single* metadata field
#
The form is <schema prefix>.<element>[.<qualifier>|.*]
webui.feed.item.title = dc.title
webui.feed.item.date = dc.date.issued

Customise the metadata fields to show in the feed for each item's description.
Elements will be displayed in the order that they are specified here.
#
The form is <schema prefix>.<element>[.<qualifier>|.*][(date)], ...
#
Similar to the item display UI, the name of the field for display
in the feed will be drawn from the current UI dictionary,
using the key:
"metadata.<field>"
#
e.g. "metadata.dc.title"
"metadata.dc.contributor.author"
"metadata.dc.date.issued"
webui.feed.item.description = dc.title, dc.contributor.author, \
 dc.contributor.editor,
 dc.description.abstract, \
 dc.description
name of field to use for authors (Atom only) - repeatable
webui.feed.item.author = dc.contributor.author

Customize the extra namespaced DC elements added to the item (RSS) or entry
(Atom) element. These let you include individual metadata values in a
structured format for easy extraction by the recipient, instead of (or in
addition to) appending these values to the Description field.
dc:creator value(s)
#webui.feed.item.dc.creator = dc.contributor.author
dc:date value (may be contradicted by webui.feed.item.date)
#webui.feed.item.dc.date = dc.date.issued
dc:description (e.g. for a distinct field that is ONLY the abstract)
#webui.feed.item.dc.description = dc.description.abstract

Customize the image icon included with the site-wide feeds:
Must be an absolute URL, e.g.
webui.feed.logo.url = ${dspace.url}/themes/mysite/images/mysite-logo.png

• Opensearch Feature is new to DSpace

OpenSearch Settings
NB: for result data formatting, OpenSearch uses Syndication Feed Settings
so even if Syndication Feeds are not enabled, they must be configured
enable open search
websvc.opensearch.enable = false
context for html request URLs - change only for non-standard servlet mapping
websvc.opensearch.uicontext = simple-search
context for RSS/Atom request URLs - change only for non-standard servlet mapping
websvc.opensearch.svccontext = open-search/
present autodiscovery link in every page head
websvc.opensearch.autolink = true
number of hours to retain results before recalculating
websvc.opensearch.validity = 48
short name used in browsers for search service
should be 16 or fewer characters
websvc.opensearch.shortname = DSpace
longer (up to 48 characters) name

Upgrading from 1.5.x to 1.6

38

websvc.opensearch.longname = ${dspace.name}
brief service description
websvc.opensearch.description = ${dspace.name} DSpace repository
location of favicon for service, if any must be 16X16 pixels
websvc.opensearch.faviconurl = http://www.dspace.org/images/favicon.ico
sample query - should return results
websvc.opensearch.samplequery = photosynthesis
tags used to describe search service
websvc.opensearch.tags = IR DSpace
result formats offered - use 1 or more comma-separated from: html,atom,rss
NB: html is required for autodiscovery in browsers to function,
and must be the first in the list if present
websvc.opensearch.formats = html,atom,rss

• Exposure of METS metadata can be now hidden.

When exposing METS/MODS via OAI-PMH all metadata that can be mapped to MODS
is exported. This includes description.provenance which can contain personal
email addresses and other information not intended for public consumption. To
hide this information set the following property to true
oai.mets.hide-provenance = true

• SWORD has added the following to accept MIME/types.

A comma separated list of MIME types that SWORD will accept
sword.accepts = application/zip

• New OAI Harvesting Configuration settings are now available.

#---#
#--------------OAI HARVESTING CONFIGURATIONS--------------------#
#---#
These configs are only used by the OAI-ORE related functions
#---#

Harvester settings

Crosswalk settings; the {name} value must correspond to a declated ingestion
 crosswalk
harvester.oai.metadataformats.{name} = {namespace},{optional display name}
harvester.oai.metadataformats.dc = http://www.openarchives.org/OAI/2.0/oai_dc/,
 Simple Dublin Core
harvester.oai.metadataformats.qdc = http://purl.org/dc/terms/, Qualified Dublin Core
harvester.oai.metadataformats.dim = http://www.dspace.org/xmlns/dspace/dim, DSpace
 Intermediate Metadata

Determines whether the harvester scheduling process should be started
automatically when the DSpace webapp is deployed.
default: false
harvester.autoStart=false

How frequently the harvest scheduler checks the remote provider for updates,
messured in minutes. The default vaule is 12 hours (or 720 minutes)
#harvester.harvestFrequency = 720

How many harvest process threads the scheduler can spool up at once. Default value
 is 3.
#harvester.maxThreads = 3

How much time passess before a harvest thread is terminated. The termination
 process
waits for the current item to complete ingest and saves progress made up to that
 point.
Measured in hours. Default value is 24.
#harvester.threadTimeout = 24

When harvesting an item that contains an unknown schema or field within a schema
 what

Upgrading from 1.5.x to 1.6

39

should the harvester do? Either add a new registry item for the field or schema,
 ignore
the specific field or schema (importing everything else about the item), or fail
 with
an error. The default value if undefined is: fail.
Possible values: 'fail', 'add', or 'ignore'
harvester.unknownField = add
harvester.unknownSchema = fail

Usage Logging
solr.log.server = ${dspace.baseUrl}/solr/statistics
solr.spidersfile = ${dspace.dir}/config/spiders.txt
solr.dbfile = ${dspace.dir}/config/GeoLiteCity.dat
useProxies = true

statistics.items.dc.1=dc.identifier
statistics.items.dc.2=dc.date.accessioned
statistics.items.type.1=dcinput
statistics.items.type.2=date
statistics.default.start.datepick = 01/01/1977

statistics.item.authorization.admin=true

6. Apply any Customizations. If you have made any local customizations to your DSpace installation they
will need to be migrated over to the new DSpace. Commonly these are customizations to the JSPUI or
Manakin (XMLUI) interface pages.

7. Build DSpace. Run the following commands to compile DSpace.:

cd /[dspace-source]/dspace/
mv package

You will find the result in [dspace-source]/dspace/target/dspace-[version]-build.dir . Inside this direc-
tory is the compiled binary distribution of DSpace.

8. Update the database. The database schema needs to be updated to accommodate changes to the database.
SQL files contain the relevant updates are provided. Please note that if you have made any local cus-
tomizations to the database schema, you should consult these updates and make sure they will work for
you.

• For PostgreSQL: psql -U [dspace-user] -f [dspace-source]/dspace/etc/postgres/schema_15_16.sql

• For Oracle: Execute the upgrade script, e.g. with sqlplus, recording the output:

a. Start SQL*Plus with "sqlplus [connect args]"

b. Record the ouput: SQL> spool 'upgrade.lst'

c. Run the upgrade script SQL> @[dspace-source]/dspace/etc/ora-
cle/database_schema_15_16.sqlSQL> spool off

d. Please note: The final few statements WILL FAIL. That is because you have run some queries and
use the results to construct the statements to remove the constraints, manually---Oracle doesn't have
any easy way to automate this (unless you know PL/SQL). So, look for the coment line beginning:

"--You need to remove the already in place constraints"
and follow the instructions in the actual SQL file.
Refer to the contents of the spool file "upgrade.lst" for
the output of the queries you'll need.

9. Update DSpace. Update the DSpace installed directory with the new code and libraries. Issue the fol-
lowing commands:

cd [dspace-source]/dspace/target/dspace-[version]-build.dir

Upgrading From 1.5 or 1.5.1 to 1.5.2

40

ant -Dconfig=[dspace]/config/dspace.cfg update

10.Generate Browse and Search Indexes. It makes good policy to rebuild your search and browse indexes
when upgrading to a new release. Almost every release has database changes and indexes can be affected
by this. In the DSpace 1.6 release there is Authority Control features and those will need the indexes to
be regenerated. To do this, run the following command from your DSpace install directory (as the dspace
user):[dspace]/bin/dspace index-init

11.Deploy Web Applications. Copy the web applications files from your [dspace]/webapps directory to
the subdirectory of your servlet container (e.g. tomcat):cp -R [dspace]/webapps/* [tomcat]/webapps/

4.2. Upgrading From 1.5 or 1.5.1 to 1.5.2
The changes in DSpace 1.5.2 do not include any database schema upgrades, and the upgrade should be
straightforward.

In the notes below [dspace] refers to the install directory for your existing DSpace installation, and [dspace-
source] to the source directory for DSpace 1.5. Whenever you see these path references, be sure to replace
them with the actual path names on your local system.

1. Backup your DSpace First and foremost, make a complete backup of your system, including:

• A snapshot of the database

• The asset store ([dspace]/assetstore by default)

• Your configuration files and customizations to DSpace

• Your statistics scripts ([dspace]/bin/stat*) which contain customizable dates

2. Download DSpace 1.5.2 Get the new DSpace 1.5.2 source code either as a download from http://
www.dspace.org/current-release/latest-release/ or check it out directly from the http://scm.dspace.org/
svn/repo/dspace/trunk. If you downloaded DSpace do not unpack it on top of your existing installation.

3. Build DSpace Run the following commands to compile DSpace.

cd [dspace-source]/dspace/
 mvn package

You will find the result in [dspace-source]/dspace/target/dspace-1.5.2-build.dir/; inside this directory is
the compiled binary distribution of DSpace.

4. Stop Tomcat Take down your servlet container, for Tomcat use the bin/shutdown.sh script.

5. Apply any customizations If you have made any local customizations to your DSpace installation they
will need to be migrated over to the new DSpace. Commonly these modifications are made to "JSP" pages
located inside the [dspace 1.4.2]/jsp/local directory. These should be moved [dspace-source]/dspace/
modules/jspui/src/main/webapp/ in the new build structure. See Customizing the JSP Pages for more
information.

6. Update DSpace Update the DSpace installed directory with new code and libraries. Inside the [dspace-
source]/dspace/target/dspace-1.5-build.dir/ directory run:

cd [dspace-source]/dspace/target/dspace-1.5-build.dir/
ant -Dconfig=[dspace]/config/dspace.cfg update

7. Update configuration files This ant target preserves existing files in [dspace]/config _ and will copy
any new configuration files in place. If an existing file prevents copying the new file in place, the new
file will have the suffix _.new, for example [dspace]/local/dspace.cfg.new. Note: there is also a configu-
ration option -Doverwrite=true which will instead copy the conflicting target files to *.old suffixes and

Upgrading From 1.5 or 1.5.1 to 1.5.2

41

overwrite target file then with the new file (essentially the opposite) this is beneficial for developers and
those who use the [dspace-source]/dspace/config to maintain their changes.

cd [dspace-source]/dspace/target/dspace-1.5-build.dir/
ant -Dconfig=[dspace]/config/dspace.cfg update_configs

You must then verify that you've merged and differenced in the [dspace]/config/*/.new files into your
configuration.Some of the new parameters you should look out for in dspace.cfg include:

• New option to restrict the expose of private items. The following needs to be added to dspace.cfg:

Restricted item visibility settings
By default RSS feeds, OAI-PMH and subscription emails will include ALL items
regardless of permissions set on them.
#
If you wish to only expose items through these channels where the ANONYMOUS
user is granted READ permission, then set the following options to false
#harvest.includerestricted.rss = true
#harvest.includerestricted.oai = true
#harvest.includerestricted.subscription = true

• Special groups for LDAP and password authentication.

Password users group

If required, a group name can be given here, and all users who log in
using the DSpace password system will automatically become members of
this group. This is useful if you want a group made up of all internal
authenticated users.
#password.login.specialgroup = group-name

LDAP users group

If required, a group name can be given here, and all users who log in
to LDAP will automatically become members of this group. This is useful
if you want a group made up of all internal authenticated users.
#ldap.login.specialgroup = group-name

• new option for case insensitivity in browse tables.

By default, the display of metadata in the browse indexes is case sensitive
So, you will get separate entries for the terms
#
Olive oil
olive oil
#
However, clicking through from either of these will result in the same set of items
(ie. any item that contains either representation in the correct field).
#
Uncommenting the option below will make the metadata items case-insensitive. This
 will
result in a single entry in the example above. However the value displayed may be
 either 'Olive oil'
or 'olive oil' - depending on what representation was present in the first item
 indexed.
#
If you care about the display of the metadata in the browse index - well, you'll
 have to go and
fix the metadata in your items.
#
webui.browse.metadata.case-insensitive = true

• New usage event handler for collecting statistics:

Usage event settings
The usage event handler to call. The default is the "passive" handler, which
 ignores events.

Upgrading From 1.5 or 1.5.1 to 1.5.2

42

plugin.single.org.dspace.app.statistics.AbstractUsageEvent = \
org.dspace.app.statistics.PassiveUsageEvent

• The location where sitemaps are stored is now configurable.

Sitemap settings
the directory where the generated sitemaps are stored
sitemap.dir = ${dspace.dir}/sitemaps

• MARC 21 ordering should now be used as default. Unless you have it set already, or you have it set to
a different value, the following should be set:

plugin.named.org.dspace.sort.OrderFormatDelegate =
 org.dspace.sort.OrderFormatTitleMarc21=title

• Hierarchical LDAP support.

Hierarchical LDAP Settings
If your users are spread out across a hierarchical tree on your
LDAP server, you will need to use the following stackable authentication
class:
plugin.sequence.org.dspace.authenticate.AuthenticationMethod = \
org.dspace.authenticate.LDAPHierarchicalAuthentication
#
You can optionally specify the search scope. If anonymous access is not
enabled on your LDAP server, you will need to specify the full DN and
password of a user that is allowed to bind in order to search for the
users.

This is the search scope value for the LDAP search during
autoregistering. This will depend on your LDAP server setup.
This value must be one of the following integers corresponding
to the following values:
object scope : 0
one level scope : 1
subtree scope : 2
#ldap.search_scope = 2

The full DN and password of a user allowed to connect to the LDAP server
and search for the DN of the user trying to log in. If these are not specified,
the initial bind will be performed anonymously.
#ldap.search.user = cn=admin,ou=people,o=myu.edu
#ldap.search.password = password

If your LDAP server does not hold an email address for a user, you can use
the following field to specify your email domain. This value is appended
to the netid in order to make an email address. E.g. a netid of 'user' and
ldap.netid_email_domain as '@example.com' would set the email of the user
to be 'user@example.com
#ldap.netid_email_domain = @example.com

• Shibboleth authentication support.

Shibboleth Authentication Configuration Settings
Check https://mams.melcoe.mq.edu.au/zope/mams/pubs/Installation/dspace15/view
for installation detail.
#
org.dspace.authenticate.ShibAuthentication
#
DSpace requires email as user's credential. There are 2 ways of providing
email to DSpace:
1) by explicitly specifying to the user which attribute (header)
carries the email address.
2) by turning on the user-email-using-tomcat=true which means
the software will try to acquire the user's email from Tomcat
The first option takes PRECEDENCE when specified. Both options can
be enabled to allow fallback.

Upgrading From 1.5 or 1.5.1 to 1.5.2

43

this option below specifies that the email comes from the mentioned header.
The value is CASE-Sensitive.
authentication.shib.email-header = MAIL

optional. Specify the header that carries user's first name
this is going to be used for creation of new-user
authentication.shib.firstname-header = SHIB-EP-GIVENNAME

optional. Specify the header that carries user's last name
this is used for creation of new user
authentication.shib.lastname-header = SHIB-EP-SURNAME

this option below forces the software to acquire the email from Tomcat.
authentication.shib.email-use-tomcat-remote-user = true

should we allow new users to be registered automtically
if the IdP provides sufficient info (and user not exists in DSpace)
authentication.shib.autoregister = true

this header here specifies which attribute that is responsible
for providing user's roles to DSpace. When not specified, it is
defaulted to 'Shib-EP-UnscopedAffiliation'. The value is specified
in AAP.xml (Shib 1.3.x) or attribute-filter.xml (Shib 2.x).
The value is CASE-Sensitive. The values provided in this
header are separated by semi-colon or comma.
authentication.shib.role-header = Shib-EP-UnscopedAffiliation

when user is fully authN on IdP but would not like to release
his/her roles to DSpace (for privacy reason?), what should be
the default roles be given to such users?
The values are separated by semi-colon or comma
authentication.shib.default-roles = Staff, Walk-ins

The following mappings specify role mapping between IdP and Dspace.
the left side of the entry is IdP's role (prefixed with
"authentication.shib.role.") which will be mapped to
the right entry from DSpace. DSpace's group as indicated on the
right entry has to EXIST in DSpace, otherwise user will be identified
as 'anonymous'. Multiple values on the right entry should be separated
by comma. The values are CASE-Sensitive. Heuristic one-to-one mapping
will be done when the IdP groups entry are not listed below (i.e.
if "X" group in IdP is not specified here, then it will be mapped
to "X" group in DSpace if it exists, otherwise it will be mapped
to simply 'anonymous')
#
Given sufficient demand, future release could support regex for the mapping
special characters need to be escaped by \
authentication.shib.role.Senior\ Researcher = Researcher, Staff
authentication.shib.role.Librarian = Administrator

• DOI and handle identifiers can now be rendered in the JSPUI.

When using "resolver" in webui.itemdisplay to render identifiers as resolvable
links, the base URL is taken from <code>webui.resolver.<n>.baseurl</code>
where <code>webui.resolver.<n>.baseurl</code> matches the urn specified in the
 metadata value.
The value is appended to the "baseurl" as is, so the baseurl need to end with slash
 almost in any case.
If no urn is specified in the value it will be displayed as simple text.
#
#webui.resolver.1.urn = doi
#webui.resolver.1.baseurl = http://dx.doi.org/
#webui.resolver.2.urn = hdl
#webui.resolver.2.baseurl = http://hdl.handle.net/
#
For the doi and hdl urn defaults values are provided, respectively http://dx.doi.org
 and
http://hdl.handle.net are used.
#
If a metadata value with style: "doi", "handle" or "resolver" matches a URL
already, it is simply rendered as a link with no other manipulation.

Upgrading From 1.5 or 1.5.1 to 1.5.2

44

In configuration sections such as webui.itemdisplay.default, values can be changed from (e.g.)
metadata.dc.identifier.doi to metadata.doi.dc.identifier.doi

• The whole of the SWORD configuration has changed. The SWORD section must be removed and replaced
with

#---#
#--------------SWORD SPECIFIC CONFIGURATIONS--------------------#
#---#
These configs are only used by the SWORD interface
#---#

tell the SWORD METS implementation which package ingester to use
to install deposited content. This should refer to one of the
classes configured for:
#
plugin.named.org.dspace.content.packager.PackageIngester
#
The value of sword.mets-ingester.package-ingester tells the
system which named plugin for this interface should be used
to ingest SWORD METS packages
#
The default is METS
#
sword.mets-ingester.package-ingester = METS

Define the metadata type EPDCX (EPrints DC XML)
to be handled by the SWORD crosswalk configuration
#
mets.submission.crosswalk.EPDCX = SWORD

define the stylesheet which will be used by the self-named
XSLTIngestionCrosswalk class when asked to load the SWORD
configuration (as specified above). This will use the
specified stylesheet to crosswalk the incoming SWAP metadata
to the DIM format for ingestion
#
crosswalk.submission.SWORD.stylesheet = crosswalks/sword-swap-ingest.xsl

The base URL of the SWORD deposit. This is the URL from
which DSpace will construct the deposit location urls for
collections.
#
The default is {dspace.url}/sword/deposit
#
In the event that you are not deploying DSpace as the ROOT
application in the servlet container, this will generate
incorrect URLs, and you should override the functionality
by specifying in full as below:
#
sword.deposit.url = http://www.myu.ac.uk/sword/deposit

The base URL of the SWORD service document. This is the
URL from which DSpace will construct the service document
location urls for the site, and for individual collections
#
The default is {dspace.url}/sword/servicedocument
#
In the event that you are not deploying DSpace as the ROOT
application in the servlet container, this will generate
incorrect URLs, and you should override the functionality
by specifying in full as below:
#
sword.servicedocument.url = http://www.myu.ac.uk/sword/servicedocument

The base URL of the SWORD media links. This is the URL
which DSpace will use to construct the media link urls
for items which are deposited via sword
#
The default is {dspace.url}/sword/media-link

Upgrading From 1.5 or 1.5.1 to 1.5.2

45

#
In the event that you are not deploying DSpace as the ROOT
application in the servlet container, this will generate
incorrect URLs, and you should override the functionality
by specifying in full as below:
#
sword.media-link.url = http://www.myu.ac.uk/sword/media-link

The URL which identifies the sword software which provides
the sword interface. This is the URL which DSpace will use
to fill out the atom:generator element of its atom documents.
#
The default is:
#
http://www.dspace.org/ns/sword/1.3.1
#
If you have modified your sword software, you should change
this URI to identify your own version. If you are using the
standard dspace-sword module you will not, in general, need
to change this setting
#
sword.generator.url = http://www.dspace.org/ns/sword/1.3.1

The metadata field in which to store the updated date for
items deposited via SWORD.
#
sword.updated.field = dc.date.updated

The metadata field in which to store the value of the slug
header if it is supplied
#
sword.slug.field = dc.identifier.slug

the accept packaging properties, along with their associated
quality values where appropriate.
#
Global settings; these will be used on all DSpace collections
#
sword.accept-packaging.METSDSpaceSIP.identifier =
http://purl.org/net/sword-types/METSDSpaceSIP
sword.accept-packaging.METSDSpaceSIP.q = 1.0

Collection Specific settings: these will be used on the collections
with the given handles
#
sword.accept-packaging.[handle].METSDSpaceSIP.identifier =
http://purl.org/net/sword-types/METSDSpaceSIP
sword.accept-packaging.[handle].METSDSpaceSIP.q = 1.0

Should the server offer up items in collections as sword deposit
targets. This will be effected by placing a URI in the collection
description which will list all the allowed items for the depositing
user in that collection on request
#
NOTE: this will require an implementation of deposit onto items, which
will not be forthcoming for a short while
#
sword.expose-items = false

Should the server offer as the default the list of all Communities
to a Service Document request. If false, the server will offer
the list of all collections, which is the default and recommended
behaviour at this stage.
#
NOTE: a service document for Communities will not offer any viable
deposit targets, and the client will need to request the list of
Collections in the target before deposit can continue
#
sword.expose-communities = false

The maximum upload size of a package through the sword interface,
in bytes

Upgrading From 1.4.2 to 1.5

46

#
This will be the combined size of all the files, the metadata and
any manifest data. It is NOT the same as the maximum size set
for an individual file upload through the user interface. If not
set, or set to 0, the sword service will default to no limit.
#
sword.max-upload-size = 0

Should DSpace store a copy of the original sword deposit package?
#
NOTE: this will cause the deposit process to run slightly slower,
and will accelerate the rate at which the repository consumes disk
space. BUT, it will also mean that the deposited packages are
recoverable in their original form. It is strongly recommended,
therefore, to leave this option turned on
#
When set to "true", this requires that the configuration option
"upload.temp.dir" above is set to a valid location
#
sword.keep-original-package = true

The bundle name that SWORD should store incoming packages under if
sword.keep-original-package is set to true. The default is "SWORD"
if not value is set
#
sword.bundle.name = SWORD

Should the server identify the sword version in deposit response?
#
It is recommended to leave this enabled.
#
sword.identify-version = true

Should we support mediated deposit via sword? Enabled, this will
allow users to deposit content packages on behalf of other users.
#
See the SWORD specification for a detailed explanation of deposit
On-Behalf-Of another user
#
sword.on-behalf-of.enable = true

Configure the plugins to process incoming packages. The form of this
configuration is as per the Plugin Manager's Named Plugin documentation:
#
plugin.named.[interface] = [implementation] = [package format identifier] \
#
Package ingesters should implement the SWORDIngester interface, and
will be loaded when a package of the format specified above in:
#
sword.accept-packaging.[package format].identifier = [package format identifier]
#
is received.
#
In the event that this is a simple file deposit, with no package
format, then the class named by "SimpleFileIngester" will be loaded
and executed where appropriate. This case will only occur when a single
file is being deposited into an existing DSpace Item
#
plugin.named.org.dspace.sword.SWORDIngester = \
 org.dspace.sword.SWORDMETSIngester =
http://purl.org/net/sword-types/METSDSpaceSIP \
 org.dspace.sword.SimpleFileIngester = SimpleFileIngester

1. Restart Tomcat Restart your servlet container, for Tomcat use the bin/startup.sh script.

4.3. Upgrading From 1.4.2 to 1.5
The changes in DSpace 1.5 are significant and wide spread involving database schema upgrades, code re-
structuring, completely new user and programatic interfaces, and new build system.

Upgrading From 1.4.2 to 1.5

47

In the notes below [dspace] refers to the install directory for your existing DSpace installation, and [dspace-
source] to the source directory for DSpace 1.5. Whenever you see these path references, be sure to replace
them with the actual path names on your local system.

1. Backup your DSpace First and foremost, make a complete backup of your system, including:

• A snapshot of the database

• The asset store ([dspace]/assetstore by default)

• Your configuration files and customizations to DSpace

• Your statistics scripts ([dspace]/bin/stat*) which contain customizable dates

2. Download DSpace 1.5 Get the new DSpace 1.5 source code either as a download from # or check it out
directly from the #. If you downloaded DSpace do not unpack it on top of your existing installation.

3. Build DSpace The build process has radically changed for DSpace 1.5. With this new release the build
system has moved to a maven-based system enabling the various projects (JSPUI, XMLUI, OAI, and
Core API) into separate projects. See the Installation section for more information on building DSpace
using the new maven-based build system. Run the following commands to compile DSpace.

cd [dspace-source]/dspace/;
 mvn package

You will find the result in [dspace-source]/dspace/target/dspace-1.5-build.dir/; inside this directory is
the compiled binary distribution of DSpace.

4. Stop Tomcat Take down your servlet container, for Tomcat use the bin/shutdown.sh script.

5. Updatedspace.cfg Serveral new parameters need to be added to your [dspace]/config/dspace.cfg. While
it is advisable to start with a fresh DSpace 1.5 _dspace.cfg configuration file_ here are the minimum set
of parameters that need to be added to an old DSpace 1.4.2 configuration.

Stackable Authentication Methods
#
Stack of authentication methods
(See org.dspace.authenticate.AuthenticationManager)
Note when upgrading you should remove the parameter:
plugin.sequence.org.dspace.eperson.AuthenticationMethod
plugin.sequence.org.dspace.authenticate.AuthenticationMethod = \
 org.dspace.authenticate.PasswordAuthentication

JSPUI item sytle plugin
#
Specify which strategy use for select the style for an item
plugin.single.org.dspace.app.webui.util.StyleSelection = \

 org.dspace.app.webui.util.CollectionStyleSelection

Browse Configuration
#
The following configuration will mimic the previous
behavior exhibited by DSpace 1.4.2. For alternative
configurations see the manual.

Browse indexes
webui.browse.index.1 = dateissued:item:dateissued
webui.browse.index.2 = author:metadata:dc.contributor.*:text
webui.browse.index.3 = title:item:title
webui.browse.index.4 = subject:metadata:dc.subject.*:text

Sorting options
webui.itemlist.sort-option.1 = title:dc.title:title
webui.itemlist.sort-option.2 = dateissued:dc.date.issued:date

Upgrading From 1.4.2 to 1.5

48

webui.itemlist.sort-option.3 =
 dateaccessioned:dc.date.accessioned:date

Recent submissions
recent.submissions.count = 5

Itemmapper browse index
itemmap.author.index = author

Recent submission processor plugins
plugin.sequence.org.dspace.plugin.CommunityHomeProcessor = \
 org.dspace.app.webui.components.RecentCommunitySubmissions
plugin.sequence.org.dspace.plugin.CollectionHomeProcessor = \
 org.dspace.app.webui.components.RecentCollectionSubmissions

Content Inline Disposition Threshold
#
Set the max size of a bitstream that can be served inline
Use -1 to force all bitstream to be served inline
webui.content_disposition_threshold = -1
webui.content_disposition_threshold = 8388608

Event System Configuration
#
default synchronous dispatcher (same behavior as traditional
 DSpace)
event.dispatcher.default.class = org.dspace.event.BasicDispatcher
event.dispatcher.default.consumers = search, browse, eperson

consumer to maintain the search index
event.consumer.search.class = org.dspace.search.SearchConsumer
event.consumer.search.filters =
 Item|Collection|Community|Bundle+Create|Modify|Modify_Metadata|Delete:
Bundle+Add|Remove

consumer to maintain the browse index
event.consumer.browse.class = org.dspace.browse.BrowseConsumer
event.consumer.browse.filters =
 Item+Create|Modify|Modify_Metadata:Collection+Add|Remove

consumer related to EPerson changes
event.consumer.eperson.class = org.dspace.eperson.EPersonConsumer
event.consumer.eperson.filters = EPerson+Create

6. Addxmlui.xconfManakin configuration The new Manakin user interface available with DSpace 1.5
requires an extra configuration file that you will need to manually copy it over to your configuration
directory.

cp [dspace-source]/dspace/config/xmlui.xconf
 [dspace]/config/xmlui.xconf

7. Additem-submission.xmlanditem-submission.dtdconfigurable submission configuration The new
configurable submission system that enables an administrator to re-arrange, or add/remove item submis-
sion steps requires this configuration file. You need to manually copy it over to your configuration di-
rectory.

cp [dspace-source]/dspace/config/item-submission.xml
 [dspace]/config/item-submission.xml

cp [dspace-source]/dspace/config/item-submission.dtd
 [dspace]/config/item-submission.dtd

8. Add newinput-forms.xmlandinput-forms.dtdconfigurable submission configuration The in-
put-forms.xml now has an included dtd reference to support validation. You'll need to merge in your
changes to both file/and or copy them into place.

cp [dspace-source]/dspace/config/input-forms.xml
 [dspace]/config/input-forms.xml

Upgrading From 1.4.2 to 1.5

49

cp [dspace-source]/dspace/config/input-forms.dtd
 [dspace]/config/inputforms.dtd

9. Addsword-swap-ingest.xslandxhtml-head-item.propertiescrosswalk files New crosswalk files are re-
quired to support SWORD and the inclusion of metadata into the head of items.

cp [dspace-source]/dspace/config/crosswalks/sword-swap-ingest.xsl
 [dspace]/config/crosswalks/sword-swap-ingest.xsl

cp
 [dspace-source]/dspace/config/crosswalks/xhtml-head-item.properties
 [dspace]/config/crosswalks/xhtml-head-item.properties

10.Addregistration_notifyemail files A new configuration option (registration.notify = you@your-
email.com) can be set to send a notification email whenever a new user registers to use your DSpace.
The email template for this email needs to be copied.

cp [dspace-source]/dspace/config/emails/registration_notify
 [dspace]/config/emails/registration_notify

11.Update the database The database schema needs updating. SQL files contain the relevant updates are
provided, note if you have made any local customizations to the database schema you should consult
these updates and make sure they will work for you.

• For PostgreSQL psql -U [dspace-user] -f [dspace-source]/dspace/etc/database_schema_14-15.sql
[database-name]

• For Oracle [dspace-source]/dspace/etc/oracle/database_schema_142-15.sql contains the commands
necessary to upgrade your database schema on oracle.

12.Apply any customizations If you have made any local customizations to your DSpace installation they
will need to be migrated over to the new DSpace. Commonly these modifications are made to "JSP" pages
located inside the [dspace 1.4.2]/jsp/local directory. These should be moved [dspace-source]/dspace/
modules/jspui/src/main/webapp/ in the new build structure. See Customizing the JSP Pages for more
information.

13.Update DSpace Update the DSpace installed directory with new code and libraries. Inside the [dspace-
source]/dspace/target/dspace-1.5-build.dir/ directory run:

cd [dspace-source]/dspace/target/dspace-1.5-build.dir/;
ant -Dconfig=[dspace]/config/dspace.cfg update

14.Update the Metadata Registry New Metadata Registry updates are required to support SWORD.

cp [dspace-source]/dspace/config/registries/sword-metadata.xml
 [dspace]/config/registries/sword-metadata.xml;

[dspace]/bin/dsrun org.dspace.administer.MetadataImporter -f
 [dspace]/config/registries/sword-metadata.xml

15.Rebuild browse and search indexes One of the major new features of DSpace 1.5 is the browse system
which necessitates that the indexes be recreated. To do this run the following command from your DSpace
installed directory:

[dspace]/bin/index-init

16.Update statistics scripts The statistics scripts have been rewritten for DSpace 1.5. Prior to 1.5 they were
written in Perl, but have been rewritten in Java to avoid having to install Perl. First, make a note of the
dates you have specified in your statistics scripts for the statistics to run from. You will find these in

Upgrading From 1.4.1 to 1.4.2

50

[dspace]/bin/stat-initial, as $start_year and $start_month. Note down these values.Copy the new stats
scripts:

cp [dspace-source]/dspace/bin/stat* [dspace]/bin/

Then edit your statistics configuration file with the start details. Add the follwing to [dspace]/conf/
dstat.cfg# the year and month to start creating reports from# - year as four digits (e.g. 2005)# - month as
a number (e.g. January is 1, December is 12)start.year = 2005start.month = 1 Replace '2005' and '1' as
with the values you noted down. dstat.cfg also used to contain the hostname and service name as displayed
at the top of the statistics. These values are now taken from dspace.cfg so you can remove host.name and
host.url from dstat.cfg if you wish. The values now used are dspace.hostname and dspace.name from
dspace.cfg

17.Deploy webapplications Copy the webapplications files from your [dspace]/webapps directory to the
subdirectory of your servlet container (e.g. Tomcat):

cp [dspace]/webapps/* [tomcat]/webapps/

18.Restart Tomcat Restart your servlet container, for Tomcat use the bin/startup.sh script.

4.4. Upgrading From 1.4.1 to 1.4.2
See Upgrading From 1.4 to 1.4.x; the same instructions apply.

4.5. Upgrading From 1.4 to 1.4.x
The changes in 1.4.x releases are only code and configuration changes so the update is simply a matter of
rebuilding the wars and slight changes to your config file.

In the notes below [dspace] refers to the install directory for your existing DSpace installation, and
[dspace-1.4.x-source] to the source directory for DSpace 1.4.x. Whenever you see these path references, be
sure to replace them with the actual path names on your local system.

1. Get the new DSpace 1.4.x source code from http://sourceforge.net/projects/dspace/ and unpack it some-
where. Do not unpack it on top of your existing installation!!

2. Copy the PostgreSQL driver JAR to the source tree. For example:

cd [dspace]/lib
cp postgresql.jar [dspace-1.4.x-source]/lib

3. Note: Licensing conditions for the handle.jar file have changed. As a result, the latest version of the
handle.jar file is not included in this distribution. It is recommended you read the http://www.handle.net/
upgrade_6-2_DSpace.html and decide whether you wish to update your installation's handle.jar. If you
decide to update, you should replace the existing handle.jar in [dspace-1.4.x-source]/lib with the new
version.

4. Take down Tomcat (or whichever servlet container you're using).

5. A new configuration item webui.html.max-depth-guess has been added to avoid infinite URL spaces. Add
the following to the dspace.cfg [#### Multi-file HTML document/site settings #####
#

6. When serving up composite HTML items, how deep can the request be
forus to

7. serve up a file with the same name?
#

8. e.g.ifwe receive a requestfor"foo/bar/index.html"

Upgrading From 1.4 to 1.4.x

51

9. and we have a bitstream called just"index.html"

10.we will serve up that bitstreamforthe requestif
webui.html.max-depth-guess

11.is 2 or greater. If webui.html.max-depth-guess is 1 or less, we
would not

12.serve that bitstream, as the depth of the file is greater.
#

13.If webui.html.max-depth-guess is zero, the request filename and
path must

14.always exactly match the bitstream name. Default value is 3.
#
webui.html.max-depth-guess = 3
If" rel="nofollow"linktype="raw" wikidestination="file:#### Multi-file HTML document/site settings
#####
#

15.When serving up composite HTML items, how deep can the request be
forus to

16.serve up a file with the same name?
#

17.e.g.ifwe receive a requestfor"foo/bar/index.html"

18.and we have a bitstream called just"index.html"

19.we will serve up that bitstreamforthe requestif
webui.html.max-depth-guess

20.is 2 or greater. If webui.html.max-depth-guess is 1 or less, we
would not

21.serve that bitstream, as the depth of the file is greater.
#

22.If webui.html.max-depth-guess is zero, the request filename and
path must

23.always exactly match the bitstream name. Default value is 3.
#
webui.html.max-depth-guess = 3
If" originalalias="file:#### Multi-file HTML document/site settings #####
#

24.When serving up composite HTML items, how deep can the request be
forus to

25.serve up a file with the same name?
#

26.e.g.ifwe receive a requestfor"foo/bar/index.html"

27.and we have a bitstream called just"index.html"

28.we will serve up that bitstreamforthe requestif
webui.html.max-depth-guess

29.is 2 or greater. If webui.html.max-depth-guess is 1 or less, we

Upgrading From 1.4 to 1.4.x

52

would not

30.serve that bitstream, as the depth of the file is greater.
#

31.If webui.html.max-depth-guess is zero, the request filename and
path must

32.always exactly match the bitstream name. Default value is 3.
#
webui.html.max-depth-guess = 3
If" >file:#### Multi-file HTML document/site settings #####
#

33.When serving up composite HTML items, how deep can the request be
forus to

34.serve up a file with the same name?
#

35.e.g.ifwe receive a requestfor"foo/bar/index.html"

36.and we have a bitstream called just"index.html"

37.we will serve up that bitstreamforthe requestif
webui.html.max-depth-guess

38.is 2 or greater. If webui.html.max-depth-guess is 1 or less, we
would not

39.serve that bitstream, as the depth of the file is greater.
#

40.If webui.html.max-depth-guess is zero, the request filename and
path must

41.always exactly match the bitstream name. Default value is 3.
#
webui.html.max-depth-guess = 3

file:%3Cdiv%20class=][

file:%3Cdiv%20class=]

If webui.html.max-depth-guess is not present in dspace.cfg the default value is used. If archiving entire web
sites or deeply nested HTML documents it is advisable to change the default to a higher value more suitable
for these types of materials.

1. Your 'localized' JSPs (those in jsp/local) now need to be maintained in the source directory. If you have
locally modified JSPs in your [dspace]/jsp/local directory, you will need to merge the changes in the
new 1.4.x versions into your locally modified ones. You can use the diff command to compare your JSPs
against the 1.4.x versions to do this. You can also check against the http://dspace.cvs.sourceforge.net/
dspace/.

2. In [dspace-1.4.x-source] run:

ant -Dconfig= [dspace]/config/dspace.cfg update

3. Copy the .war Web application files in [dspace-1.4.x-source]/build to the webapps sub-directory of your
servlet container (e.g. Tomcat). e.g.:

cp [dspace-1.4.x-source]/build/*.war
 [tomcat]/webapps

file:####

Upgrading From 1.3.2 to 1.4.x

53

If you're using Tomcat, you need to delete the directories corresponding to the old .war files. For ex-
ample, if dspace.war is installed in [tomcat]/webapps/dspace.war, you should delete the [tomcat]/we-
bapps/dspace directory. Otherwise, Tomcat will continue to use the old code in that directory.

4. Restart Tomcat.

4.6. Upgrading From 1.3.2 to 1.4.x
1. First and foremost, make a complete backup of your system, including:

• A snapshot of the database

• The asset store ([dspace]/assetstore by default)

• Your configuration files and localized JSPs

2. Download the http://sourceforge.net/projects/dspace/ and unpack it in a suitable location (not over your
existing DSpace installation or source tree!)

3. Copy the PostgreSQL driver JAR to the source tree. For example:

cd [dspace]/lib
cp postgresql.jar [dspace-1.4.x-source]/lib

4. Note: Licensing conditions for the handle.jar file have changed. As a result, the latest version of the
handle.jar file is not included in this distribution. It is recommended you read the http://www.handle.net/
upgrade_6-2_DSpace.html and decide whether you wish to update your installation's handle.jar. If you
decide to update, you should replace the existing handle.jar in [dspace-1.4.x-source]/lib with the new
version.

5. Take down Tomcat (or whichever servlet container you're using).

6. Your DSpace configuration will need some updating:

• In dspace.cfg, paste in the following lines for the new stackable authentication feature, the new method
for managing Media Filters, and the Checksum Checker.

Stackable Authentication Methods
Stack of authentication methods
(See org.dspace.eperson.AuthenticationManager)
plugin.sequence.org.dspace.eperson.AuthenticationMethod = \
 org.dspace.eperson.PasswordAuthentication

Example of configuring X.509 authentication
(to use it, add org.dspace.eperson.X509Authentication to stack)

method 1, using keystore
#authentication.x509.keystore.path = /var/local/tomcat/conf/keystore
#authentication.x509.keystore.password = changeit

method 2, using CA certificate
#authentication.x509.ca.cert = ${dspace.dir}/config/mitClientCA.der

Create e-persons for unknown names in valid certificates?
#authentication.x509.autoregister = true

Media Filter plugins (through PluginManager)

plugin.sequence.org.dspace.app.mediafilter.MediaFilter = \
 org.dspace.app.mediafilter.PDFFilter,
 org.dspace.app.mediafilter.HTMLFilter, \
 org.dspace.app.mediafilter.WordFilter,
 org.dspace.app.mediafilter.JPEGFilter

Upgrading From 1.3.2 to 1.4.x

54

to enable branded preview: remove last line above, and uncomment 2
 lines below
org.dspace.app.mediafilter.WordFilter,
 org.dspace.app.mediafilter.JPEGFilter, \
org.dspace.app.mediafilter.BrandedPreviewJPEGFilter

filter.org.dspace.app.mediafilter.PDFFilter.inputFormats = Adobe PDF
filter.org.dspace.app.mediafilter.HTMLFilter.inputFormats = HTML,
 Text
filter.org.dspace.app.mediafilter.WordFilter.inputFormats = Microsoft
 Word
filter.org.dspace.app.mediafilter.JPEGFilter.inputFormats = GIF,
 JPEG, image/png
filter.org.dspace.app.mediafilter.BrandedPreviewJPEGFilter.inputFormat
s = GIF, JPEG, image/png

Settings for Item Preview
webui.preview.enabled = false
max dimensions of the preview image
webui.preview.maxwidth = 600
webui.preview.maxheight = 600
the brand text
webui.preview.brand = My Institution Name
an abbreviated form of the above text, this will be used
when the preview image cannot fit the normal text
webui.preview.brand.abbrev = MyOrg
the height of the brand
webui.preview.brand.height = 20
font settings for the brand text
webui.preview.brand.font = SansSerif
webui.preview.brand.fontpoint = 12
#webui.preview.dc = rights

Checksum Checker Settings
Default dispatcher in case none specified
plugin.single.org.dspace.checker.BitstreamDispatcher=org.dspace.checke
r.SimpleDispatcher
Standard interface implementations. You shouldn't need to tinker
 with these.
plugin.single.org.dspace.checker.ReporterDAO=org.dspace.checker.Report
erDAOImpl

check history retention
checker.retention.default=10y
checker.retention.CHECKSUM_MATCH=8w

• If you have customised advanced search fields (search.index.n fields, note that you now need to include
the schema in the values. Dublin Core is specifed as dc. So for example, if in 1.3.2 you had:

search.index.1 = title:title.alternative

That needs to be changed to:

search.index.1 = title:dc.title.alternative

• If you use LDAP or X509 authentication, you'll need to add org.dspace.eperson.LDAPAuthentication
or org.dspace.eperson.X509Authentication respectively. See also configuring custom authentication
code.

• If you have custom Media Filters, note that these are now configured through dspace.cfg (instead of
mediafilter.cfg which is obsolete.)

• Also, take a look through the default dspace.cfg file supplied with DSpace 1.4.x, as this contains con-
figuration options for various new features you might like to use. In general, these new features default

Upgrading From 1.3.1 to 1.3.2

55

to 'off' and you'll need to add configuration properties as described in the default 1.4.x dspace.cfg to
activate them.

7. Your 'localized' JSPs (those in jsp/local) now need to be maintained in the source directory. If you have
locally modified JSPs in your [dspace]/jsp/local directory, you will need to merge the changes in the
new 1.4.x versions into your locally modified ones. You can use the diff command to compare your JSPs
against the 1.4.x versions to do this. You can also check against the http://dspace.cvs.sourceforge.net/
dspace/.

8. In [dspace-1.4.x-source] run:

ant -Dconfig= [dspace]/config/dspace.cfg update

9. The database schema needs updating. SQL files containing the relevant file are provided. If you've mod-
ified the schema locally, you may need to check over this and make alterations.

• For PostgreSQL: [dspace-1.4.x-source]/etc/database_schema_13-14.sql contains the SQL com-
mands to achieve this for PostgreSQL. To apply the changes, go to the source directory, and run:psql
-f etc/database_schema_13-14.sql [DSpace database name] -h localhost

• For Oracle: [dspace-1.4.x-source]/etc/oracle/database_schema_13-14.sql should be run on the
DSpace database to update the schema.

10.Rebuild the search indices: [dspace]/bin/index-all

11.Copy the .war Web application files in [dspace-1.4-source]/build to the webapps sub-directory of your
servlet container (e.g. Tomcat). e.g.:

cp [dspace-1.4-source]/build/*.war
 [tomcat]/webapps

If you're using Tomcat, you need to delete the directories corresponding to the old .war files. For ex-
ample, if dspace.war is installed in [tomcat]/webapps/dspace.war, you should delete the [tomcat]/we-
bapps/dspace directory. Otherwise, Tomcat will continue to use the old code in that directory.

12.Restart Tomcat.

4.7. Upgrading From 1.3.1 to 1.3.2
The changes in 1.3.2 are only code changes so the update is simply a matter of rebuilding the wars.

In the notes below [dspace] refers to the install directory for your existing DSpace installation, and
[dspace-1.3.2-source] to the source directory for DSpace 1.3.2. Whenever you see these path references, be
sure to replace them with the actual path names on your local system.

1. Get the new DSpace 1.3.2 source code from http://sourceforge.net/projects/dspace/ and unpack it some-
where. Do not unpack it on top of your existing installation!!

2. Copy the PostgreSQL driver JAR to the source tree. For example:

cd [dspace]/lib
cp postgresql.jar [dspace-1.3.2-source]/lib

3. Take down Tomcat (or whichever servlet container you're using).

4. Your 'localized' JSPs (those in jsp/local) now need to be maintained in the source directory. If you have
locally modified JSPs in your [dspace]/jsp/local directory, you will need to merge the changes in the
new 1.3.2 versions into your locally modified ones. You can use the diff command to compare the 1.3.1
and 1.3.2 versions to do this.

Upgrading From 1.2.x to 1.3.x

56

5. In [dspace-1.3.2-source] run:

ant -Dconfig= [dspace]/config/dspace.cfg update

6. Copy the .war Web application files in [dspace-1.3.2-source]/build to the webapps sub-directory of your
servlet container (e.g. Tomcat). e.g.:

cp [dspace-1.3.2-source]/build/*.war
 [tomcat]/webapps

If you're using Tomcat, you need to delete the directories corresponding to the old .war files. For ex-
ample, if dspace.war is installed in [tomcat]/webapps/dspace.war, you should delete the [tomcat]/we-
bapps/dspace directory. Otherwise, Tomcat will continue to use the old code in that directory.

7. Restart Tomcat.

4.8. Upgrading From 1.2.x to 1.3.x
In the notes below [dspace] refers to the install directory for your existing DSpace installation, and
[dspace-1.3.x-source] to the source directory for DSpace 1.3.x. Whenever you see these path references, be
sure to replace them with the actual path names on your local system.

1. Step one is, of course, to back up all your data before proceeding!! Include all of the contents of [dspace]
and the PostgreSQL database in your backup.

2. Get the new DSpace 1.3.x source code from http://sourceforge.net/projects/dspace/ and unpack it some-
where. Do not unpack it on top of your existing installation!!

3. Copy the PostgreSQL driver JAR to the source tree. For example: cd [dspace]/libcp postgresql.jar
[dspace-1.2.2-source]/lib

4. Take down Tomcat (or whichever servlet container you're using).

5. Remove the old version of xerces.jar from your installation, so it is not inadvertently later used:rm
[dspace]/lib/xerces.jar

6. Install the new config files by moving dstat.cfg and dstat.map from [dspace-1.3.x-source]/config/ to
[dspace]/config

7. You need to add new parameters to your [dspace]/dspace.cfg:

Statistical Report Configuration Settings

should the stats be publicly available? should be set to false if
 you only
want administrators to access the stats, or you do not intend to
 generate
any
report.public = false

directory where live reports are stored
report.dir = /dspace/reports/

8. Build and install the updated DSpace 1.3.x code. Go to the [dspace-1.3.x-source] directory, and run:ant
-Dconfig=[dspace]/config/dspace.cfg update

9. You'll need to make some changes to the database schema in your PostgreSQL database. [dspace-1.3.x-
source]/etc/database_schema_12-13.sql contains the SQL commands to achieve this. If you've modified
the schema locally, you may need to check over this and make alterations.To apply the changes, go to the
source directory, and run: psql -f etc/database_schema_12-13.sql [DSpace database name] -h localhost

Upgrading From 1.2.1 to 1.2.2

57

10.Customise the stat generating statistics as per the instructions in System Statistical Reports

11.Initialise the statistics using: [dspace]/bin/stat-initial[dspace]/bin/stat-general[dspace]/bin/stat-re-
port-initial[dspace]/bin/stat-report-general

12.Rebuild the search indices: [dspace]/bin/index-all

13.Copy the .war Web application files in [dspace-1.3.x-source]/build to the webapps sub-directory of your
servlet container (e.g. Tomcat). e.g.:cp [dspace-1.3.x-source]/build/*.war [tomcat]/webapps

14.Restart Tomcat.

4.9. Upgrading From 1.2.1 to 1.2.2
The changes in 1.2.2 are only code and config changes so the update should be fairly simple.

In the notes below [dspace] refers to the install directory for your existing DSpace installation, and
[dspace-1.2.2-source] to the source directory for DSpace 1.2.2. Whenever you see these path references, be
sure to replace them with the actual path names on your local system.

1. Get the new DSpace 1.2.2 source code from http://sourceforge.net/projects/dspace/ and unpack it some-
where. Do not unpack it on top of your existing installation!!

2. Copy the PostgreSQL driver JAR to the source tree. For example:

cd [dspace]/lib
cp postgresql.jar [dspace-1.2.2-source]/lib

3. Take down Tomcat (or whichever servlet container you're using).

4. Your 'localized' JSPs (those in jsp/local) now need to be maintained in the source directory. If you have
locally modified JSPs in your [dspace]/jsp/local directory, you might like to merge the changes in the
new 1.2.2 versions into your locally modified ones. You can use the diff command to compare the 1.2.1
and 1.2.2 versions to do this. Also see the version history for a list of modified JSPs.

5. You need to add a new parameter to your [dspace]/dspace.cfg for configurable fulltext indexing

Fulltext Indexing settings
Maximum number of terms indexed for a single field in Lucene.
Default is 10,000 words - often not enough for full-text indexing.
If you change this, you'll need to re-index for the change
to take effect on previously added items.
-1 = unlimited (Integer.MAX_VALUE)
search.maxfieldlength = 10000

6. In [dspace-1.2.2-source] run:

ant -Dconfig= [dspace]/config/dspace.cfg update

7. Copy the .war Web application files in [dspace-1.2.2-source]/build to the webapps sub-directory of your
servlet container (e.g. Tomcat). e.g.:

cp [dspace-1.2.2-source]/build/*.war
 [tomcat]/webapps

If you're using Tomcat, you need to delete the directories corresponding to the old .war files. For ex-
ample, if dspace.war is installed in [tomcat]/webapps/dspace.war, you should delete the [tomcat]/we-
bapps/dspace directory. Otherwise, Tomcat will continue to use the old code in that directory.

8. To finialise the install of the new configurable submission forms you need to copy the file [dspace-1.2.2-
source]/config/input-forms.xml into [dspace]/config.

Upgrading From 1.2 to 1.2.1

58

9. Restart Tomcat.

4.10. Upgrading From 1.2 to 1.2.1
The changes in 1.2.1 are only code changes so the update should be fairly simple.

In the notes below [dspace] refers to the install directory for your existing DSpace installation, and
[dspace-1.2.1-source] to the source directory for DSpace 1.2.1. Whenever you see these path references, be
sure to replace them with the actual path names on your local system.

1. Get the new DSpace 1.2.1 source code from http://sourceforge.net/projects/dspace/ and unpack it some-
where. Do not unpack it on top of your existing installation!!

2. Copy the PostgreSQL driver JAR to the source tree. For example:

cd [dspace]/lib
cp postgresql.jar [dspace-1.2.1-source]/lib

3. Take down Tomcat (or whichever servlet container you're using).

4. Your 'localized' JSPs (those in jsp/local) now need to be maintained in the source directory. If you have
locally modified JSPs in your [dspace]/jsp/local directory, you might like to merge the changes in the
new 1.2.1 versions into your locally modified ones. You can use the diff command to compare the 1.2
and 1.2.1 versions to do this. Also see the version history for a list of modified JSPs.

5. You need to add a few new parameters to your [dspace]/dspace.cfg for browse/search and item thumb-
nails display, and for configurable DC metadata fields to be indexed.

whether to display thumbnails on browse and search results pages
 (1.2+)
webui.browse.thumbnail.show = false

max dimensions of the browse/search thumbs. Must be <=
 thumbnail.maxwidth
and thumbnail.maxheight. Only need to be set if required to be
 smaller than
dimension of thumbnails generated by mediafilter (1.2+)
#webui.browse.thumbnail.maxheight = 80
#webui.browse.thumbnail.maxwidth = 80

whether to display the thumb against each bitstream (1.2+)
webui.item.thumbnail.show = true

where should clicking on a thumbnail from browse/search take the
 user
Only values currently supported are "item" and
 "bitstream"
#webui.browse.thumbnail.linkbehaviour = item

 ##### Fields to Index for Search #####

DC metadata elements.qualifiers to be indexed for search
format: - search.index.[number] = [search field]:element.qualifier
- * used as wildcard

changing these will change your search results,
but will NOT automatically change your search displays

search.index.1 = author:contributor.*
search.index.2 = author:creator.*
search.index.3 = title:title.*
search.index.4 = keyword:subject.*
search.index.5 = abstract:description.abstract
search.index.6 = author:description.statementofresponsibility

Upgrading From 1.1 (or 1.1.1) to 1.2

59

search.index.7 = series:relation.ispartofseries
search.index.8 = abstract:description.tableofcontents
search.index.9 = mime:format.mimetype
search.index.10 = sponsor:description.sponsorship
search.index.11 = id:identifier.*

6. In [dspace-1.2.1-source] run:

ant -Dconfig= [dspace]/config/dspace.cfg update

7. Copy the .war Web application files in [dspace-1.2.1-source]/build to the webapps sub-directory of your
servlet container (e.g. Tomcat). e.g.:

cp [dspace-1.2.1-source]/build/*.war
 [tomcat]/webapps

If you're using Tomcat, you need to delete the directories corresponding to the old .war files. For ex-
ample, if dspace.war is installed in [tomcat]/webapps/dspace.war, you should delete the [tomcat]/we-
bapps/dspace directory. Otherwise, Tomcat will continue to use the old code in that directory.

8. Restart Tomcat.

4.11. Upgrading From 1.1 (or 1.1.1) to 1.2
The process for upgrading to 1.2 from either 1.1 or 1.1.1 is the same. If you are running DSpace 1.0 or 1.0.1,
you need to follow the instructions for upgrading from 1.0.1 to 1.1 to before following these instructions.

Note also that if you've substantially modified DSpace, these instructions apply to an unmodified 1.1.1
DSpace instance, and you'll need to adapt the process to any modifications you've made.

This document refers to the install directory for your existing DSpace installation as [dspace], and to the
source directory for DSpace 1.2 as [dspace-1.2-source]. Whenever you see these path references below, be
sure to replace them with the actual path names on your local system.

1. Step one is, of course, to back up all your data before proceeding!! Include all of the contents of [dspace]
and the PostgreSQL database in your backup.

2. Get the new DSpace 1.2 source code from http://sourceforge.net/projects/dspace/ and unpack it some-
where. Do not unpack it on top of your existing installation!!

3. Copy the required Java libraries that we couldn't include in the bundle to the source tree. For example:

cd [dspace]/lib
cp activation.jar servlet.jar mail.jar
 [dspace-1.2-source]/lib

4. Stop Tomcat (or other servlet container.)

5. It's a good idea to upgrade all of the various third-party tools that DSpace uses to their latest versions:

• Java (note that now version 1.4.0 or later is required)

• Tomcat (Any version after 4.0 will work; symbolic links are no longer an issue)

• PostgreSQL (don't forget to build/download an updated JDBC driver .jar file! Also, back up the
database first.)

• Ant

6. You need to add the following new parameters to your [dspace]/dspace.cfg:

Upgrading From 1.1 (or 1.1.1) to 1.2

60

Media Filter settings
maximum width and height of generated thumbnails
thumbnail.maxwidth 80
thumbnail.maxheight 80

There are one or two other, optional extra parameters (for controlling the pool of database connections).
See the version history for details. If you leave them out, defaults will be used.Also, to avoid future
confusion, you might like to remove the following property, which is no longer required:

config.template.oai-web.xml =
 [dspace]/oai/WEB-INF/web.xml

7. The layout of the installation directory (i.e. the structure of the contents of [dspace]) has changed some-
what since 1.1.1. First up, your 'localized' JSPs (those in jsp/local) now need to be maintained in the
source directory. So make a copy of them now!Once you've done that, you can remove [dspace]/jsp
and [dspace]/oai, these are no longer used. (.war Web application archive files are used instead).Also, if
you're using the same version of Tomcat as before, you need to remove the lines from Tomcat's conf/
server.xml file that enable symbolic links for DSpace. These are the <Context> elements you added
to get DSpace 1.1.1 working, looking something like this:

<Context path="/dspace" docBase="dspace" debug="0" reloadable="true"
 crossContext="true">
 <Resources className="org.apache.naming.resources.FileDirContext"
 allowLinking="true" />
</Context>

Be sure to remove the <Context> elements for both the Web UI and the OAI Web applications.

8. Build and install the updated DSpace 1.2 code. Go to the DSpace 1.2 source directory, and run:

ant -Dconfig= [dspace]/config/dspace.cfg update

9. Copy the new config files in config to your installation, e.g.:

cp [dspace-1.2-source]/config/news-*
 [dspace-1.2-source]/config/mediafilter.cfg
 [dspace-1.2-source]/config/dc2mods.cfg
 [dspace]/config

10.You'll need to make some changes to the database schema in your PostgreSQL database. [dspace-1.2-
source]/etc/database_schema_11-12.sql contains the SQL commands to achieve this. If you've modified
the schema locally, you may need to check over this and make alterations.To apply the changes, go to
the source directory, and run:

psql -f etc/database_schema_11-12.sql [DSpace database name] -h
 localhost

11.A tool supplied with the DSpace 1.2 codebase will then update the actual data in the relational database.
Run it using:

[dspace]/bin/dsrun
 org.dspace.administer.Upgrade11To12

12.Then rebuild the search indices:

[dspace]/bin/index-all

13.Delete the existing symlinks from your servlet container's (e.g. Tomcat's) webapp sub-directory.Copy
the .war Web application files in [dspace-1.2-source]/build to the webapps sub-directory of your servlet
container (e.g. Tomcat). e.g.:

Upgrading From 1.1 (or 1.1.1) to 1.2

61

cp [dspace-1.2-source]/build/*.war
 [tomcat]/webapps

14.Restart Tomcat.

15.To get image thumbnails generated and full-text extracted for indexing automatically, you need to set up
a 'cron' job, for example one like this:

Run the media filter at 02:00 every day
0 2 * * * [dspace]/bin/filter-media

You might also wish to run it now to generate thumbnails and index full text for the content already in
your system.

16.Note 1: This update process has effectively 'touched' all of your items. Although the dates in the Dublin
Core metadata won't have changed (accession date and so forth), the 'last modified' date in the database
for each will have been changed.This means the e-mail subscription tool may be confused, thinking that
all items in the archive have been deposited that day, and could thus send a rather long email to lots of
subscribers. So, it is recommended that you turn off the e-mail subscription feature for the next day,
by commenting out the relevant line in DSpace's cron job, and then re-activating it the next day.Say you
performed the update on 08-June-2004 (UTC), and your e-mail subscription cron job runs at 4am (UTC).
When the subscription tool runs at 4am on 09-June-2004, it will find that everything in the system has
a modification date in 08-June-2004, and accordingly send out huge emails. So, immediately after the
update, you would edit DSpace's 'crontab' and comment out the /dspace/bin/subs-daily line. Then, after
4am on 09-June-2004 you'd 'un-comment' it out, so that things proceed normally.Of course this means,
any real new deposits on 08-June-2004 won't get e-mailed, however if you're updating the system it's
likely to be down for some time so this shouldn't be a big problem.

17.Note 2: After consulation with the OAI community, various OAI-PMH changes have occurred:

• The OAI-PMH identifiers have changed (they're now of the form oai:hostname:handle as opposed to
just Handles)

• The set structure has changed, due to the new sub-communities feature.

• The default base URL has changed

• As noted in note 1, every item has been 'touched' and will need re-harvesting. The above means
that, if already registered and harvested, you will need to re-register your repository, effective-
ly as a 'new' OAI-PMH data provider. You should also consider posting an announcement to the
http://www.openarchives.org/mailman/listinfo/OAI-implementers so that harvesters know to update
their systems.Also note that your site may, over the next few days, take quite a big hit from OAI-
PMH harvesters. The resumption token support should alleviate this a little, but you might want to
temporarily whack up the database connection pool parameters in [dspace]/config/dspace.cfg. See
the dspace.cfg distributed with the source code to see what these parameters are and how to use
them. (You need to stop and restart Tomcat after changing them.)I realize this is not ideal; for
discussion as to the reasons behind this please see relevant posts to the OAI community: http://
openarchives.org/pipermail/oai-implementers/2004-June/001214.html, http://openarchives.org/piper-
mail/oai-implementers/2004-June/001224.html, as well as #.If you really can't live with updating the
base URL like this, you can fairly easily have thing proceed more-or-less as they are, by doing the
following:

• Change the value of OAI_ID_PREFIX at the top of the org.dspace.app.oai.DSpaceOAICatalog class
to hdl:

• Change the servlet mapping for the OAIHandler servlet back to / (from /request)

• Rebuild and deploy _oai.war_However, note that in this case, all the records will be re-harvested by
harvesters anyway, so you still need to brace for the associated DB activity; also note that the set spec

Upgrading From 1.1 to 1.1.1

62

changes may not be picked up by some harvesters. It's recommended you read the above-linked mailing
list posts to understand why the change was made.
Now, you should be finished!

4.12. Upgrading From 1.1 to 1.1.1
Fortunately the changes in 1.1.1 are only code changes so the update is fairly simple.

In the notes below [dspace] refers to the install directory for your existing DSpace installation, and
[dspace-1.1.1-source] to the source directory for DSpace 1.1.1. Whenever you see these path references, be
sure to replace them with the actual path names on your local system.

1. Take down Tomcat.

2. It would be a good idea to update any of the third-party tools used by DSpace at this point (e.g. Post-
greSQL), following the instructions provided with the relevant tools.

3. In [dspace-1.1.1-source] run:

ant -Dconfig= [dspace]/config/dspace.cfg update

4. If you have locally modified JSPs of the following JSPs in your [dspace]/jsp/local directory, you might
like to merge the changes in the new 1.1.1 versions into your locally modified ones. You can use the diff
command to compare the 1.1 and 1.1.1 versions to do this. The changes are quite minor.

collection-home.jsp
admin/authorize-collection-edit.jsp
admin/authorize-community-edit.jsp
admin/authorize-item-edit.jsp
admin/eperson-edit.jsp

5. Restart Tomcat.

4.13. Upgrading From 1.0.1 to 1.1
To upgrade from DSpace 1.0.1 to 1.1, follow the steps below. Your dspace.cfg does not need to be
changed. In the notes below [dspace] refers to the install directory for your existing DSpace installation,
and [dspace-1.1-source] to the source directory for DSpace 1.1. Whenever you see these path references,
be sure to replace them with the actual path names on your local system.

1. Take down Tomcat (or whichever servlet container you're using).

2. We recommend that you upgrage to the latest version of PostgreSQL (7.3.2). Included are some post-
gres-upgrade-notes.txt. Note you will also have to upgrade Ant to version 1.5 if you do this.

3. Make the necessary changes to the DSpace database. These include a couple of minor schema changes,
and some new indices which should improve performance. Also, the names of a couple of database views
have been changed since the old names were so long they were causing problems. First run psql to access
your database (e.g. psql -U dspace -W and then enter the password), and enter these SQL commands:

ALTER TABLE bitstream ADD store_number INTEGER;
UPDATE bitstream SET store_number = 0;

ALTER TABLE item ADD last_modified TIMESTAMP;
CREATE INDEX last_modified_idx ON Item(last_modified);

CREATE INDEX eperson_email_idx ON EPerson(email);
CREATE INDEX item2bundle_item_idx on Item2Bundle(item_id);
REATE INDEX bundle2bitstream_bundle_idx ON
 Bundle2Bitstream(bundle_id);

Upgrading From 1.0.1 to 1.1

63

CREATE INDEX dcvalue_item_idx on DCValue(item_id);
CREATE INDEX collection2item_collection_idx ON
 Collection2Item(collection_id);
CREATE INDEX resourcepolicy_type_id_idx ON ResourcePolicy
 (resource_type_id,resource_id);
CREATE INDEX epersongroup2eperson_group_idx on
 EPersonGroup2EPerson(eperson_group_id);
CREATE INDEX handle_handle_idx ON Handle(handle);
CREATE INDEX sort_author_idx on ItemsByAuthor(sort_author);
CREATE INDEX sort_title_idx on ItemsByTitle(sort_title);
CREATE INDEX date_issued_idx on ItemsByDate(date_issued);

DROP VIEW CollectionItemsByDateAccessioned;

DROP VIEW CommunityItemsByDateAccessioned;
CREATE VIEW CommunityItemsByDateAccession as SELECT
 Community2Item.community_id, ItemsByDateAccessioned.* FROM
 ItemsByDateAccessioned, Community2Item WHERE
 ItemsByDateAccessioned.item_id = Community2Item.item_id;
CREATE VIEW CollectionItemsByDateAccession AS SELECT
 collection2item.collection_id,
 itemsbydateaccessioned.items_by_date_accessioned_id,
 itemsbydateaccessioned.item_id,
 itemsbydateaccessioned.date_accessioned FROM itemsbydateaccessioned,
 collection2item WHERE (itemsbydateaccessioned.item_id =
 collection2item.item_id);

4. Fix your JSPs for Unicode. If you've modified the site 'skin' (jsp/local/layout/header-default.jsp) you'll
need to add the Unicode header, i.e.:

<meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">

to the <HEAD> element. If you have any locally-edited JSPs, you need to add this page directive to the
top of all of them:

<%@ page contentType="text/html;charset=UTF-8" %>

(If you haven't modified any JSPs, you don't have to do anything.)

5. Copy the required Java libraries that we couldn't include in the bundle to the source tree. For example:

cd [dspace]/lib
cp *.policy activation.jar servlet.jar mail.jar
 [dspace-1.1-source]/lib

6. Compile up the new DSpace code, replacing [dspace]/config/dspace.cfg with the path to your current,
LIVE configuration. (The second line, touch `find .`, is a precaution, which ensures that the new code has
a current datestamp and will overwrite the old code. Note that those are back quotes.)

cd [dspace-1.1-source]
touch `find .`
ant
ant -Dconfig= [dspace]/config/dspace.cfg update

7. Update the database tables using the upgrader tool, which sets up the new >last_modified date in the
item table:

Run [dspace]/bin/dsrun
 org.dspace.administer.Upgrade101To11

8. Run the collection default authorisation policy tool:

[dspace]/bin/dsrun
 org.dspace.authorize.FixDefaultPolicies

Configuration and Customization

64

9. Fix the OAICat properties file. Edit [dspace]/config/templates/oaicat.properties. Change the line that
says

Identify.deletedRecord=yes

To:

Identify.deletedRecord=persistent

This is needed to fix the OAI-PMH 'Identity' verb response. Then run [dspace]/bin/install-configs.

10.Re-run the indexing to index abstracts and fill out the renamed database views:

[dspace]/bin/index-all

11.Restart Tomcat. Tomcat should be run with the following environment variable set, to ensure that Uni-
code is handled properly. Also, the default JVM memory heap sizes are rather small. Adjust -Xmx512M
(512Mb maximum heap size) and -Xms64M (64Mb Java thread stack size) to suit your hardware.

JAVA_OPTS="-Xmx512M -Xms64M -Dfile.encoding=UTF-8"

5. Configuration and Customization
There are a numbers of ways in which DSpace may be configured and/or customized. This chapter of the
documentation will discuss the configuration of the software and will also reference customizations that
may be performed in the chapter following.

For ease of use, the Configuration documentation is broken into several parts:

• Section 5.1 addresses general conventions used with configuring not only the dspace.cfg file, but other
configuration files which use similar conventions.

• Section 5.2 specifies the basic dspace.cfg file settings

• Section 5.3 contain other more advanced settings that are optional in the dspace.cfg configuration file.
General Configuration

In the following sections you will learn about the different configuration files that you will need to edit so
that you may make your DSpace installation work. Of the several configuration files which you will work
with, it is the dspace.cfg file you need to learn to configure first and foremost.

In general, most of the configuration files, namely dspace.cfg and xmlui.xconf will provide a good source
of information not only with configuration but also with customization (cf. Customization chapter)

5.1. Input Conventions
We will use the dspace.cfg as our example for input conventions used through out the system. It is a basic
Java properties file, where lines are either comments, starting with a '#', blank lines, or property/value pairs
of the form:

property.name = property value

Some property defaults are "commented out". That is, they have a "#" proceeding them, and the DSpace
software ignores the config property. This may cause the feature not to be enabled, or, cause a default
property to be used when the software is compiled and updated.

The property value may contain references to other configuration properties, in the form ${property.name}.
This follows the ant convention of allowing references in property files. A property may not refer to itself.
Examples:

Update Reminder

65

property.name = word1 ${other.property.name} more words
property2.name = ${dspace.dir}/rest/of/path

Property values can include other, previously defined values, by enclosing the property name in ${...}. For
example, if your dspace.cfg contains:

dspace.dir = /dspace
dspace.history = ${dspace.dir}/history

Then the value of dspace.history property is expanded to be /dspace/history. This method is especially useful
for handling commonly used file paths.

5.2. Update Reminder
Things you should know about editing dspace.cfg files.
It is important to rememeber that there are * two dspace.cfg files after an installation of DSpace.*

1. The "source" file that is found in [dspace-source]/dspace/config/dspace.cfg

2. The "runtime" file that is found in [dspace]/config/dspace.cfg
The runtime file is supposed to be the copy of the source file, which is considered the master version.
However, the DSpace server and command programs only look at the runtime configuration file, so when
you are revising your configuration values, it is tempting to only edit the runtime file. DO NOT do this.
Always make the same changes to the source version of dspace.cfg in addition to the runtime file. The
two files should always be identical, since the source dspace.cfg will be the basis of your next upgrade.

To keep the two files in synchronization, you can edit your files in [dspace-source]/dspace/config/ and then
you would run the following commands:

cd /[dspace-source]/dspace/target/dspace-<version>-build.dir
ant update_configs

This will copy the source dspace.cfg (along with other configuration files) into the runtime (/[dspace]/
config) directory.

You should remember that after editing your configuration file(s), and you are done and wish to implement
the changes, you will need to:

• To run ant -Dconfig=/[dspace]/config/dspace.cfg update if you are updating your dspace.cfg file and
wish to see the changes appear. Follow the usual sequence with copying your webapps.

• If you edit dspace.cfg in [dspace-source]/dspace/config/, you should then run 'ant init_configs' in the
directory [dspace-source]/dspace/target/dspace-1.5.2-build.dir so that any changes you may have made
are reflected in the configuration files of other applications, for example Apache. You may then need to
restart those applications, depending on what you changed.

5.3. The dspace.cfg Configuration Properties File
The primary way of configuring DSpace is to edit the dspace.cfg. You will definitely have to do this
before you can run DSpace properly. dspace.cfg contains basic information about a DSpace installa-
tion, including system path information, network host information, and other like items. To assist you
in this endeavor, below is a place for you to write down some of the preliminary data so that you
may facilitate faster configuration. Server IP:_______________________________Host Name (Server
name)______________________________dspace.url______________________________Administrator's
email:______________________________handle prefix:______________________________assetstore
directory:______________________________SMTP server:_______________________________

The dspace.cfg Configuration Properties File

66

5.3.1. The dspace.cfg file
Below is a brief "Properties" table for the dspace.cfg file and the documented details are referenced. Please
refer to those sections for the complete details of the parameter

Property Ref. Sect.

General Configurations

dspace.dir
dspace.url
dspace.baseUrl
dspace.oai.url
dspace.hostname
dspace.name

5.2.2

Database Configurations

db.name
db.url
db.driver
db.username
db.password

3.2.3 or 5.2.3

Advanced Database Configuration

db.schema
db.maxconnection
db.maxwait
db.maxidle
db.statementpool
db.poolname

5.2.3

Email Settings

mail.server
mail.server.username
mail.server.password
mail.server.port
mail.from.address
feedback.recipient
mail.admin
alert.recipient
registration.notify
mail.charset
mail.allowed.referrers
mail.extraproperties
mail.server.disabled

5.2.4

File Storage

assetstore.dir
[assetstore.dir.1
assetstore.dir.2
assetstore.incoming]

5.2.5

SRB File Storage

srb.hosts.1
srb.port.1
srb.mcatzone.1
srb.mdasdomainname.1
srb.defaultstorageresource.1
srb.username.1
srb.password.1
srb.homedirectory.1
srb.parentdir.1

5.2.6

Handle Configuration

handle.prefix
handle.dir

5.2.7

The dspace.cfg Configuration Properties File

67

Property Ref. Sect.

Authorization System Configuration

core.authorization.community-admin.create-
subelement
core.authorization.community-admin.delete-
subelement
core.authorization.community-admin.policies
core.authorization.community-admin.admin-
group
core.authorization.community-
admin.collection.policies
core.authorization.community-
admin.collection.template-item
core.authorization.community-
admin.collection.submitters
core.authorization.community-
admin.collection.workflows
core.authorization.community-
admin.collection.admin-group
core.authorization.community-
admin.item.delete
core.authorization.community-
admin.item.withdraw
core.authorization.community-
admin.item.reinstatiate
core.authorization.community-
admin.item.policies
core.authorization.community-
admin.item.create-bitstream
core.authorization.community-
admin.item.delete-bitstream
core.authorization.community-admin.item-
admin.cc-license
core.authorization.collection-
admin.policies
core.authorization.collection-
admin.template-item
core.authorization.collection-
admin.submitters
core.authorization.collection-
admin.workflows
core.authorization.collection-admin.admin-
group
core.authorization.collection-
admin.item.delete
core.authorization.collection-
admin.item.withdraw
core.authorization.collection-
admin.item.reinstatiate
core.authorization.collection-
admin.item.policies
core.authorization.collection-
admin.item.create-bitstream
core.authorization.collection-
admin.item.delete-bitstream
core.authorization.collection-admin.item-
admin.cc-license
core.authorization.item-admin.policies
core.authorization.item-admin.create-
bitstream
core.authorization.item-admin.delete-
bitstream
core.authorization.item-admin.cc-license

5.2.45

Stackable Authentication Methods

plugin.sequence.org.dspace.authenticate.AuthenticationMethod5.2.8 or 5.2.9

LDAP Authentication

The dspace.cfg Configuration Properties File

68

Property Ref. Sect.

ldap.enable
ldap.provider_url
ldap.id_field
ldap.object_context
ldap.search_context
ldap.email_field
ldap.surname_field
ldap.givenname_field
ldap.phone_field
webui.ldap.autoregister
ldap.login.specialgroup

5.2.8.5

Hierarchical LDAP Settings:

ldap.search_scope
ldap.search.user
ldap.netid_email_domain

5.2.8.5

Shibboleth Authentication Settings

authentication.shib.email-header
authentication.shib.firstname-header
authentication.shib.lastname-header
authentication.shib.email-use-tomcat-
remote-user
authentication.shib.autoregister
authentication.shib.role-header
authentication.shib.default-roles

5.2.9-

Log Configuration

log.init.config 5.2.10

Lucene Search Indexes

search.dir
search.max-clauses
search.analyzer
search.operator
search.maxfieldlengthsearch.index.n

5.2.11

Proxy Settings

http.proxy.host
http.proxy.port

5.2.12

Media Filter

filter.plugin 5.2.13

plugin.named.org.dspace.app.mediafilter.FormatFilter

 filter.org.dspace.app.mediafilter.PDFFilter.inputFormats

 filter.org.dspace.app.mediafilter.HTMLFilter.inputFormats

 filter.org.dspace.app.mediafilter.WordFilter.inputFormats

 filter.org.dspace.app.mediafilter.JPEGFilter.inputFormats

 filter.org.dspace.app.mediafilter.BrandedPreviewJPEGFilter.inputFormats

5.2.13

pdffilter.largepdfs
pdffilter.skiponmemoryexception

5.2.13

Crosswalks (MODS, QDC, XSLT, etc.)

crosswalk.mods.properties.MODS
crosswalk.submission.MODS.stylesheet
crosswalk.qdc.namespace.QDC.dc
crosswalk.qdc.namespace.QDC.dcterms

5.2.18

The dspace.cfg Configuration Properties File

69

Property Ref. Sect.
crosswalk.qdc.schemaLocation.QDC
plugin.named.org.dspace.content.crosswalk.IngestionCrosswalk
plugin.named.org.dspace.content.crosswalk.DisseminationCrosswalk

Event Settings

event.dispatcher.default.class
event.dispatcher.default.consumers
event.dispatcher.noindex.class
event.dispatcher.noindex.consumers
event.consumer.search.class
event.consumer.search.filters
event.consumer.browse.class
event.consumer.browse.filters
event.consumer.eperson.class
event.consumer.eperson.filters
event.consumer.test.class
event.consumer.test.filters
testConsumer.verbose

5.2.19

Checksum Checker

plugin.single.org.dspace.checker.BitsreamDispatcher
checker.retention.default
checker.retention.CHECKSUM-MATCH

5.2.20

Item Export and Download

org.dspace.app.itemexport.work.dir
org.dspace.app.itemexport.download.dir
org.dspace.app.itemexport.life.span.hours
org.dspace.app.itemexport.max.size

5.2.21

Bulk Metadata Editing

bulkedit.valueseparator
bulkedit.fieldseparator
bulkedit.gui-item-limit
bulkedit.ignore-on-export

5.2.46

Subscription Email Option

eperson.subscription.onlynew 5.2.22

Submission Process

webui.submit.blocktheses 5.2.23

webui.submit.upload.required 5.2.23

webui.submit.enable-cc 5.2.24

WEBUI Configurations [General]

webui.browse.thumbnail.max.height
webui.browse.thumbnail.max.width

5.2.25

webui.browse.thumbnail.linkbehaviour 5.2.25

thumbnail.maxwidth
thumbnail.maxheight

5.2.25

webui.preview.enabled 5.2.25

webui.preview.maxwidth
webui.preview.maxheight

5.2.25

webui.preview.brand
webui.preview.brand.abbrev

5.2.25

webui.preview.brand.height 5.2.25

webui.preview.brand.font 5.2.25

The dspace.cfg Configuration Properties File

70

Property Ref. Sect.
webui.preview.brank.fontpoint

webui.preview.dc 5.2.25

webui.strengths.show
webui.strengths.cache

5.2.25

Browse Index Configuration

webui.browse.index.n 5.2.26

webui.itemlist.sort-option.n 5.2.26

webui.browse.medata.case-insensitive 5.2.26.3

webui.browse.value_columns.max
webui.browse.sort_columns.max
webui.browse.value_columns.omission_mark
plugin.named.org.dspace.sort.OrderFormatDelegate

5.2.26.4

Mulitple Metadata Value Display

webui.browse.author-field 5.2.27

webui.browse.author-limit 5.2.27

Other Browse Contexts

webui.browse.link.n 5.2.28

Recent Submission

recent.submission.sort-option
recent.submissions.count

5.2.29

Syndication Feed (RSS) Settings

webui.feed.enable
webui.feed.items
webui.feed.cache.size
webui.cache.age
webui.feed.formats
webui.feed.localresolve
webui.feed.item.title
webui.feed.item.date
webui.feed.item.description

5.2.30

Content Inline Disposition Threshold

webui.content_disposition_threshold
xmlui.content_disposition_threshold

5.2.31

Multifile HTML Settings

webui.html.max-depth-guess
xmlui.html.max-depth-guess

5.2.32

Other General Configuration Settings

sitemap.dir 5.2.33

sitemap.engineurls 5.2.33

upload.temp.dir 5.2.34

default.locale 5.2.37

itemmap.author.index 5.2.38

webui.mydspace.showgroupmembership 5.2.39

sfx.server.url 5.2.40

webui.suggest.enable
webui.suggest.loggedinusers.only

5.2.41

The dspace.cfg Configuration Properties File

71

Property Ref. Sect.

webui.controlledvocabulary.enable 5.2.42

oai.didl.maxresponse 5.2.44

JSP Web Interface Settings

webui.licence_bundle.show
webui.itemdisplay.default
webui.resolver.1.urn
webui.resolver.1.baseurl
webui.resolver.2.urn
webui.resolver.2.baseurl
plugin.single.org.dspace.app.webui.util.StyleSelection
webui.itemdisplay.thesis.collections
webui.itemdisplay.metadata-style
webui.itemlist.column
webui.itemlist.width
webui.itemlist.browse.<index
 name>.sort.<sort name>.columns
webui.itemlist.sort<sort name>.columns
webui.itemlist.browse.<browse name>.columns
webui.itemlist.*lt;sort or index
 name>.columns
webui.itemlist.dateaccessioned.columns
webui.itemlist.dateaccessioned.widths
webui.itemlist.tablewidth

5.2.36

XMLUI Settings (Manakin)

xmlui.supported.locales
xmlui.force.ssl
xmlui.user.registration
xmlui.user.assumelogon
xmlui.user.logindirect
xmlui.theme.allowoverrides
xmlui.bundle.upload
xmlui.community-list.render.full
xmlui.community-list.cache
xmlui.bitstream.mods
xmlui.bitstream.mets
xmlui.google.analytics.key
xmlui.controlpanel.activity.max
xmlui.controlpanel.activity.ipheader

5.2.43

5.3.2. Main DSpace Configurations

Property: dspace.dir

Example Value: /dspace

Informational Note: Root directory of DSpace installation. Omit the trail-
ing '/'. Note that if you change this, there are several
other parameters you will probably want to change
to match, e.g. assetstore.dir.

Property: dspace.baseUrl

Example Value: _ http://dspacetest.myu.edu:8080_

Informational Note: Main URL at which DSpace Web UI webapp is de-
ployed. Include any port number, but do not include
the trailing '/'.

Property: dspace.url

Example Value: dspace.url = ${dspace.baseUrl}/jspui

http://dspacetest.myu.edu:8080_

The dspace.cfg Configuration Properties File

72

Informational note DSpace base URL. Include port number etc., but
NOT trailing slash. Change to /xmlui if you wish to
use the xmlui (Manakin) as the default, or remove "/
jspui" and set webapp of your choice as the "ROOT"
webapp in the servlet engine.

Property: dspace.oai.url

Example Value: dspace.oai.url = ${dspace.baseUrl}/oai

Informational note: The base URL of the OAI webapp (do not include /
request).

Property: _dspace.hostname _

Example Value: dspace.hostname = dspace.mysu.edu

Informational Note: Fully qualified hostname; do not include port num-
ber.

Property: dspace.name

Example Value: dspace.name = DSpace at My University

Informational Note: Short and sweet site name, used throughout Web UI,
e-mails and elsewhere (such as OAI protocol)

5.3.3. DSpace Database Configuration
Many of the database configurations are software-dependent. That is, it will be based on the choice of
database software being used. Documentation is below shows PostgreSQL and Oracle examples.

Property: db.name

Example Value: db.name = postgres

Informational Note: In dspace.cfg you choose either postgres or oracle.

Property: _db.url _

Example Value: db.url = jdbc:postgresql://localhost:5432/dspace-
services

Informational Note: The above value is the default value when configur-
ing with PostgreSQL. When using Oracle, use this
value: jbdc.oracle.thin:@//host:port/dspace

Property: db.username

Example Value: db.username = dspace

Informational Note: In the installation directions, the administrator is in-
structed to create the user "dspace" who will own the
database "dspace".

Property: password

Example Value: password = dspace5

Informational Note: This is the password that was prompted during the
installation process (cf. 3.2.3. Installation)

The dspace.cfg Configuration Properties File

73

Property: db.schema

Example Value: db.schema = vra

Informational Note: If your database contains multiple schemas, you can
avoid problems with retrieving the definitions of du-
plicate objects by specifying the schema name here
that is used for DSpace by uncommenting the entry.
This is commented out

Property: db.maxconnections

Example Value: db.maxconnections = 30

Informational Note: Maximum number of DB connections in pool

Property: db.maxwait

Example Value: db.maxwait = 5000

Informational Note: Maximum time to wait before giving up if all con-
nections in pool are busy (in milliseconds).

Property: db.maxidle

Example Value: db.maxidle = -1

Informational Note: Maximum number of idle connections in pool. (-1 =
unlimited)

Property: db.statementpool

Example Value: db.statementpool = true

Informational Note: Determines if prepared statement should be cached.
(Default is set to true)

Property: db.poolname

Example Value: db.poolname = dspacepool

Informational Note: Specify a name for the connection pool. This is useful
if you have multiple applications sharing Tomcat's
database connection pool. If nothing is specified, it
will default to 'dspacepool'

5.3.4. DSpace Email Settings

The configuration of email is simple and provides a mechanism to alert the person(s) responsible for different
features of the DSpace software.

Property: mail.server

Example Value: mail.server = smtp.my.edu

Informational Note: SMTP Mail Server

Property: mail.server.username
mail.server.password

The dspace.cfg Configuration Properties File

74

Example Value: mail.server.username = myusername
mypassword

Informational Note: SMTP mail server authentication username and pass-
word, if required.

Property: mail.server.port

Example Value: mail.server.port = 25

Informational Note: SMTP mail server alternate port (Defaults to port 25
when commented out).

Property: mail.from.address

Example Value: mail.from.address = dspace-noreply@myu.edu

Informational Note: The "From" address for email. Change the 'myu.edu'
to the site's host name.

Property: feedback.recipient

Example Value: feedback.recipient = dspace-help@myu.edu

Informational Note: When a user clicks on the feedback link/feature, the
information will be send to the email address of
choice. This configuration is currently limited to on-
ly one recipient.

Property: mail.admin

Example Value: mail.admin = dspace-help@myu.edu

Informational Note: Email address of the general site administrator (Web-
master)

Property: alert.recipient

Example Value: alert.recipient = john.doe@myu.edu

Informational Note: Enter the recipient for server errors and alerts.

Property: registration.notify

Example Value: registration.notify = mike.smith@myu.edu

Informational Note: Enter the recipient that will be notified when a new
user registers on DSpace.

Property: mail.charset

Example Value: mail.charset = UTF8

Informational Note: Set the default mail character set. This may be over-
ridden by providing a line inside the email tem-
plate "charset: <encoding>", otherwise this default
is used.

Property: mail.allowed.referrers

Example Value: mail.allowed.referrers = localhost

The dspace.cfg Configuration Properties File

75

Informational Note: A comma separated list of hostnames that are
allowed to refer browsers to email forms. De-
fault behaviour is to accept referrals only from
dspace.hostname

Property: mail.extraproperties

Example Value: mail.extraproperties =
 mail.smtp.socketFactory.port=465, \

 mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory,
 \

 mail.smtp.socketFactory.fallback=false

Informational Note: If you need to pass extra settings to the Java mail
library. Comma separated, equals sign between the
key and the value. By default, commented out.

Property: mail.server.disabled

Example Vavlue: mail.server.disabled = false

Informational Note: An option is added to disable the mailserver. By de-
fault, this property is set to false. By setting value
to 'true', DSpace will not send out emails. It will in-
stead log the subject of the email which should have
been sent. This is especially useful for development
and test environments where production data is used
when testing functionality.

Wording of E-mail Messages

Sometimes DSpace automatically sends e-mail messages to users, for example to inform them of a new
work flow task, or as a subscription e-mail alert. The wording of emails can be changed by editing the
relevant file in [dspace]/config/emails. Each file is commented. Be careful to keep the right number 'place-
holders' (e.g.{2}).

Note: You should replace the contact-information "dspace-help@myu.edu or call us at xxx-555-xxxx" with
your own contact details in:
config/emails/change_passwordconfig/emails/register

5.3.5. File Storage

This is the default "technique" that is used by DSpace to store the bitstreams. DSpace can also use SRB
(Storage Resource Brokerage) as an alternative. See section 5.2.6 for details regarding SRB.

Property: assetstore.dir

Example Value: assetstore.dir = ${dspace.dir}/assetstore

Informational Note: This is Asset (bitstream) store number 0 (Zero). You
need not place your assetstore under the /dspace di-
rectory, but may want to place it on a different logical
volume on the server that DSpace resides. So, you
might have something like this: _ assetstore.dir = /
storevgm/assestore_.

Property: assetstore.dir.1

The dspace.cfg Configuration Properties File

76

assetstore.dir.2

Example Value: assetstore.dir.1 = /second/assetstore
assetstore.dir.2 = /third/assetstore

Informational Note: This property specifies extra asset stores like the one
above, counting from one (1) upwards. This property
is commented out (#) until it is needed.

Property: assetstore.incoming

Example Value: assetstore.incoming = 1

Informational Note: Specify the number of the store to use for new bit-
streams with this property. The default is 0 [zero]
which corresponds to the 'assestore.dir' above.

In the examples above, you can see that your storage does not have to be under the /dspace directory. For the
default installation it needs to reside on the same server (unless you plan to configure SRB (cf. below)). So,
if you added storage space to your server, and it has a different logical volume/name/directory, you could
have the following as an example:
assetstore.dir = /storevgm/assetstoreassetstore.dir.1 = /storevgm2/assetstoreassetstore.incoming = 1
Please Note: When adding additional storage configuration, you will then need to uncomment and declare
assestore.incoming = 1

5.3.6. SRB (Storage Resource Brokerage) File Storage
An alternate to using the default storage framework is to use Storage Resource Brokerage (SRB). This can
provide a different level of storage and disaster recovery. (Storage can take place on storage that is off-site.)
Refer to http://www.sdsc.edu/srb/index.php/Main_Page for complete details regarding SRB.

The same framework is used to configure SRB storage. That is, the asset store number (0..n) can reference a
file system directory as above or it can reference a set of SRB account parameters. But any particular asset
store number can reference one or the other but not both. This way traditional and SRB storage can both be
used but with different asset store numbers. The same cautions mentioned above apply to SRB asset stores
as well. The particular asset store a bitstream is stored in is held in the database, so don't move bitstreams
between asset stores, and do not renumber them.

Property: srb.hosts.1

Example value: srb.hosts.1 = mysrbmcathost.myu.edu

Property: srb.port.1

Example value: srb.port.1 = 5544

Property: srb.mcatzone.1

Example value: srb.mcatzone.1 = mysrbzone

Property: srb.mdasdomainname.1

Example value: srb.mdasdomainname.1 = mysrbdomain

Property: srb.defaultstorageresource.1

Example value: srb.defaultstorageresource.1 = mydefaultsrbre-
source

Property: srb.username.1

Example value: srb.username.1 = mysrbuser

Property: srb.password.1

Example value: srb.password.1 = mysrbpassword

Property: srb.homedirectory.1

http://www.sdsc.edu/srb/index.php/Main_Page

The dspace.cfg Configuration Properties File

77

Example value: srb.homedirectory.1 = /mysrbzone/home/
mysrbuser.mysrbdomain

Property: srb.parentdir.1

Example value: srb.parentdir.1 = mysrbdspaceassetstore

Informational Note: Several of the terms, such as mcatzone, have mean-
ing only in the SRB context and will be familiar to
SRB users. The last, srb.paratdir.n, can be used for
additional (SRB) upper directory structure within an
SRB account. This property value could be blank as
well.

The 'assetstore.incoming' property is an integer that references where new bitstreams will be stored. The
default (say the starting reference) is zero. The value will be used to identify the storage where all
new bitstreams will be stored until this number is changed. This number is stored in the Bitstream ta-
ble (store_number column) in the DSpace database, so older bitstreams that may have been stored when
'asset.incoming' had a different value can be found.

In the simple case in which DSpace uses local (or mounted) storage the number can refer to different di-
rectories (or partitions). This gives DSpace some level of scalability. The number links to another set of
properties 'assetstore.dir', 'assetstore.dir.1' (remember zero is default), assetstore.dir.2', etc., where the val-
ues are directories.

To support the use of SRB DSpace uses the same scheme but broaden to support:

• using SRB instead of the local file system

• using the local file system (native DSpace)

• using a mix of SRB and local file system
in this broadened use of the 'asset.incoming' integer will refer to one of the following storage locations:

• a local file system directory (native DSpace)

• a set of SRB account parameters (host, port, zone, domain, username, password, home directory, and
resource
Should the be any conflict, like '2' referring to a local directory and to a set of SRB parameters, the program
will select the local directory.

If SRB is chosen from the first install of DSpace, it is suggested that 'assetstore.dir' (no integer appended)
be retained to reference a local directory (as above under File Storage) because build.xml uses this value to
do a mkdir. In this case, 'assetstore.incoming' can be set to 1 (i.e. uncomment the line in File Storage above)
and the 'assetstore.dir' will not be used.

5.3.7. Handle Server Configuration

Property: handle.prefix

Example Value handle.prefix = 1234.56789

Informational Note: The default installed by DSpace is 123456789 but
you will replace this upon receiving a handle from
CNRI.

Property: handle.dir

Example Value: handle.dir = ${dspace.dir}/handle-server

Informational Note: The default files, as shown in the Example Value is
where DSpace will install the files used for the Han-
dle Server.

The dspace.cfg Configuration Properties File

78

For complete information regarding the Handle server, the user should consult 3.3.4. The Handle Server
section of Installing DSpace.

5.3.8. Stackable Authentication Method(s)
(formally Custom Authentication)
Since many institutions and organizations have existing authentication systems, DSpace has been designed to
allow these to be easily integrated into an existing authentication infrastructure. It keeps a series, or "stack",
of authentication methods, so each one can be tried in turn. This makes it easy to add new authentication
methods or rearrange the order without changing any existing code. You can also share authentication code
with other sites.

Property: plugin.sequence.org.dspace.authenticate.AuthenticationMethod

Example Value: plugin.sequence.org.dspace.authenticate.AuthenticationMethod
 = \

 org.dspace.authenticate.PasswordAuthentication

The configuration property plugin.sequence.org.dspace.authenticate.AuthenticationMethod defines the au-
thentication stack. It is a comma-separated list of class names. Each of these classes implements a different
authentication method, or way of determining the identity of the user. They are invoked in the order spec-
ified until one succeeds.

An authentication method is a class that implements the interface
org.dspace.authenticate.AuthenticationMethod. It authenticates a user by evaluating the credentials (e.g.
username and password) he or she presents and checking that they are valid.

The basic authentication procedure in the DSpace Web UI is this:

1. A request is received from an end-user's browser that, if fulfilled, would lead to an action requiring
authorization taking place.

2. If the end-user is already authenticated:

• If the end-user is allowed to perform the action, the action proceeds

• If the end-user is NOT allowed to perform the action, an authorization error is displayed.

• If the end-user is NOT authenticated, i.e. is accessing DSpace anonymously:

3. The parameters etc. of the request are stored

4. The Web UI's startAuthentication method is invoked.

5. First it tries all the authentication methods which do implicit authentication (i.e. they work with just the
information already in the Web request, such as an X.509 client certificate). If one of these succeeds, it
proceeds from Step 2 above.

6. If none of the implicit methods succeed, the UI responds by putting up a "login" page to collect credentials
for one of the explicit authentication methods in the stack. The servlet processing that page then gives the
proffered credentials to each authentication method in turn until one succeeds, at which point it retries
the original operation from Step 2 above.
Please see the source files AuthenticationManager.java and AuthenticationMethod.java for more details
about this mechanism.

Authentication by Password

The default method org.dspace.authenticate.PasswordAuthentication has the following properties:

• Use of inbuilt e-mail address/password-based log-in. This is achieved by forwarding a request that is at-
tempting an action requiring authorization to the password log-in servlet, /password-login. The password

The dspace.cfg Configuration Properties File

79

log-in servlet (org.dspace.app.webui.servlet.PasswordServlet contains code that will resume the original
request if authentication is successful, as per step 3. described above.

• Users can register themselves (i.e. add themselves as e-people without needing approval from the admin-
istrators), and can set their own passwords when they do this

• Users are not members of any special (dynamic) e-person groups

• You can restrict the domains from which new users are able to register. To enable this feature, uncomment
the following line from dspace.cfg: authentication.password.domain.valid = example.com Example op-
tions might be '@example.com' to restrict registration to users with addresses ending in @example.com,
or '@example.com, .ac.uk' to restrict registration to users with addresses ending in @example.com or with
addresses in the .ac.uk domain.

X.509 Certificate Authentication

The X.509 authentication method uses an X.509 certificate sent by the client to establish his/her identity.
It requires the client to have a personal Web certificate installed on their browser (or other client software)
which is issued by a Certifying Authority (CA) recognized by the web server.

1. See the HTTPS installation instructions to configure your Web server. If you are using HTTPS with
Tomcat, note that the <Connector> tag must include the attribute clientAuth="true" so the server requests
a personal Web certificate from the client.

2. Add the org.dspace.authenticate.X509Authentication plugin first to the list of
stackable authentication methods in the value of the configuration key
plugin.sequence.org.dspace.authenticate.AuthenticationMethod_e.g.:_

plugin.sequence.org.dspace.authenticate.AuthenticationMethod = \
 org.dspace.authenticate.X509Authentication, \
 org.dspace.authenticate.PasswordAuthentication

3. You must also configure DSpace with the same CA certificates as the web server, so it can accept and
interpret the clients' certificates. It can share the same keystore file as the web server, or a separate one,
or a CA certificate in a file by itself. Configure it by one of these methods, either the Java keystore

authentication.x509.keystore.path = path to Java keystore file
 authentication.x509.keystore.password = password to access the keystore

...or the separate CA certificate file (in PEM or DER format):

authentication.x509.ca.cert = path to certificate file for CA
 whose client certs to accept.

4. Choose whether to enable auto-registration: If you want users who authenticate successfully to be auto-
matically registered as new E-Persons if they are not already, set the authentication.x509.autoregister
configuration property to true. This lets you automatically accept all users with valid personal certificates.
The default is false.

Example of a Custom Authentication Method

Also included in the source is an implementation of an authentication method used at MIT,
edu.mit.dspace.MITSpecialGroup. This does not actually authenticate a user, it only adds the current user
to a special (dynamic) group called 'MIT Users' (which must be present in the system!). This allows us to
create authorization policies for MIT users without having to manually maintain membership of the MIT
users group.

By keeping this code in a separate method, we can customize the authentication process for MIT by simply
adding it to the stack in the DSpace configuration. None of the code has to be touched.

The dspace.cfg Configuration Properties File

80

You can create your own custom authentication method and add it to the stack. Use the most similar existing
method as a model, e.g. org.dspace.authenticate.PasswordAuthentication for an "explicit" method (with
credentials entered interactively) or org.dspace.authenticate.X509Authentication for an implicit method.

Configuring IP Authentication

You can enable IP authentication by adding its method to the stack in the DSpace configuration, e.g.:

plugin.sequence.org.dspace.authenticate.AuthenticationMethod =
 org.dspace.authenticate.IPAuthentication

You are than able to map DSpace groups to IP's in dspace.cfg by setting authentication.ip.GROUPNAME
= iprange[, iprange ...], e.g:

authentication.ip.MY_UNIVERSITY = 10.1.2.3, \ # Full IP
 13.5, \ # Partial IP
 11.3.4.5/24, \ # with CIDR
 12.7.8.9/255.255.128.0 # with netmask

Negative matches can be set by prepending the entry with a '-'. For example if you want to include all of a
class B network except for users of a contained class c network, you could use: 111.222,-111.222.333.

Note: if the Groupname contains blanks you must escape the, e.g. Department\ of\ Statistics

Configuring LDAP Authentication

You can enable LDAP authentication by adding its method to the stack in the DSpace configuration, e.g.

plugin.sequence.org.dspace.authenticate.AuthenticationMethod =
 org.dspace.authenticate.LDAPAuthentication

If LDAP is enabled in the dspace.cfg file, then new users will be able to register by entering their username
and password without being sent the registration token. If users do not have a username and password, then
they can still register and login with just their email address the same way they do now.

If you want to give any special privileges to LDAP users, create a stackable authentication method to au-
tomatically put people who have a netid into a special group. You might also want to give certain email
addresses special privileges. Refer to the Custom Authentication Code section above for more information
about how to do this.

Here is an explanation of what each of the different configuration parameters are for:

Standard LDAP Configuration

Property: ldap.enable

Example Value: ldap.enable = false

Informational Note: This setting will enable or disable LDAP authentica-
tion in DSpace. With the setting off, users will be re-
quired to register and login with their email address.
With this setting on, users will be able to login and
register with their LDAP user ids and passwords.

Property: ldap.provider_url

Example Value: ldap.provider_url = ldap://ldap.myu.edu/
o=myu.edu

Informational Note: This is the url to your institution's LDAP server. You
may or may not need the /o=myu.edu part at the end.
Your server may also require the ldaps:// protocol.

Property: ldap.id_field

The dspace.cfg Configuration Properties File

81

Example Value: ldap.id_field = uid

Explanation: This is the unique identifier field in the LDAP direc-
tory where the username is stored.

Property: ldap.object_context

Example Value: ldap.object_context = ou=people, o=myu.edu

Informational Note: This is the object context used when au-
thenticating the user. It is appended to
the ldap.id_field and username. For exam-
ple uid=username,ou=people,o=myu.edu. You will
need to modify this to match your LDAP configura-
tion.

Property: ldap.search_context

Example Value: ldap.search_context = ou=people

Informational Note: This is the search context used when looking
up a user's LDAP object to retrieve their data
for autoregistering. With ldap.autoregister turned
on, when a user authenticates without an EPer-
son object we search the LDAP directory to get
their name and email address so that we can
create one for them. So after we have authenti-
cated against uid=username,ou=people,o=byu.edu
we now search in ou=people for filtering on
[uid=username]. Often the ldap.search_context is the
same as the ldap.object_context parameter. But again
this depends on your LDAP server configuration.

Property: ldap.email_field

Example Value: ldap.email_field = mail

Informational Note: This is the LDAP object field where the user's email
address is stored. "mail" is the default and the most
common for ldap servers. If the mail field is not
found the username will be used as the email address
when creating the eperson object.

Property: ldap.surname_field

Example Value: ldap.surname_field = sn

Informational Note: This is the LDAP object field where the user's last
name is stored. "sn" is the default and is the most
common for LDAP servers. If the field is not found
the field will be left blank in the new eperson object.

Property: ldap.givenname_field

Example Value: ldap.givenname_field = givenName

Informational Note: This is the LDAP object field where the user's giv-
en names are stored. I'm not sure how common the
givenName field is in different LDAP instances. If

The dspace.cfg Configuration Properties File

82

the field is not found the field will be left blank in the
new eperson object.

Property: ldap.phone_field

Example Value: ldap.phone_field = telephoneNumber

Informational Note: This is the field where the user's phone number is
stored in the LDAP directory. If the field is not found
the field will be left blank in the new eperson object.

Property: webui.ldap.autoregister

Example Value: webui.ldap.autoregister = true

Informational Note: This will turn LDAP autoregistration on or off. With
this on, a new EPerson object will be created for
any user who successfully authenticates against the
LDAP server when they first login. With this setting
off, the user must first register to get an EPerson ob-
ject by entering their ldap username and password
and filling out the forms.

LDAP Users Group

Property: ldap.login.specialgroup

Example Value: ldap.login.specialgroup = group-name

Informational Note: If required, a group name can be given here, and all
users who log into LDAP will automatically become
members of this group. This is useful if you want
a group made up of all internal authenticated users.
(Remember to log on as the administrator, add this to
the "Groups" with read rights).

Hierarchical LDAP Settings.# If your users are spread out across a hierarchical tree on your LDAP server,
you will need to use the following stackable authentication class:

plugin.sequence.org.dspace.authenticate.AuthenticationMethod = \
 org.dspace.authenticate.LDAPHierarchicalAuthentication

You can optionally specify the search scope. If anonymous access is not enabled on your LDAP server, you
will need to specify the full DN and password of a user that is allowed to bind in order to search for the users.

Property: ldap.search_scope

Example Value: ldap.search_scope = 2

Informational Note: This is the search scope value for the LDAP search
during autoregistering. This will depend on your
LDAP server setup. This value must be one of the fol-
lowing integers corresponding to the following val-
ues:

object scope : 0
one level scope : 1
subtree scope : 2

Property: ldap.search.user
ldap.search.password

Example Value: ldap.search.user =
 cn=admin,ou=people,o=myu.edu

The dspace.cfg Configuration Properties File

83

ldap.search.password = password

Informational Note: The full DN and password of a user allowed to con-
nect to the LDAP server and search for the DN of the
user trying to log in. If these are not specified, the
initial bind will be performed anonymously.

Property: _ldap.netid_email_domain = _

Example Value: ldap.netid_email_domain = @example.com

Informational Note: If your LDAP server does not hold an email ad-
dress for a user, you can use the following field to
specify your email domain. This value is append-
ed to the netid in order to make an email address.
E.g. a netid of 'user' and ldap.netid_email_domain as
@example.com would set the email of the user to be
user@example.com

5.3.9. Shibboleth Authentication Configuration Settings

Detailed instructions for installing Shibboleth on DSpace may be found athttps://mams.melcoe.mq.edu.au/
zope/mams/pub/Installation/dspace15.

DSpace requires email as the user's credentials. There are two ways of providing email to DSpace:

1. By explicitly specifying to the user which attribute (header) carries the email address.

2. By turning on the user-email-using-tomcat=true which means the software will attempt to acquire the
user's email from Tomcat.
The first option takes Precedence when specified. both options can be enabled to allow for fallback.

Property: authentication.shib.email-header

Example Value: authentication.shib.email-header = MAIL

Informational Note: The option specifies that the email comes from the
mentioned header. This value is CASE-Sensitive.

Property: authentication.shib.firstname-header

Example Value: authentication.shib.firstname-header = SHIB-EP-
GIVENNAME

Informational Note: Optional. Specify the header that carries the user's
first name. This is going to be used for the creation
of new-user.

Property: authentication.shib.lastname-header

Example Value: authentication.shib.lastname-header = SHIB-EP-
SURNAME

Informational Note: Optional. Specify the header that carries user's last
name. This is used for creation of new user.

Property: authentication.shib.email-use-tomcat-remote-user

Example Value: authentication.shib.email-use-tomcat-remote-user
= true

https://mams.melcoe.mq.edu.au/zope/mams/pub/Installation/dspace15
https://mams.melcoe.mq.edu.au/zope/mams/pub/Installation/dspace15

The dspace.cfg Configuration Properties File

84

Informational Note: This option forces the software to acquire the email
from Tomcat.

Property: authentication.shib.autoregister

Example Value: authentication.shib.autoregister = true

Informational Note: Option will allow new users to be registered auto-
matically if the IdP provides sufficient information
(and the user does not exist in DSpace

Property: authentication.shib.role-header
authentication.shib-role.header.ignore-
scope

Example Value: authentication.shib.role-header = Shib-EP-
ScopedAffiliation
authentication.shib-role.header.ignore-
scope = true

or

authentication.shib.role-header = Shib-EP-
UnscopedAffiliation
 authentication.shib-role.header.ignore-
scope = false

Informational Note: These two options specify which attribute that is re-
sponsible for providing user's roles to DSpace and
unscope the attributes if needed. When not spec-
ified, it is defaulted to 'Shib-EP-UnscopedAffilia-
tion', and ignore-scope is defaulted to 'false'. The
value is specified in AAP.xml (Shib 1.3.x) or at-
tribute-filter.xml (Shib 2.x). The value is CASE-
Sensitive. The values provided in this header are
separated by semi-colon or comma. If your sp
only provides scoped role header, you need to
set authentication.shib.role-header.ignore-Scope as
true. For example if you only get Shib-EP-Scope-
dAffiliation instead of Shib-EP-ScopedAffiliation,
you name to make your settings as in the example
value above.

Property: authentication.shib.default-roles

Example Value: authentication.shib.default-roles = Staff, Walk-ins

Informational Note: When user is fully authN or IdP but would not like
to release his/her roles to DSpace (for privacy rea-
sons?), what should the default roles be given to
such user. The values are separated by semi-colon
or comma.

Property: authentication.shib.role.Senior\
 Researcher
authentication.shib.role.Librarian

Example Value: authentication.shib.role.Senior\
 Researcher = Researcher, Staff

The dspace.cfg Configuration Properties File

85

authentication.shib.role.Librarian =
 Administrator

Informational Note: The following mappings specify role map-
ping between IdP and Dspace. The left side
of the entry is IdP's role (prefixed with
"authentication.shib.role.") which will be mapped
to the right entry from DSpace. DSpace's group
as indicated on the right entry has to EXIST in
DSpace, otherwise user will be identified as 'anony-
mous'. Multiple values on the right entry should be
separated by comma. The values are CASE-Sen-
sitive. Heuristic one-to-one mapping will be done
when the IdP groups entry are not listed below (i.e.
if "X" group in IdP is not specified here, then it will
be mapped to "X" group in DSpace if it exists, oth-
erwise it will be mapped to simply 'anonymous').
Given sufficient demand, future release could sup-
port regex for the mapping special characters need
to be escaped by '\'

5.3.10. Logging Configuration

The following settings are currently not used by XMLUI. XMLUI writes its logs to [dspace-xmlui]/WEB-
INF-logs/ in the actual XMLUI web application.

Property: log.init.config

Example Value: log.init.config = ${dspace.dir}/con-
fig/log4j.properties

Informational Note: This is where your configure file is located. You
may override default log4j configuration by provided
your own configurations. Existing alternatives are:

log.init.config = ${dspace.dir}/config/
log4j.xml
log.init.config = ${dspace.dir}/config/
log4j-console.properties

Property: log.dir

Example value: log.dir = ${dspace.dir}/log

Informational Note: This is where to put the logs. (This is used for initial
configuration only)

5.3.11. Configuring Lucene Search Indexes

Search indexes can be configured and customized easily in the dspace.cfg file. This allows institutions to
choose which DSpace metadata fields are indexed by Lucene.

Property: search.dir

Example Value: search.dir = ${dspace.dir}/search

Informational Note Where to put the search index files

The dspace.cfg Configuration Properties File

86

Property: search.max-clauses

Example Value: search.max-clauses = 2048

Informational Note By setting higher values of search.max-clauses will
enable prefix searches to work on larger repositories.

Property: search.analyzer

Example Value: search.analyzer = org.dspace.search.DSAnalyzer

Informational Note Which Lucene Analyzer implementation to use. If
this is omitted or commented out, the standard
DSpace analyzer (designed for English) is used by
default.

Property: search.analyzer

Example Value: search.analyzer = \

 org.apache.lucene.analysis.cn.ChineseAnalyzer

Informational Note Instead of the standard English analyzer, the Chinese
analyzer is used.

Property: search.operator

Example Value: search.operator = OR

Informational Note Boolean search operator to use. The currently sup-
ported values are OR and AND. If this configuration
item is missing or commented out, OR is used. AND
requires all the search terms to be present. OR re-
quires one or more search terms to be present.

Property: search.maxfieldlength

Example Value: search.maxfieldlength = 10000

Informational Note This is the maximum number of terms indexed for a
single field in Lucene. The default is 10,000 words—
often not enough for full-text indexing. If you change
this, you will need to re-index for the change to
take effect on previously added items. -1 = unlimited
(Integer.MAG_VALUE)

Property: search.index.n

Example Value: search.index.1 = author:dc.contributor.*

Informational Note See the details of this particular entry below.

For example, the following entries appear in the default DSpace installation:

search.index.1 = author:dc.contributor.*
search.index.2 = author:dc.creator.*
search.index.3 = title:dc.title.*
search.index.4 = keyword:dc.subject.*
search.index.5 = abstract:dc.description.abstract
search.index.6 = author:dc.description.statementofresponsibility

The dspace.cfg Configuration Properties File

87

search.index.7 = series:dc.relation.ispartofseries
search.index.8 = abstract:dc.description.tableofcontents
search.index.9 = mime:dc.format.mimetype
search.index.10 = sponsor:dc.description.sponsorship
search.index.11 = id:dc.identifier.*
search.index.11 = language:dc.language.iso

The format of each entry is search.index.<id> = <search label> : <schema> . <metadata field> where:

<id> is an incremental number to distinguish each search
index entry

<search label> is the identifier for the search field this index will
correspond to

<schema> is the schema used. Dublin Core (DC) is the default.
Others are possible.

<metadata field> is the DSpace metadata field to be indexed.

In the example above, search.index.1 and search.index.2 and search.index.3 are configured as the au-
thor search field. The author index is created by Lucene indexing all dc.contributor., dc.creator. and
description.statementofresponsibility metadata fields.

After changing the configuration run /[dspace]/bin/index-init to regenerate the indexes.

While the indexes are created, this only affects the search results and has no effect on the search components
of the user interface. One will need to customize the user interface to reflect the changes, for example, to
add the a new search category to the Advanced Search.

In the above examples, notice the asterisk . The metadata field (at least for Dublin Core) is made up of the
"element" and the "qualifier". The asterisk is used as the "wildcard". So, for example, keyword.dc.subject.
will index all subjects regardless if the term resides in a qualified field. (subject versus subject.lcsh).
One could customize the search and only index LCSH (Library of Congress Subject Headings) with
the following entry keyword:dc.subject.lcsh_ instead_ of keyword:dc.subject.

5.3.12. Proxy Settings

These settings for proxy are commented out by default. Uncomment and specify both properties if proxy
server is required for external http requests. Use regular host name without port number.

Property: http.proxy.host

Example Value http.proxy.host = proxy.myu.edu

Informational Note Enter the host name without the port number.

Property: http.proxy.port

Example Value http.proxy.port = 2048

Informational Note Enter the port number for the proxy server.

5.3.13. Configuring Media Filters

Media or Format Filters are classes used to generate derivative or alternative versions of content or bitstreams
within DSpace. For example, the PDF Media Filter will extract textual content from PDF bitstreams, the
JPEG Media Filter can create thumbnails from image bitstreams.

The dspace.cfg Configuration Properties File

88

Media Filters are configured as Named Plugins, with each filter also having a separate configuration setting
(in dspace.cfg) indicating which formats it can process. The default configuration is shown below.

Property: filter.plugins

Example Value: (See example below)

filter.plugins = PDF Text Extractor, Html
 Text Extractor, \
 Word Text
 Extractor, JPEG Thumbnail

Informational Note: Place the names of the enabled MediaFilter or For-
matFilter plugins. To enable Branded Preview, com-
ment out the previous one line and then uncomment
the two lines in found in dspace.cfg:

Word Text Extractor, JPEG Thumbnail,\
 Branded Preview JPEG

Property: plugin.named.org.dspace.app.mediafilter.FormatFilter

Example Value: (See example below)

plugin.named.org.dspace.app.mediafilter.FormatFilter
 = \

 org.dspace.app.mediafilter.PDFFilter = PDF
 Text Extractor, \

 org.dspace.app.mediafilter.HTMLFilter =
 HTML Text Extractor, \

 org.dspace.app.mediafilter.WordFilter =
 Word Text Extractor, \

 org.dspace.app.mediafilter.JPEGFilter =
 JPEG Thumbnail, \

 org.dspace.app.mediafilter.BrandedPreviewJPEGFilter
 = Branded Preview JPEG

Informational Note: Assign "human-understandable" names to each filter

Property: (See key below)

filter.org.dspace.app.mediafilter.PDFFilter.inputFormats
filter.org.dspace.app.mediafilter.HTMLFilter.inputFormats
filter.org.dspace.app.mediafilter.WordFilter.inputFormats
filter.org.dspace.app.mediafilter.JPEGFilter.inputFormats
filter.org.dspace.app.mediafilter.BrandedPreviewJPEGFilter.inputFormats

Example Value: (See example below)

filter.org.dspace.app.mediafilter.PDFFilter.inputFormats
 = Adobe PDF
filter.org.dspace.app.mediafilter.HTMLFilter.inputFormats
 = HTML, Text
filter.org.dspace.app.mediafilter.WordFilter.inputFormats
 = Microsoft Word
filter.org.dspace.app.mediafilter.JPEGFilter.inputFormats
 = BMP, GIF, JPEG, \

 image/png
filter.org.dspace.app.mediafilter.BrandedPreviewJPEGFilter.inputFormats
 = BMP, \

 GIF, JPEG, image/png

The dspace.cfg Configuration Properties File

89

Informational Note: Configure each filter's input format(s)

Property: pdffilter.largepdfs

Example Value: pdffilter.largepdfs = true

Informational Note: It this value is set for "true", all PDF extractions are
written to temp files as they are indexed. This is slow-
er, but helps to ensure that PDFBox software DSpace
uses does not eat up all your memory.

Property: pdffilter.skiponmemoryexception

Example Value: pdffilter.skiponmemoryexception = true

Informational Note: If this value is set for "true", PDFs which still result in
an "Out of Memory" error from PDFBox are skipped
over. These problematic PDFs will never be indexed
until memory usage can be decreased in the PDFBox
software.

Names are assigned to each filter using the plugin.named.org.dspace.app.mediafilter.FormatFilter field (e.g.
by default the PDFilter is named "PDF Text Extractor".

Finally, the appropriate filter.<class path>.inputFormats defines the valid input formats which each filter
can be applied. These format names must match the short description field of the Bitstream Format Registry.

You can also implement more dynamic or configurable Media/Format Filters which extend SelfNamedPlu-
gin

5.3.14. Configurable MODS Dissemination Crosswalk

The MODS crosswalk is a self-named plugin. To configure an instance of the MODS crosswalk, add a prop-
erty to the DSpace configuration starting with "crosswalk.mods.properties."; the final word of the property
name becomes the plugin's name. For example, a property name crosswalk.mods.properties.MODS defines
a crosswalk plugin named "MODS".

The value of this property is a path to a separate properties file containing the configuration for this cross-
walk. The pathname is relative to the DSpace configuration directory, i.e. the config subdirectory of the
DSpace install directory. Example from the _dspace.cfg_file:

Properties: crosswalk.mods.properties.MODS
crosswalk.mods.properties.mods

Example Values: crosswalk.mods.properties.MODS =
 crosswalks/mods.properties
crosswalk.mods.properties.mods =
 crosswalks/mods.properties

Informational Note: This defines a crosswalk named MODS whose con-
figuration comes from the file [dspace]/config/cross-
walks/mods.properties. (In the above example, the
lower-case name was added for OAI-PMH)

The MODS crosswalk properties file is a list of properties describing how DSpace metadata elements are
to be turned into elements of the MODS XML output document. The property name is a concatenation
of the metadata schema, element name, and optionally the qualifier. For example, the contributor.author
element in the native Dublin Core schema would be: dc.contributor.author. The value of the property is a
line containing two segments separated by the vertical bar ("|"): The first part is an XML fragment which is
copied into the output document. The second is an XPath expression describing where in that fragment to
put the value of the metadata element. For example, in this property:

The dspace.cfg Configuration Properties File

90

dc.contributor.author = <mods:name><mods:role><mods:roleTerm
 type="text">author</mods:roleTerm>
 </mods:role><mods:namePart>%s</mods:;
 <mods:namePart>%s</mods:namePart></mods:name> |
 mods:namePart/text()

Some of the examples include the string "%s" in the prototype XML where the text value is to be inserted,
but don't pay any attention to it, it is an artifact that the crosswalk ignores. For example, given an author
named Jack Florey, the crosswalk will insert

<mods:name>
 <mods:role>
 <mods:roleTerm type="text">author</mods:roleTerm>
 </mods:role>
 <mods:namePart> Jack Florey</mods:namePart>
</mods:name>

into the output document. Read the example configuration file for more details.

5.3.15. XSLT-based Crosswalks
The XSLT crosswalks use XSL stylesheet transformation (XSLT) to transform an XML-based external
metadata format to or from DSpace's internal metadata. XSLT crosswalks are much more powerful and
flexible than the configurable MODS and QDC crosswalks, but they demand some esoteric knowledge
(XSL stylesheets). Given that, you can create all the crosswalks you need just by adding stylesheets and
configuration lines, without touching any of the Java code.

The default settings in the dspace.cfg file for submission crosswalk:

Properties: crosswalk.submission.MODS.stylesheet

Example Value: crosswalk.submission.MODS.stylesheet = cross-
walks/mods-submission.xsl

Informational Note: Configuration XSLT-driven submission crosswalk
for MODS

As shown above, there are three (3) parts that make up the properties "key":

crosswalk.submissionPluginName.stylesheet =
 1 2 3 4

crosswalk first part of the property key.submission second part of the property key._PluginName_ is the
name of the plugin. The path value is the path to the file containing the crosswalk stylesheet (relative to /
[dspace]/config).
Here is an example that configures a crosswalk named "LOM" using a stylesheet in [dspace]/config/cross-
walks/d-lom.xsl:

crosswalk.submission.LOM.stylesheet = crosswalks/d-lom.xsl

A dissemination crosswalk can be configured by starting with the property key crosswalk.dissemination.
Example:

crosswalk.dissemination.PluginName.stylesheet = path

The PluginName is the name of the plugin . The path value is the path to the file containing the crosswalk
stylesheet (relative to /[dspace]/config).

You can make two different plugin names point to the same crosswalk, by adding two configuration entries
with the same path:

The dspace.cfg Configuration Properties File

91

crosswalk.submission.MyFormat.stylesheet = crosswalks/myformat.xslt
 crosswalk.submission.almost_DC.stylesheet = crosswalks/myformat.xslt

The dissemination crosswalk must also be configured with an XML Namespace (including prefix and URI)
and an XML schema for its output format. This is configured on additional properties in the DSpace con-
figuration:

crosswalk.dissemination.PluginName.namespace.Prefix = namespace-URI
 crosswalk.dissemination.PluginName.schemaLocation = schemaLocation value

For example:

crosswalk.dissemination.qdc.namespace.dc = http://purl.org/dc/elements/1.1/
 crosswalk.dissemination.qdc.namespace.dcterms = http://purl.org/dc/terms/
 crosswalk.dissemination.qdc.schemalocation = http://purl.org/dc/elements/1.1/ \
 http://dublincore.org/schemas/xmls/qdc/2003/04/02/qualifieddc.xsd

Testing XSLT Crosswalks

The XSLT crosswalks will automatically reload an XSL stylesheet that has been modified, so you can edit
and test stylesheets without restarting DSpace. You can test a dissemination crosswalk by hooking it up to
an OAI-PMH crosswalk and using an OAI request to get the metadata for a known item.

Testing the submission crosswalk is more difficult, so we have supplied a command-line utility to help. It
calls the crosswalk plugin to translate an XML document you submit, and displays the resulting intermediate
XML (DIM). Invoke it with:

[dspace]/bin/dsrun
 org.dspace.content.crosswalk.XSLTIngestionCrosswalk [-l] plugin input-file

where plugin is the name of the crosswalk plugin to test (e.g. "LOM"), and input-file is a file containing an
XML document of metadata in the appropriate format.

Add the -l option to pass the ingestion crosswalk a list of elements instead of a whole document, as if the
List form of the ingest() method had been called. This is needed to test ingesters for formats like DC that
get called with lists of elements instead of a root element.

5.3.16. Configurable Qualified Dublin Core (QDC) dissemination
crosswalk

The QDC crosswalk is a self-named plugin. To configure an instance of the QDC crosswalk, add a property
to the DSpace configuration starting with "crosswalk.qdc.properties."; the final word of the property name
becomes the plugin's name. For example, a property name crosswalk.qdc.properties.QDC defines a cross-
walk plugin named "QDC".

The following is from dspace.cfg file:

Properties: crosswalk.qdc.namspace.qdc.dc

Example Value: _crosswalk.qdc.namspace.qdc.dc = http://purl.org/
dc/elements/1.1_

Properties: crosswalk.qdc.namspace.qdc.dcterms

Example Value: _crosswalk.qdc.namspace.qdc.dc = http://purl.org/
dc/terms/_

Properties: crosswalk.qdc.schemaLocation.QDC

Example Value: crosswalk.qdc.schemaLocation.QDC = http://
www.purl.org/dc/terms \

http://purl.org/dc/elements/1.1_
http://purl.org/dc/elements/1.1_
http://purl.org/dc/terms/_
http://purl.org/dc/terms/_

The dspace.cfg Configuration Properties File

92

 http://dublincore.org/schemas/xmls/
qdc/2006/01/06/dcterms.xsd \
 http://purl.org/dc/elements/1.1 \
 http://dublincore.org/schemas/xmls/
qdc/2006/01/06/dc.xsd

Properties: crosswalk.qdc.properties.QDC

Example Value: crosswalk.qdc.properties.QDC = cross-
walks/QDC.properties

Informational Note: Configuration of the QDC Crosswalk dissemination
plugin for Qualified DC. (Add lower-case name for
OAI-PMH. That is, change QDC to qdc.)

In the property key "crosswalk.qdc.properties.QDC" the value of this property is a path to a separate prop-
erties file containing the configuration for this crosswalk. The pathname is relative to the DSpace config-
uration directory _/[dspace]/config. Referring back to the "Example Value" for this property key, one has
_crosswalks/qdc.properties which defines a crosswalk named QDC whose configuration comes from the
file [dspace]/config/crosswalks/qdc.properties.

You will also need to configure the namespaces and schema location strings for the XML output generated
by this crosswalk. The namespaces properties names are formatted:

crosswalk.qdc.namespace.prefix = uri

where prefix is the namespace prefix and uri is the namespace URI. See the above Property and Example
Value keys as the default dspace.cfg has been configured.

The QDC crosswalk properties file is a list of properties describing how DSpace metadata elements are to
be turned into elements of the Qualified DC XML output document. The property name is a concatenation
of the metadata schema, element name, and optionally the qualifier. For example, the contributor.author
element in the native Dublin Core schema would be: dc.contributor.author. The value of the property is an
XML fragment, the element whose value will be set to the value of the metadata field in the property key.

For example, in this property:

dc.coverage.temporal = <dcterms:temporal />

the generated XML in the output document would look like, e.g.:

<dcterms:temporal>Fall, 2005</dcterms:temporal>

5.3.17. Configuring Crosswalk Plugins

Ingestion crosswalk plugins are configured as named or self-named plugins for the interface
org.dspace.content.crosswalk.IngestionCrosswalk. Dissemination crosswalk plugins are configured as
named or self-named plugins for the interface org.dspace.content.crosswalk.DisseminationCrosswalk.

You can add names for existing crosswalks, add new plugin classes, and add new configurations for the
configurable crosswalks as noted below.

5.3.18. Configuring Packager Plugins

Package ingester plugins are configured as named or self-named plugins for the interface
org.dspace.content.packager.PackageIngester. Package disseminator plugins are configured as named or
self-named plugins for the interface org.dspace.content.packager.PackageDisseminator.

You can add names for the existing plugins, and add new plugins, by altering these configuration properties.
See the Plugin Manager architecture for more information about plugins.

The dspace.cfg Configuration Properties File

93

5.3.19. Event System Configuration

Properties: event.dispatcher.default.class
 event.dispatcher.default.consumers

Example Value: event.dispatcher.default.class =
 org.dspace.event.BasicDispatcher
event.dispatcher.default.consumers =
 search, browse, eperson

Informational Note: This is the default synchronous dispatcher (Same be-
havior as traditional DSpace).

Properties: event.dispatcher.noindex.class
event.dispatcher.noindex.consumers

Example Value: event.dispatcher.noindex.class =
 org.dspace.event.BasicDispatcher
event.dispatcher.noindex.consumers =
 eperson

Informational Note: The noindex dispatcher will not create search or
browse indexes (useful for batch item imports).

Properties: event.consumer.search.class
event.consumer.search.filters

Example Value: (See example below)

event.consumer.search.class =
 org.dspace.search.SearchConsumer
event.consumer.search.filters = \
Community|Collection|Item|Bundle+Add|
Create|Modify|Modify_Metadata|Delete|Remove

Informational Note: Consumer to maintain the search index.

Properties: event.consumer.browse.class
event.consumer.browse.filters

Example Value: (See example below)

event.consumer.browse.class =
 org.dspace.browse.BrowseConsumer
event.consumer.browse.filters = \
Community|Collection|Item|Bundle+Add|
Create|Modify|Modify_Metadata|Delete|Remove

Informational Note: Consumer to maintain the browse index.

Properties: event.consumer.eperson.class
event.consumer.eperson.filters

Example Value: event.consumer.eperson.class =
 org.dspace.eperson.EPersonConsumer
event.consumer.eperson.filters = EPerson
+Create

Informational Note: Consumer related to EPerson changes

Properties: event.consumer.test.class
event.consumer.test.filters

The dspace.cfg Configuration Properties File

94

Example Value: event.consumer.test.class =
 org.dspace.event.TestConsumer
event.consumer.test.filters = All+All

Informational Note: Test consumer for debugging and monitoring. Com-
mented out by default.

Properties: testConsumer.verbose

Example Value: testConsumer.verbose = true

Informational Note: Set this to true to enable testConsumer messages to
standard output. Commented out by default.

5.3.20. Checksum Checker Settings
DSpace now comes with a Checksum Checker script ([dspace]/bin/checker) which can be scheduled to
verify the checksum of every item within DSpace. Since DSpace calculates and records the checksum of
every file submitted to it, this script is able to determine whether or not a file has been changed (either
manually or by some sort of corruption or virus). The idea being that the earlier you can identify a file has
changed, the more likely you'd be able to recover it (assuming it was not a wanted change).

Property: plugin.single.org.dspace.checker.BitstreamDispatcher

Example Value: plugin.single.org.dspace.checker.BitstreamDispatcher
= org.dspace.checker.SimpleDispatcher

Informational Note: The Default dispatcher is case non is specified.

Property: checker.retention.default

Example Value: checker.retention.default = 10y

Informational Note: This option specifies the default time frame after
which all checksum checks are removed from the
database (defaults to 10 years). This means that after
10 years, all successful or unsuccessful matches are
removed from the database.

Property: checker.retention.CHECKSUM_MATCH

Example Value: checker.retention.CHECKSUM_MATCH = 8w

Informational Note: This option specifies the time frame after which
a successful “match” will be removed from your
DSpace database (defaults to 8 weeks). This means
that after 8 weeks, all successful matches are au-
tomatically deleted from your database (in order to
keep that database table from growing too large).

5.3.21. Item Export and Download Settings
It is possible for an authorized user to request a complete export and download of a DSpace item in a
compressed zip file. This zip file may contain the following:
dublin_core.xmllicense.txtcontents (listing of the contents)_handle_file itself and the extract file if available
The configuration settings control several aspects of this feature:

Property: org.dspace.app.itemexport.work.dir

Example Value: org.dspace.app.itemexport.work.dir =
${dspace.dir}/exports

The dspace.cfg Configuration Properties File

95

Informational Note: The directory where the exports will be done and
compressed.

Property: org.dspace.app.itemexport.download.dir

Example Value: org.dspace.app.itemexport.download.dir =
${dspace.dir}/exports/download

Informational Note The directory where the compressed files will reside
and be read by the downloader.

Property: org.dspace.app.itemexport.life.span.hours

Example Value: org.dspace.app.itemexport.life.span.hours = 48

Informational Note The length of time in hours each archive should live
for. When new archives are created this entry is used
to delete old ones.

Property: org.dspace.app.itemexport.max.size

Example Value: org.dspace.app.itemexport.max.size = 200

Informational Note The maximum size in Megabytes (Mb) that the ex-
port should be. This is enforced before the compres-
sion. Each bitstream's size in each item being export-
ed is added up, if their cumulative sizes are more than
this entry the export is not kicked off.

5.3.22. Subscription Emails
DSpace, through some advanced installation and setup, is able to send out an email to collections that a user
has subscribed. The user who is subscribed to a collection is emailed each time an item id added or modified.
The following property key controls whether or not a user should be notified of a modification.

Property: eperson.subscription.onlynew

Example Value: eperson.subscription.onlynew = true

Informational Note: For backwards compatibility, the subscription emails
by default include any modified items. The property
key is COMMENTED OUT by default.

5.3.23. Settings for the Submission Process
These settings control two aspects of the submission process: thesis submission permission and whether or
not a bitstream file is required when submitting to a collection.

Property: webui.submit.blocktheses

Example Value: webui.submit.blocktheses = false

Informational Note: Controls whether or not that the submission should
be marked as a thesis.

Property: webui.submit.upload.required

Example Value: webui.submit.upload.required = true

Informational Note: Whether or not a file is required to be uploaded dur-
ing the "Upload" step in the submission process. The

The dspace.cfg Configuration Properties File

96

default is true. If set to "false", then the submitter (hu-
man being) has the option to skip the uploading of
a file.

5.3.24. Configuring Creative Commons License
This enables the Creative Commons license step in the submission process of the JSP User Interface (JSPUI).
Submitters are given an opportunity to select a Creative Common license to accompany the item. Creative
Commons license govern the use of the content. For further details, refer to the Creative Commons website
at http://creativecommons.org .

Property: webui.submit.enable-cc

Example Value: webui.submit.enable-cc = false

Informational Note: Set key to "false" if you are not using CC License. Set
key to "true" if you are using CC License.

5.3.25. WEB User Interface Configurations
General Web User Interface Configurations
In this section of Configuration, we address the agnostic WEB User Interface that is used for JSP UI and
XML UI. Some of the configurations will give information towards customization or refer you to the ap-
propriate documentation.

Property: webui.browse.thubnail.show

Example Value: webui.browse.thubnail.show = true

Informational Note: Controls whether to display thumbnails on browse
and search result pages. If you have customized
the Browse columnlist, then you must also include
a "thumbnail" column in your configuration. (This
configuration property key is not used by XMLUI. To
show thumbnails using XMLUI, you need to create a
theme which displays them).

Property: webui.browse.thumbnail.maxheight
webui.browse.thumbnail.maxwidth

Example Value: webui.browse.thumbnail.maxheight = 80
webui.browse.thumbnail.maxwidth = 80

Informational Note: This determines the maximum height and maximum
width of the browse/search thumbnails in pixels (px).
This only needs to be set if the thumbnails are re-
quired to be smaller than the dimensions of thumb-
nails generated by MediaFilter.

Property: webui.itme.thumbnail.show

Example Value: webui.itme.thumbnail.show = true

Informational Note: This determines whether or not to display the thumb-
nail against each bitstream. (This configuration prop-
erty key is not used by XMLUI. To show thumbnails
using XMLUI, you need to create a theme which dis-
plays them).

Property: webui.browse.thumbnail.linkbehavior

http://creativecommons.org

The dspace.cfg Configuration Properties File

97

Example Value: webui.browse.thumbnail.linkbehavior = item

Informational Note: This determines where should the clicking on the
thumbnail from browse/search screens take the us-
er. The only values currently supported are "item" or
"bitstream".

Property: thumbnail.maxwidth
thumbnail.maxheight

Example Value: thumbnail.maxwidth 80
thumbnail.maxheight 80

Informational Note: This is the where one sets the maximum height and
width of generated thumbnails.

Property: webui.preview.enabled

Example Value: webui.preview.enabled = false

Informational Note: Whether or not the user can "preview" the image.

Property: webui.preview.maxwidth
webui.preview.maxheight

Example Value: webui.preview.maxwidth = 600
webui.preview.maxheight = 600

Informational Note: This sets the maximum dimensions for the preview
image.

Property: webui.preview.brand

Example Value: webui.preview.brand = My Institution Name

Informational Note: This is the brand text that will appear with the image.

Property: webui.preview.brand.abbrev

Example Value: webui.preview.brand.abbrev = MyOrg

Informational Note: An abbreviated form of the full Branded Name. This
will be used when the preview image cannot fit the
normal text.

Property: webui.preview.brand.height

Example Value: webui.preview.brand.height = 20

Informational Note: The height (in px) of the brand

Property: webui.preview.brand.font
webui.preview.brand.fontpoint

Example Value: webui.preview.brand.font = SanSerif
webui.preview.brand.fontpoint = 12

Informational Note: The font settings for the brand text.

Property: webui.preview.dc

The dspace.cfg Configuration Properties File

98

Example Value: webui.preview.dc = rights

Informational Note: The Dublin Core field that will display along with
the preview.

Property: webui.strengths.show

Example Value: webui.strengths.show = false

Informational Note: Determines if communities and collections should
display item counts when listed. The default behav-
ior if omitted, is true. (This configuration property
key is not used by XMLUI. To show thumbnails using
XMLUI, you need to create a theme which displays
them).

Property: webui.strengths.cache

Example Value: webui.strengths.cache = false

Informational Note: When showing the strengths, should they be count-
ed in real time, or fetched from the cache. Counts
fetched in real time will perform an actual count
of the database contents every time a page with
this feature is requested, which will not scale.
If you set the property key is set to cache
("true") you must run the following command pe-
riodically to update the count: /[dspace]/bin/dsrun
org.dspace.browse.ItemCounter. The default is to
count in real time (set to "false").

5.3.26. Browse Index Configuration

The browse indexes for DSpace can be extensively configured. This section of the configuration allows you
to take control of the indexes you wish to browse, and how you wish to present the results. The configuration
is broken into several parts: defining the indexes, defining the fields upon which users can sort results,
defining truncation for potentially long fields (e.g. authors), setting cross-links between different browse
contexts (e.g. from an author's name to a complete list of their items), how many recent submissions to
display, and configuration for item mapping browse.

Property: webui.browse.index.<n>

Example Value: _webui.browse.index.1 =
dateissued:metadata:dc.date.issued:date:full _

Informational Note: This is an example of how one "Defines the Indexes".
SeeDefining the Indexes in the next sub-section.

Property: webui.itemlist.sort-option.<n>

Example Value: webui.itemlist.sort-option.1 = title:dc.title:title

Informational Note: This is an example of how one "Defines the Sort Op-
tions". See Defining Sort Options in the following
sub-section.

The dspace.cfg Configuration Properties File

99

Defining the Indexes.

DSpace arrives with four default indexes already defined: author, title, date issued, and subjects. Users may
also define additional indexes or re-configure the current indexes for different levels of specificity. For
example, the default entries that appear in the dspace.cfg as default installation:

webui.browse.index.1 = dateissued:metadata:dc.date.issued:date:full
webui.browse.index.2 = author:metadata:dc.contributor.*:text
webui.browse.index.3 = title:metadata:dc.title:title:full
webui.browse.index.4 = subject:metadata:dc.subject.*:text
#webui.browse.index.5 = dateaccessioned:item:dateaccessioned

The format of each entry is webui.browse.index.<n> = <index name>:<metadata>:<schema
prefix>.<element>.<qualifier>:<data-type field>:<sort option>. Please notice that the punctuation is
paramount in typing this property key in the dspace.cfg file. The following table explains each element:

Element Definition and Options (if available)

webui.browse.index.n n is the index number. The index numbers must start
from 1 and increment continuously by 1 thereafter.
Deviation form this will cause an error during in-
stall or a configuration update. So anytime you add a
new browse index, remember to increase the number.
(Commented out index numbers may be used over
again).

<index name> The name by which the index will be
identified. You will need to update your
Messages.properties file to match this field. (The
form used in the Messages.properties file is:
browse.type.metadata.<index name> .

<metadata> Only two options are available: "metadata" or "item"

<schema prefix> The schema used for the field to be index. The default
is dc (for Dublin Core).

<element> The schema element. In Dublin Core, for example,
the author element is referred to as "Contributor".
The user should consult the default Dublin Core
Metadata Registry table in Appendix A.

<qualifier> This is the qualifier to the <element> component.
The user has two choices: an asterisk "" or a prop-
er qualifier of the element. The asterisk is a wild-
card and causes DSpace to index all types of the
schema element. For example, if you have the ele-
ment "contributor" and the qualifier "" then you
would index all contributor data regardless of the
qualifier. Another example, you have the element
"subject" and the qualifier "lcsh" would cause the in-
dexing of only those fields that have the qualifier "lc-
sh". (This means you would only index Library of
Congress Subject Headings and not all data elements
that are subjects.

<datatype field> This refers to the datatype of the field: _date _the in-
dex type will be treated as a date object _title _the in-
dex type will be treated like a title, which will include
a link to the item page _text _the index type will be
treated as plain text. If single mode is specified then
this will link to the full mode list

The dspace.cfg Configuration Properties File

100

Element Definition and Options (if available)

<index display> Choose full or single. This refers to the way that
the index will be displayed in the browse listing.
"Full" will be the full item list as specified by
webui.itemlist.columns ; "single" will be a single list
of only the indexed term.

If you are customizing this list beyond the default, you will need to insert the text you wish to appear in
the navigation and on link and buttons. You need to edit the Messages.properties file. The form of the
parameter(s) in the file:

browse.type.<index name>

Defining Sort Options

Sort options will be available when browsing a list of items (i.e. only in "full" mode, not "single" mode).
You can define an arbitrary number of fields to sort on, irrespective of which fields you display using
web.itemlist.columns. For example, the default entries that appear in the dspace.cfg as default installation:

webui.itemlist.sort-option.1 = title:dc.title:title
webui.itemlist.sort-option.2 = dateissued:dc.date.issued:date
webui.itemlist.sort-option.3 = dateaccessioned:dc.date.accessioned:date

The format of each entry is_web.browse.sort-option.<n> = <option name>:<schema
prefix>.<element>.<qualifier>:<datatype>_. Please notice the punctuation used between the different ele-
ments. The following table explains the each element:

Element Definition and Options (if available)

webui.browse.index.n n is an arbitrary number you choose.

<option name> The name by which the sort option will be identified.
This may be used in later configuration or to locate
the message key (found in Messages.properties file)
for this index.

<schema prefix> The schema used for the field to be index. The default
is dc (for Dublin Core).

<element> The schema element. In Dublin Core, for example,
the author element is referred to as "Contributor".
The user should consult the default Dublin Core
Metadata Registry table in Appendix A.

<qualifier> This is the qualifier to the <element> component.
The user has two choices: an asterisk "*" or a proper
qualifier of the element.

<datatype field> This refers to the datatype of the field: _date_the sort
type will be treated as a date object_text_the sort type
will be treated as plain text.

Browse Index Normalization Rule Configuration

Normalization Rules are those rules that make it possible for the indexes to intermix entries without regard to
case sensitivity. By default, the display of metadata in the browse indexes are case-sensitive. In the example
below, you retrieve separate entries:
Twain, Marktwain, markTWAIN, MARK

The dspace.cfg Configuration Properties File

101

However, clicking through from either of these will result in the same set of items (i.e., any item that contains
either representation in the correct field).

Property: webui.browse.metadata.case-insensitive

Example Value: webui.browse.metadata.case-insensitive = true

Informational Note: This controls the normalization of the index entry.
Uncommenting the option (which is commented out
by default) will make the metadata items case-insen-
sitive. This will result in a single entry in the exam-
ple above. However, the value displayed may be any
one of the above—depending on what representation
was present in the first item indexed.

At the present time, you would need to edit your metadata to clean up the index presentation.

Other Browse Options

We set other browse values in the following section.

Property: webui.browse.value_columns.max

Example Value: webui.browse.value_columns.max = 500

Informational Note: This sets the options for the size (number of charac-
ters) of the fields stored in the database. The default is
0, which is unlimited size for fields holding indexed
data. Some database implementations (e.g. Oracle)
will enforce their own limit on this field size. Reduc-
ing the field size will decrease the potential size of
your database and increase the speed of the browse,
but it will also increase the chance of mis-ordering
of similar fields. The values are commented out, but
proposed values for reasonably performance versus
result quality. This affects the size of field for the
browse value (this will affect display, and value sort-
ing)

Property: webui.browse.sort_columns.max

Example Value: webui.browse.sort_columns.max = 200

Informational Note: Size of field for hidden sort columns (this will af-
fect only sorting, not display). Commented out as de-
fault.

Property: webui.browse.value_columns.omission_mark

Example Value: webui.browse.value_columns.omission_mark = ...

Informational Note: Omission mark to be placed after truncated strings in
display. The default is "...".

Property: plugin.named.org.dspace.sort.OrderFormatDelegate

Example Value: plugin.named.org.dspace.sort.OrderFormatDelegate
 = \
org.dspace.sort.OrderFormatTitleMarc21=title

Informational Note: This sets the option for how the indexes are sorted.
All sort normalizations are carried out by the Order-

The dspace.cfg Configuration Properties File

102

FormatDelegate. The plugin manager can be used to
specify your own delegates for each datatype. The
default datatypes (and delegates) are:

author = org.dspace.sort.OrderFormatAuthor
title = org.dspace.sort.OrderFormatTitle
text = org.dspace.sort.OrderFormatText

If you redefine a default datatype here, the config-
uration will be used in preferences to the default.
However, if you do not explicitly redefine a datatype,
then the default will still be used in addition to the
datatypes you do specify. As of DSpace release 1.5.2,
the multi-lingual MARC21 title ordering is config-
ured as default, as shown in the example above. To
use the previous title ordering (before release 1.5.2),
comment out the configuration in your dspace.cfg
file.

5.3.27. Author (Multiple metadata value) Display

This section actually applies to any field with multiple values, but authors are the define case and example
here.

Property: webui.browse.author-field

Example Value: webui.browse.author-field = dc.contributor.*

Informational Note: This defines which field is the author/editor, etc. list-
ing.

Replace dc.contributor.* with another field if appropriate. The field should be listed in the config-
uration for webui.itemlist.columns, otherwise you will not see its effect. It must also be defined in
webui.itemlist.columns as being of the datatype text otherwise the functionality will be overridden by the
specific data type feature. (This setting is not used by the XMLUI as it is controlled by your theme).

Now that we know which field is our author or other multiple metadata value field we can provide the option
to truncate the number of values displayed by default. We replace the remaining list of values with "et al"
or the language pack specific alternative. Note that this is just for the default, and users will have the option
of changing the number displayed when they browse the results. See the following table:

Property: webui.browse.author-limit

Example Value: webui.browse.author-limit = <n>

Informational Note: Where <n> is an integer number of values to be dis-
played. Use -1 for unlimited (the default value).

5.3.28. Links to Other Browse Contexts

We can define which fields link to other browse listings. This is useful, for example, to link an author's name
to a list of just that author's items. The effect this has is to create links to browse views for the item clicked
on. If it is a "single" type, it will link to a view of all the items which share that metadata element in common
(i.e. all the papers by a single author). If it is a "full" type, it will link to a view of the standard full browse
page, starting with the value of the link clicked on.

Property: webui.browse.link.<n>

The dspace.cfg Configuration Properties File

103

Example Value: webui.browse.link.1 = author:dc.contributor.*

Informational Note: This is used to configure which fields should link
to other browse listings. This should be associat-
ed with the name of one of the browse indexes
(webui.browse.index.n) with a metadata field listed
in webui.itemlist.columns above. If this condition is
not fulfilled, cross-linking will not work. Note also
that crosslinking only works for metadata fields not
tagged as title in webui.itemlist.columns.

The format of the property key is webui.browse.link.<n> = <index name>:<display column metadata>
Please notice the punctuation used between the elements.

Element Definition and Options (if available)

webui.browse.link.n n is an arbitrary number you choose

<index name> This need to match your entry for the index name
from webui.browse.index property key.

<display column metadata> Use the DC element (and qualifier)

Examples of some browse links used in a real DSpace installation instance:
_webui.browse.link.1 = author:dc.contributor.* _Creates a link for all types of contributors (authors, ed-
itors, illustrators, others, etc.)_webui.browse.link.2 = subject:dc.subject.lcsh _Creates a link to subjects
that are Library of Congress only. In this case, you have a browse index that contains only LC Subject
Headings_webui.browse.link.3 = series:dc.relation.ispartofseries _Creates a link for the browse index "Se-
ries". Please note this is again, a customized browse index and not part of the DSpace distributed release.

5.3.29. Recent Submissions

This allows us to define which index to base Recent Submission display on, and how many we should show
at any one time. This uses the PluginManager to automatically load the relevant plugin for the Community
and Collection home pages. Values given in examples are the defaults supplied in dspace.cfg

Property: recent.submission.sort-option

Example Value: recent.submission.sort-option = dateaccessioned

Informational Note: First is to define the sort name (from
webui.browse.sort-options) to use for displaying re-
cent submissions.

Property: recent.submissions.count

Example Value: recent.submissions.count = 5

Informational Note: Defines how many recent submissions should be dis-
played at any one time.

There will be the need to set up the processors that the PluginManager will load to actually perform the
recent submissions query on the relevant pages. This is already configured by default dspace.cfg so there
should be no need for the administrator/programmer to worry about this.

plugin.sequence.org.dspace.plugin.CommunityHomeProcessor = \
 org.dspace.app.webui.components.RecentCommunitySubmissions

plugin.sequence.org.dspace.plugin.CollectionHomeProcessor = \
 org.dspace.app.webui.components.RecentCollectionSubmissions

The dspace.cfg Configuration Properties File

104

5.3.30. Syndication Feed (RSS) Settings

This will enable syndication feeds—links display on community and collection home pages. This setting is
not used by the XMLUI, as you enable feeds in your theme.

Property: webui.feed.enable

Example Value: webui.feed.enable = false

Informational Note:
By default, RSS feeds are set to false . Change
key to "true" to enable.

Property: webui.feed.items

Example Value: webui.feed.items = 4

Informational Note: Defines the number of DSpace items per feed (the
most recent submissions)

Property: webui.feed.cache.size

Example Value: webui.feed.cache.size = 100

Informational Note: Defines the maximum number of feeds in memory
cache. Value of "0" will disable caching.

Property: webui.feed.cache.age

Example Value: webui.feed.cache.age = 48

Informational Note: Defines the number of hours to keep cached feeds
before checking currency. The value of "0" will force
a check with each request.

Property: webui.feed.formats

Example Value: webui.feed.formats = rss_1.0,rss_2.0,atom_1.0

Informational Note: Defines which syndication formats to offer. You
can use more than one; use a comma-separat-
ed list. The following list are the available val-
ues: rss_0.90, rss_0.91, rss_0.92, rss_0.93, rss_0.94,
rss_1.0, rss_2.0, atom_1.0.

Property: webui.feed.localresolve

Example Value: webui.feed.localresolve = false

Informational Note: By default, (set to false), URLs returned by the feed
will point at the global handle resolver (e.g. http://
hdl.handle.net/123456789/1). If set to true the local
server URLs are used (e.g. http://myserver.myorg/
handle/123456789/1).

Property: webui.feed.item.title
webui.feed.item.date

Example Value: webui.feed.item.title = dc.title
webui.feed.item.date = dc.date.issued

http://hdl.handle.net/123456789/1
http://hdl.handle.net/123456789/1
http://myserver.myorg/handle/123456789/1
http://myserver.myorg/handle/123456789/1

The dspace.cfg Configuration Properties File

105

Informational Note: This set of keys customize each single-value
field displayed in the feed information for each
item. Each of the fields takes a single meta-
data field. The form of the key is <scheme
prefix>.<element>.<qualifier> In place of the qual-
ifier, one may leave it blank to exclude any qualifiers
or use the wildcard "*" to include all qualifiers for a
particular element.

Property: webui.feed.item.description

Example Value: (See example below)

webui.feed.item.description = dc.title,
 dc.contributor.author, \
 dc.contributor.editor,
 dc.description.abstract, \
 dc.description

Informational Note: One can customize the metadata fields to show
in the feed for each item's description. Elements
are displayed in the order they are specified in
dspace.cfg.Like other property keys, the format of
this property key is: webui.feed.item.description =
<scheme prefix>.<element>.<qualifier>. In place
of the qualifier, one may leave it blank to exclude any
qualifiers or use the wildcard "*" to include all qual-
ifiers for a particular element.

Property: webui.feed.item.author

Example Value: webui.feed.item.author = dc.contributor.author

Informational Note: The name of field to use for authors (Atom only);
repeatable.

Property: webui.feed.logo.url

Example Value: webui.feed.logo.url = ${dspace.url}/themes/mysite/
images/mysite-logo.png

Informational Note: Customize the image icon included with the site-
wide feeds. This must be an absolute URL

Property: webui.feed.item.dc.creator
webui.feed.item.dc.date
webui.feed.item.dc.description

Example Value: webui.feed.item.dc.creator =
 dc.contributor.author
webui.feed.item.dc.date = dc.date.issued
webui.feed.item.dc.description =
 dc.description.abstract

Informational Note: These optional properties add structured DC ele-
ments as XML elements to the feed description.
They are not the same thing as, for example,
webui.feed.item.description. Useful when a program
or stylesheet will be transforming a feed and wants
separate author, description, date, etc.

The dspace.cfg Configuration Properties File

106

5.3.31. Content Inline Disposition Threshold
The following configuration is used to change the disposition behavior of the browser. That is, when the
browser will attempt to open the file or download it to the user's specified location. For example, the default
size is 8Mb. When an item being viewed is larger than 8MB, the browser will download the file to the
desktop (or wherever you have it set to download) and the user will have to open it manually.

Property: webui.content_disposition_threshold

Example value: webui.content_disposition_threshold = 8388608

Informational Note: The default value is set to 8Mb. This property key
applies to the JSPUI interface.

Property: xmlui.content_disposition_threshold

Example Value: xmlui.content_disposition_threshold = 8388608

Informational Note: The default value is set to 8Mb. This property key
applies to the XMLUI (Manakin) interface.

Other values are possible:
4 MB = 41943048 MB = 838860816 MB = 16777216

5.3.32. Multi-file HTML Document/Site Settings
The setting is used to configure the "depth" of request for html documents bearing the same name.

Property: webui.html.max-depth-guess
xmlui.html.max-depth-guess

Example Value: webui.html.max-depth-guess = 3
xmlui.html.max-depth-guess = 3

Informational Note: When serving up composite HTML items, how deep
can the request be for us to serve up a file with
the same name? For example, if one receives a re-
quest for "foo/bar/index.html" and one has a bit-
stream called just "index.html", DSpace will serve up
the former bitstream (foo/bar/index.html) for the re-
quest if webui.html.max-depth-guess is 2 or greater.
If webui.html.max-depth-guess is 1 or less, then
DSpace would not serve that bitstream, as the depth
of the file is greater. If webui.html.max-depth-guess
is zero, the request filename and path must always
exactly match the bitstream name. The default is set
to 3.

5.3.33. Sitemap Settings
To aid web crawlers index the content within your repository, you can make use of sitemaps.

Property: sitemap.dir

Example Value: sitemap.dir = ${dspace.dir}/sitemaps

Informational Note: The directory where the generate sitemaps are
stored.

Property: sitemap.engineurls

The dspace.cfg Configuration Properties File

107

Example Value: _sitemap.engineurls = http://www.google.com/web-
masters/sitemaps/ping?sitemap=_

Informational Note: Comma-separated list of search engine URLs to
'ping' when a new Sitemap has been created. In-
clude everything except the Sitemap UL itself (which
will be URL-encoded and appended to form the
actual URL 'pinged'). Add the following to the
above parameter if you have an application ID with
Yahoo: http://search.yahooapis.com/SiteExplor-
ererService/V1/
updateNotification?appid=REPLACE_ME?url=_.
(Replace the component _REPLACE_ME with your
application ID). There is no known 'ping' URL for
MSN/Live search.

5.3.34. Upload File Settings

Property: upload.temp.dir

Example Value: upload.temp.dir = ${dspace.dir}/upload

Informational Note: Where to temporarily store uploaded files.

Property: upload.max

Example Value: upload.max = 536870912

Informational Note: Maximum size of uploaded files in bytes. A negative
setting will result in no limit being set. The default
is set for 512Mb.

5.3.35. Statistical Report Configuration Setting

Property: report.public

Example Value: report.public = false

Informational Note: Controls whether or not the stats can be publicly
available. Set it to false (the default) if you only want
administrators to access the stats, or you do not in-
tended to generate any statistics.

Property: report.dir

Example Value: report.dir = ${dspace.dir}/reports

Informational Note: Directory where the live reports are stored.

5.3.36. JSP Web Interface (JSPUI) Settings
The following section is limited to JSPUI. If the user wishes to use XMLUI settings, please refer to Chapter
7: XMLUI Configuration and Customization.

Property: webui.licence_bundle.show

Example Value: webui.licence_bundle.show =
false

Informational Note: Sets whether to display the con-
tents of the license bundle (often

http://www.google.com/webmasters/sitemaps/ping?sitemap=_
http://www.google.com/webmasters/sitemaps/ping?sitemap=_
http://search.yahooapis.com/SiteExplorererService/V1/updateNotification?appid=REPLACE_ME?url=_
http://search.yahooapis.com/SiteExplorererService/V1/updateNotification?appid=REPLACE_ME?url=_
http://search.yahooapis.com/SiteExplorererService/V1/updateNotification?appid=REPLACE_ME?url=_

The dspace.cfg Configuration Properties File

108

just the deposit license in the stan-
dard DSpace installation).

Property: webui.itemdisplay.default

Example Value: (See example below)

webui.itemdisplay.default
 = dc.title,
 dc.title.alternative, \
 dc.contributor.*,
 dc.subject,
 dc.data.issued(date), \
 dc.publisher,
 dc.identifier.citation, \

 dc.relation.ispartofseries,
 dc.description.abstract, \
 dc.description,
 dc.identifier.govdoc, \

 dc.identifier.uri(link),
 dc.identifier.isbn, \

 dc.identifier.issn,
 dc.identifier.ismn,
 dc.identifier

Informational Note: This is used to customize the
DC metadata fields that dis-
play in the itemdisplay (the
brief display) when pulling
up a record. The format is:
<schema>.<element>.<optionalqualifier>
In place of the qualifier, one
can use the wildcard "" to in-
clude all fields of the same
element, or, leave it blank
for unqualified elements. Addi-
tionally, two additional options
are available for behavior/ren-
dering: (date) and (link). See
the following examples: dc.title
= Dublin Core element 'ti-
tle' (unqualified)dc.title.alternative
= DC element 'title', quali-
fier 'alternative'dc.title. = All
fields with Dublin Core el-
ement 'title' (any or no
qualifier)dc.identifier.uri(link) =
DC identifier.uri, rendered as
a link_dc.date.issued(date)_ =
DC date.issued, rendered as a
dateThe Messages.properties file
controls how the fields defined
above will display to the us-
er. If the field is missing
from the Messages.properties_file,
it will not be display. Look
in _Messages.properties under
metadata.dc.<field>. Example:

The dspace.cfg Configuration Properties File

109

metadata.dc.contributor.other
 = Authors
metadata.dc.contributor.author
 = Authors
metadata.dc.title.*
 = Title

Please note: The order in which
you place the values to the property
key control the order in which they
will display to the user on the out-
side world. (See the Example Val-
ue above).

Property: webui.resolver.1.urn
webui.resolver.1.baseurl
webui.resolver.2.urn
webui.resolver.2.baseurl

Example Value: webui.resolver.1.urn = doi
webui.resolver.1.baseurl =
 http://dx.doi.org/
webui.resolver.2.urn = hdl
webui.resolver.2.baseurl =
 http://hdl.handle.net/

Informational Note: When using "resolver" in
webui.itemdisplay to render iden-
tifiers as resolvable links, the
base URL is take from
<code>webui.resolver.<n>.baseurl<code>
where
<code>webui.resolver.<n>.baseurl<code>
matches the urn specified in the
metadata value. The value is ap-
pended to the "baseurl" as is, so
the baseurl needs to end with the
forward slash almost in any case.
If no urn is specified in the val-
ue it will be displayed as simple
text.For the doi and hdl urn de-
faults values are provided, respec-
tively http://dc.doi.org and http://
hdl.handle.net are used. If a meta-
data value with style "doi", "han-
dle" or "resolver" matches a URL
already, it is simply rendered as a
link with no other manipulation.

Property: plugin.single.org.dspace.app.webui.util.StyleSelection

Example Value: plugin.single.org.dspace.app.webui.util.StyleSelection
 = \

 org.dspace.app.web.util.CollectionStyleSelection

 #org.dspace.app.web.util.MetadataStyleSelection

Informational Note: Specify which strategy to use for
select the style for an item.

http://dc.doi.org
http://hdl.handle.net
http://hdl.handle.net

The dspace.cfg Configuration Properties File

110

Property: webui.itemdisplay.thesis.collections

Example Value: webui.itemdisplay.thesis.collections
= 123456789/24, 123456789/35

Informational Note: Specify which collections use
which views by Handle.

Property: webui.itemdisplay.metadata-
style
webui.itemdisplay.metadata-
syle

Example Value: webui.itemdisplay.metadata-
style =
 schema.element[.qualifier|.*]
webui.itemdisplay.metadata-
syle = dc.type

Informational Note: Specify which metadata to use as
name of the style

Property: webui.itemlist.columns

Example Value: webui.itemlist.columns
 = thumbnail,
 dc.date.issued(date),
 dc.title, \
 dc.contributor.*

Informational Note: Customize the DC fields to use
in the item listing page. Ele-
ments will be displayed left to
right in the order they are spec-
ified here. The form is <schema
prefix>.<element>[.<qualifier>

.][(date)], ... Although not a
requirement, it would make
sense to include among the
listed fields at least the date
and title fields as speci-
fied by the webui.browse.index.
configuration options in the
next section mentioned. (cf.)If
you have enabled thumbnails
(webui.browse.thumbnail.show),
you must also include a 'thumb-
nail' entry in your columns—this
is where the thumbnail will be dis-
played.

Property: webui.itemlist.width

Example Value: webui.itemlist.width = *, 130,
60%, 40%

Informational Note: You can customize the width of
each column with the follow-
ing line—you can have numbers
(pixels) or percentages. For the
'thumbnail' column, a setting of
'*' will use the max width spec-
ified for browse thumbnails (cf.
webui.browse.thumbnail.maxwidth,
thumbnail.maxwidth)

The dspace.cfg Configuration Properties File

111

Property: webui.itemlist.browse.<index
 name>.sort.<sort
 name>.columns
webui.itemlist.sort.<sort
 name>.columns
webui.itemlist.browse.<browse
 name>.columns
webui.itemlist.<sort or
 index name>.columns

Example Value: __

Informational Note: You can override the DC fields
used on the listing page for a giv-
en browse index and/or sort option.
As a sort option or index may be
defined on a field that isn't normal-
ly included in the list, this allows
you to display the fields that have
been indexed/sorted on. There are
a number of forms the configu-
ration can take, and the order in
which they are listed below is
the priority in which they will be
used (so a combination of an in-
dex name and sort name will take
precedence over just the browse
name). In the last case, a sort op-
tion name will always take prece-
dence over a browse index name.
Note also, that for any addition-
al columns you list, you will need
to ensure there is an itemlist.<field
name> entry in the messages file.

Property: webui.itemlist.dateaccessioned.columns

Example Value: webui.itemlist.dateaccessioned.columns
= thumbnail,
dc.date.accessioned(date),
dc.title, dc.contributor.*

Informational Note: This would display the date of
the accession in place f the is-
sue date whenever the dateac-
cessioned browsed index or sort
option is selected. Just like
webui.itemlist.columns, you will
need to include a 'thumbnail' en-
try to display the thumbnails in the
item list.

Property: webui.itemlist.dateaccessioned.widths

Example Value: webui.itemlist.dateaccessioned.widths
= *, 130, 60%, 40%

Informational Note: As in the aforementioned prop-
erty key, you can customize the

The dspace.cfg Configuration Properties File

112

width of the columns for each
configured column list, substitut-
ing '.widths' for '.columns' in the
property name. See the setting for
_webui.itemlist.widths_for more
information.

Property: webui.itemlist.tablewidth

Example Value: webui.itemlist.tablewidth = 100%

Informational Note: You can also set the overall size of
the item list table with the follow-
ing setting. It can lead to faster ta-
ble rendering when used with the
column widths above, but not gen-
erally recommended.

5.3.37. Configuring Multilingual Support

Setting the Default Language for the Application

Property: default.locale

Example Value: default.locale = en

Informational Note: The default language for the application is set with
this property key. This is a locale according to
i18n and might consist of country, country_language
or country_language_variant. If no default locale
is defined, then the server default locale will
be used. The format of a local specifier is
described here: http://java.sun.com/j2se/1.4.2/docs/
api/java/util/Locale.html

Supporting More Than One Language

Changes in dspace.cfg

Property: webui.supported.locale

Example Value: webui.supported.locale = en, de or
perhaps_webui.supported.locals = en, en_ca, de_

Informational Note: All the locales that are supported by this instance of
DSpace. Comma separated list.

The table above, if needed and is used will result in:

• a language switch in the default header

• the user will be enabled to choose his/her preferred language, this will be part of his/her profile

• wording of emails

• mails to registered users, e.g. alerting service will use the preferred language of the user

• mails to unregistered users, e.g. suggest an item will use the language of the session

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Locale.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Locale.html

The dspace.cfg Configuration Properties File

113

• according to the language selected for the session, using dspace-admin Edit News will edit the news file
of the language according to session

Related Files

If you set webui.supported.locales make sure that all the related additional files for each language
are available. LOCALE should correspond to the locale set in webui.supported.locales, e. g.: for
webui.supported.locales = en, de, fr, there should be:

• [dspace-source]/dspace/modules/jspui/src/main/resources/Messages.properties

• [dspace-source]/dspace/modules/jspui/src/main/resources/Messages_en.properties

• [dspace-source]/dspace/modules/jspui/src/main/resources/Messages_de.properties

• [dspace-source]/dspace/modules/jspui/src/main/resources/Messages_fr.properties
Files to be localized:

• [dspace-source]/dspace/modules/jspui/src/main/resources/Messages_LOCALE.properties

• [dspace-source]/dspace/config/input-forms_LOCALE.xml

• [dspace-source]/dspace/config/default_LOCALE.licenseshould be pure ascii

• [dspace-source]/dspace/config/news-top_LOCALE.html

• [dspace-source]/dspace/config/news-side_LOCALE.html

• [dspace-source]/dspace/config/emails/change_password_LOCALE

• [dspace-source]/dspace/config/emails/feedback_LOCALE

• [dspace-source]/dspace/config/emails/internal_error_LOCALE

• [dspace-source]/dspace/config/emails/register_LOCALE

• [dspace-source]/dspace/config/emails/submit_archive_LOCALE

• [dspace-source]/dspace/config/emails/submit_reject_LOCALE

• [dspace-source]/dspace/config/emails/submit_task_LOCALE

• [dspace-source]/dspace/config/emails/subscription_LOCALE

• [dspace-source]/dspace/config/emails/suggest_LOCALE

• [dspace]/webapps/jspui/help/collection-admin_LOCALE.htmlin html keep the jump link as original; must
be copied to [dspace-source]/dspace/modules/jspui/src/main/webapp/help

• [dspace]/webapps/jspui/help/index_LOCALE.htmlmust be copied to [dspace-source]/dspace/mod-
ules/jspui/src/main/webapp/help

• [dspace]/webapps/jspui/help/site-admin_LOCALE.htmlmust be copied to [dspace-source]/dspace/mod-
ules/jspui/src/main/webapp/help

5.3.38. Item Mapper

Because the item mapper requires a primitive implementation of the browse system to be present, we simply
need to tell that system which of our indexes defines the author browse (or equivalent) so that the mapper
can list authors' items for mapping

The dspace.cfg Configuration Properties File

114

Define the index name (from webui.browse.index) to use for displaying items by author.

Property: itemmap.author.index

Example Value: itemmap.author.index = author

Informational Note: If you change the name of your author browse field,
you will also need to update this property key.

5.3.39. Display of Group Membership

Property: webui.mydspace.showgroupmembership

Example Value: webui.mydspace.showgroupmembership = false

Informational Note: To display group membership set to "true". If omit-
ted, the default behavior is false.

5.3.40. SFX Server

SFX Server is an OpenURL Resolver.

Property: sfx.server.url

Example Value: _sfx.server.url = http://sfx.myu.edu:8888/sfx?_

Informational Note: SFX query is appended to this URL. If this prop-
erty is commented out or omitted, SFX support is
switched off.

H3. Item Recommendation Setting

Property: webui.suggest.enable

Example Value: webui.suggest.enable = true

Informational Note: Show a link to the item recommendation page from
item display page.

Property: webui.suggest.loggedinusers.only

Example Value: webui.suggest.loggedinusers.only = true

Informational Note: Enable only if the user is logged in. If this key com-
mented out, the default value is false.

H3. Controlled Vocabulary Settings

DSpace now supports controlled vocabularies to confine the set of keywords that users can use while de-
scribing items.

Property: webui.controlledvocabulary.enable

Example Value: webui.controlledvocabulary.enable = true

Informational Note: Enable or disable the controlled vocabulary add-
on. WARNING: This feature is not compatible with
WAI (it requires javascript to function).

The need for a limited set of keywords is important since it eliminates the ambiguity of a free description
system, consequently simplifying the task of finding specific items of information.

http://sfx.myu.edu:8888/sfx?_

The dspace.cfg Configuration Properties File

115

The controlled vocabulary add-on allows the user to choose from a defined set of keywords organized in an
tree (taxonomy) and then use these keywords to describe items while they are being submitted.

We have also developed a small search engine that displays the classification tree (or taxonomy) allowing
the user to select the branches that best describe the information that he/she seeks.

The taxonomies are described in XML following this (very simple) structure:

<node id="acmccs98" label="ACMCCS98">
 <isComposedBy>
 <node id="A." label="General Literature">
 <isComposedBy>
 <node id="A.0" label="GENERAL"/>
 <node id="A.1" label="INTRODUCTORY AND SURVEY"/>
 </isComposedBy>
 </node>
 </isComposedBy>
</node>

Your are free to use any application you want to create your controlled vocabularies. A simple text editor
should be enough for small projects. Bigger projects will require more complex tools. You may use Protegé
to create your taxonomies, save them as OWL and then use a XML Stylesheet (XSLT) to transform your
documents to the appropriate format. Future enhancements to this add-on should make it compatible with
standard schemas such as OWL or RDF.

In order to make DSpace compatible with WAI 2.0, the add-on is turned off by default (the add-on relies
strongly on Javascript to function). It can be activated by setting the following property in dspace.cfg:

webui.controlledvocabulary.enable = true

New vocabularies should be placed in [dspace]/config/controlled-vocabularies/ and must be according to
the structure described. A validation XML Schema can be downloaded controlledvocabulary.xsd.

Vocabularies need to be associated with the correspondent DC metadata fields. Edit the file [dspace]/con-
fig/input-forms.xml and place a "vocabulary" tag under the "field" element that you want to control. Set value
of the "vocabulary" element to the name of the file that contains the vocabulary, leaving out the extension
(the add-on will only load files with extension "*.xml"). For example:

<field>
 <dc-schema>dc</dc-schema>
 <dc-element>subject</dc-element>
 <dc-qualifier></dc-qualifier>
 <!-- An input-type of twobox MUST be marked as repeatable -->
 <repeatable>true</repeatable>
 <label>Subject Keywords</label>
 <input-type>twobox</input-type>
 <hint> Enter appropriate subject keywords or phrases below. </hint>
 <required></required>
 <vocabulary [closed="false"]>nsi</vocabulary>
</field>

The vocabulary element has an optional boolean attribute closed that can be used to force input only with
the javascript of controlled-vocabulary add-on. The default behavior (i.e. without this attribute) is as set
closed="false". This allow the user also to enter the value in free way.

The following vocabularies are currently available by default:

• nsi - nsi.xml - The Norwegian Science Index

• srsc - srsc.xml - Swedish Research Subject Categories

5.3.41. XMLUI Specific Configuration
The DSpace digital repository supports two user interfaces: one based upon JSP technologies and the other
based upon the Apache Cocoon framework. This section describes those configurations settings which are

The dspace.cfg Configuration Properties File

116

specific to the XMLUI interface based upon the Cocoon framework. (Prior to DSpace Release 1.5.1 XMLUI
was referred to Manakin. You may still see references to "Manakin")

Property: xmlui.supported.locales

Example Value: xmlui.supported.locales = en, de

Informational Note: A list of supported locales for Manakin. Manakin
will look at a user's browser configuration for the first
language that appears in this list to make available
to in the interface. This parameter is a comma sep-
arated list of Locales. All types of Locales country,
country_language, country_language_variant. Note
that if the appropriate files are not present (i.e.
Messages_XX_XX.xml) then Manakin will fall back
through to a more general language.

Property: xmlui.force.ssl

Example Value: xmlui.force.ssl = true

Informational Note: Force all authenticated connections to use SSL, on-
ly non-authenticated connections are allowed over
plain http. If set to true, then you need to ensure that
the 'dspace.hostname' parameter is set to the correct-
ly.

Property: xmlui.user.registration

Example Value: xmlui.user.registration = true

Informational Note: Determine if new users should be allowed to register.
This parameter is useful in conjunction with Shibbo-
leth where you want to disallow registration because
Shibboleth will automatically register the user. De-
fault value is true.

Property: xmlui.user.editmetadata

Example Value: xmlui.user.editmetadata = true

Informational Note: Determines if users should be able to edit their own
metadata. This parameter is useful in conjunction
with Shibboleth where you want to disable the user's
ability to edit their metadata because it came from
Shibboleth. Default value is true.

Property: xmlui.user.assumelogon

Example Value: xmlui.user.assumelogon = true

Informational Note: Determine if super administrators (those whom are in
the Administrators group) can login as another user
from the "edit eperson" page. This is useful for de-
bugging problems in a running dspace instance, es-
pecially in the workflow process. The default value
is false, i.e., no one may assume the login of another
user.

Property: xmlui.user.loginredirect

The dspace.cfg Configuration Properties File

117

Example Value: xmlui.user.loginredirect = /profile

Informational Note: After a user has logged into the system, which url
should they be directed? Leave this parameter blank
or undefined to direct users to the homepage, or /pro-
file for the user's profile, or another reasonable choice
is /submissions to see if the user has any tasks await-
ing their attention. The default is the repository home
page.

Property: xmlui.theme.allowoverrides

Example Value: xmlui.theme.allowoverrides = false

Informational Note: Allow the user to override which theme is used to dis-
play a particular page. When submitting a request add
the HTTP parameter "themepath" which corresponds
to a particular theme, that specified theme will be
used instead of the any other configured theme. Note
that this is a potential security hole allowing execu-
tion of unintended code on the server, this option
is only for development and debugging it should be
turned off for any production repository. The default
value unless otherwise specified is "false".

Property: xmlui.bundle.upload

Example Value: xmlui.bundle.upload = ORIGINAL, METADATA,
THUMBNAIL, LICENSE, CC_LICENSE

Informational Note: Determine which bundles administrators and collec-
tion administrators may upload into an existing item
through the administrative interface. If the user does
not have the appropriate privileges (add and write)
on the bundle then that bundle will not be shown to
the user as an option.

Property: xmlui.community-list.render.full

Example Value: xmlui.community-list.render.full = true

Informational Note: On the community-list page should all the metada-
ta about a community/collection be available to the
theme. This parameter defaults to true, but if you
are experiencing performance problems on the com-
munity-list page you should experiment with turning
this option off.

Property: xmlui.community-list.cache

Example Value: xmlui.community-list.cache = 12 hours

Informational Note: Normally, Manakin will fully verify any cache pages
before using a cache copy. This means that when
the community-list page is viewed the database is
queried for each community/collection to see if their
metadata has been modified. This can be expensive
for repositories with a large community tree. To help
solve this problem you can set the cache to be as-
sumed valued for a specific set of time. The downside

The dspace.cfg Configuration Properties File

118

of this is that new or editing communities/collections
may not show up the website for a period of time.

Property: xmlui.bistream.mods

Example Value: xmlui.bistream.mods = true

Informational Note: Optionally, you may configure Manakin to take
advantage of metadata stored as a bitstream. The
MODS metadata file must be inside the "METADA-
TA" bundle and named MODS.xml. If this option is
set to 'true' and the bitstream is present then it is made
available to the theme for display.

Property: xmlui.bitstream.mets

Example Value: xmlui.bitstream.mets = true

Informational Note: Optionally, you may configure Manakin to take ad-
vantage of metadata stored as a bitstream. The METS
metadata file must be inside the "METADATA" bun-
dle and named METS.xml. If this optino is set to
"true" and the bitstream is present then it is made
available to the theme for display.

Property: xmlui.google.analytics.key

Example Value: xmlui.google.analytics.key = UA-XXXXXX-X

Informational Note: If you would like to use google analytics to track gen-
eral website statistics then use the following param-
eter to provide your analytics key. First sign up for
an account at http://analytics.google.com, then create
an entry for your repositories website. Google An-
alytics will give you a snipit of javascript code to
place on your site, inside that snip it is your google
analytics key usually found in the line: _uacct =
"UA-XXXXXXX-X" Take this key (just the UA-
XXXXXX-X part) and place it here in this parame-
ter.

Property: xmlui.controlpanel.activity.max

Example Value: xmlui.controlpanel.activity.max = 250

Informational Note: Assign how many page views will be recorded and
displayed in the control panel's activity viewer. The
activity tab allows an administrator to debug prob-
lems in a running DSpace by understanding who and
how their dspace is currently being used. The default
value is 250.

Property: xmlui.controlpanel.activity.ipheader

Example Value: xmlui.controlpanel.activity.ipheader = X-For-
ward-For

Informational Note: Determine where the control panel's activity viewer
recieves an events IP address from. If your DSpace is
in a load balanced enviornment or otherwise behind

http://analytics.google.com

The dspace.cfg Configuration Properties File

119

a context-switch then you will need to set the para-
mater to the HTTP parameter that records the origi-
nal IP address.

5.3.42. OAI-PMH Configuration and Activation

In the following sections, you will learn how to configure OAI-PMH and activate additional OAI-PMH
crosswalks. The user is also referred to 9.2OAI-PMH Data Provider for greater depth details of the program.

OAI-PMH Configuration

Property: oai.didl.maxresponse

Example Value: oai.didle.maxresponse = 0

Informational Note: Max response size for DIDL. This is the maxi-
mum size in bytes of the files you wish to enclose
Base64 encoded in your responses, remember that
the base64 encoding process uses a lot of memo-
ry. We recommend at most 200000 for answers of
30 records each on a 1 Gigabyte machine. Ultimate-
ly this will change to a streaming model and re-
move this restriction. Also please remember to allo-
cate plenty of memory, at least 512 MB to your Tom-
cat. Optional: DSpace uses 100 records as the limit
for the oai responses. You can alter this by chang-
ing /[dspace-source]/dspace-oai/dspace-oai-api/
src/main/java/org/dspace/app/oai/
DSpaceOAICatalog.java to codify the declaration:
private final int MAX_RECORDS = 100 to private
final int MAX_RECORDS = 30

Activating Additional OAI-PMH Crosswalks

DSpace comes with an unqualified DC Crosswalk used in the default OAI-PMH data provider. There are
also other Crosswalks bundled with the DSpace distribution which can be activated by editing one or more
configuration files. How to do this for each available Crosswalk is described below. The DSpace source
includes the following crosswalk plugins available for use with OAI-PMH:

• mets - The manifest document from a DSpace METS SIP.

• mods - MODS metadata, produced by the table-driven MODS dissemination crosswalk.

• qdc - Qualfied Dublin Core, produced by the configurable QDC crosswalk. Note that this QDC does not
include all of the DSpace "dublin core" metadata fields, since the XML standard for QDC is defined for
a different set of elements and qualifiers.
OAI-PMH crosswalks based on Crosswalk Plugins are activated as follows:

1. Ensure the crosswalk plugin has a lower-case name (possibly in addition to its upper-case name) in the
plugin configuration.

2. Add a line to the file config/templates/oaicat.properties of the
form:Crosswalks.plugin_name=org.dspace.app.oai.PluginCrosswalk substituting the plugin's name, e.g.
"mets" or "qdc"_for _plugin_name.

3. Run the bin/install-configs script

4. Restart your servlet container, e.g. Tomcat, for the change to take effect. DIDL

The dspace.cfg Configuration Properties File

120

By activating the DIDL provider, DSpace items are represented as MPEG-21 DIDL objects. These DIDL
objects are XML documents that wrap both the Dublin Core metadata that describes the DSpace item and
its actual bitstreams. A bitstream is provided inline in the DIDL object in a base64 encoded manner, and/or
by means of a pointer to the bitstream. The data provider exposes DIDL objects via the metadataPrefix didl.

The crosswalk does not deal with special characters and purposely skips dissemination of the license.txt file
awaiting a better understanding on how to map DSpace rights information to MPEG21-DIDL.

The DIDL Crosswalk can be activated as follows:

1. Uncomment the oai.didl.maxresponse item in dspace.cfg

2. Uncomment the DIDL Crosswalk entry from the config/templates/oaicat.properties file

3. Run the bin/install-configs script

4. Restart Tomcat

5. Verify the Crosswalk is activated by accessing a URL such as _http://mydspace/oai/re-
quest?verb=ListRecords&metadataPrefix=didl_

5.3.43. Delegation Administration
(Authorization System Configuration)|Property: |core.authorization.community-admin.create-subelement|

Example Value: core.authorization.community-admin.create-
subelement = true

Informational Note: It is now possible to delegate the administration of
Communities and Collections without the need of
the Administrator Superuser. The delegation uses an
"inherited" technique. A community admin will be
a collection admin for all the collections within the
community and a collection admin will be always
an item admin for all the item owned by the collec-
tion. All the functions that are allowed to user with
WRITE permission on an object will always allowed
to be the ADMIN of the object (e.g. community/col-
lection/admin will be always allowed to edit metada-
ta of the object). The default will be "on" for all the
configurations.

Community Administration: subcommunities and
collections

core.authorization.community-admin.create-
subelement
core.authorization.community-admin.delete-
subelement

then administers the following keys: core.authorization.community-admin.policies
core.authorization.community-admin.admin-
group

Collections in the above community: core.authorization.community-
admin.collection.policies
core.authorization.community-
admin.collection.template-item
core.authorization.community-
admin.collection.submitters
core.authorization.community-
admin.collection.workflows
core.authorization.community-
admin.collection.admin-group

Item owned by Collections in the above Community: core.authorization.community-
admin.item.delete

http://mydspace/oai/request?verb=ListRecords&metadataPrefix=didl_
http://mydspace/oai/request?verb=ListRecords&metadataPrefix=didl_

The dspace.cfg Configuration Properties File

121

core.authorization.community-
admin.item.withdraw
core.authorization.community-
admin.item.reinstatiate
core.authorization.community-
admin.item.policies

And also these bundles:

core.authorization.community-
admin.item.create-bitstream
core.authorization.community-
admin.item.delete-bitstream
core.authorization.community-admin.item-
admin.cc-license

Collection Administration: core.authorization.collection-
admin.policies
core.authorization.collection-
admin.template-item
core.authorization.collection-
admin.submitters
core.authorization.collection-
admin.workflows
core.authorization.collection-admin.admin-
group

Item owned by the above Collection

core.authorization.collection-
admin.item.delete
core.authorization.collection-
admin.item.withdraw
core.authorization.collection-
admin.item.reinstatiate
core.authorization.collection-
admin.item.policies

And also these bundles:

core.authorization.collection-
admin.item.create-bitstream
core.authorization.collection-
admin.item.delete-bitstream
core.authorization.collection-admin.item-
admin.cc-license

Item Administration: core.authorization.item-admin.policies

And also these bundles:

core.authorization.item-admin.create-
bitstream
core.authorization.item-admin.delete-
bitstream
core.authorization.item-admin.cc-license

Oracle users should consult Chapter 4 Updating a DSpace Installation regarding the necessary database
changes that need to take place.

5.3.44. Batch Metadata Editing

The following configurations allow the adminstrator extract from the DSpace database a set of records for
editing by a metadata export. It provides an easier way of editing large collections.

The dspace.cfg Configuration Properties File

122

Property: bulkedit.valueseparator

Example Value: __bulkedit.valueseparator =

Informational note The delimiter used to separate val-
ues within a single field. For exam-
ple, this will place the double pipe
between multiple authors appear-
ing in one record (Smith, William

Johannsen, Susan). This applies to
any metadata field that appears
more than once in a record. The us-
er can change this to another char-
acter.

Property: bulkedit.fieldseparator

Example Value: bulkedit.fieldseparator = ,

Informational note The delimiter used to serarate
fields (defaults to a comma for
CSV). Again, the user could
change it something like '$'. If you
wish to use a tab, semicolon, or
hash (#) sign as the delimiter, set
the value to be tab, semicolon or
hash.

bulkedit.fieldseparator =
 tab

Property: bulkedit.gui-item-limit

Example Value: bulkedit.gui-item-limit = 20

Informational note When using the WEBUI, this sets
the limit of the number of items al-
lowed to be edited in one process-
ing. There is no limit when using
the CLI.

Property: bulkedit.ignore-on-export

Example Value: bulkedit.ignore-on-export =
 dc.date.accessioned, \

 dc.date.available, \

 dc.date.updated,
 dc.description.provenance

Informational note Metadata elements to exclude
when exporting via the user inter-
faces, or when using the command
line version and not using the -a
(all) option.

5.3.45. Hiding Metadata
It is now possible to hide metadata from public consumption that is only avaialable to the Administrator.

Property: metadata.hide.dc.description.provenance

Example Value: metadata.hide.dc.description.provenance = true

Informational Note: Hides the metadata in the property key above except
to the administrator. Fields named here are hidden

Optional or Advanced Configuration Settings

123

in the following places UNLESS the logged-in user
is an Administrator:

1. XMLUI metadata XML view, and Item splash
pages (long and short views).

2. JSPUI Item splash pages

3. OAI-PMH server, "oai_dc" format. (Note: Oth-
er formats are *not* affected.) To designate
a field as hidden, add a property here in the
form: _metadata.hide.SCHEMA.ELEMENT.QUALIFIER
= true_This default configuration hides the
dc.description.provenance field, since that usually
contains email addresses which ought to be kept
private and is mainly of interest to administrators.

5.4. Optional or Advanced Configuration Settings
The following section explains how to configure either optional features or advanced features that are not
necessary to make DSpace "out-of-the-box"

5.4.1. The Metadata Format and Bitstream Format Registries
The [dspace]/config/registries directory contains three XML files. These are used to load the initial contents
of the Dublin Core Metadata registry and Bitstream Format registry and SWORD metadata registry. After
the initial loading (performed by ant fresh_install above), the registries reside in the database; the XML
files are not updated.

In order to change the registries, you may adjust the XML files before the first installation of DSpace. On
an already running instance it is recommended to change bitstream registries via DSpace admin UI, but the
metadata registries can be loaded again at any time from the XML files without difficult. The changes made
via admin UI are not reflected in the XML files.

Metadata Format Registries

The default metadata schema is Dublin Core, so DSpace is distributed with a default Dublin Core Metadata
Registry. Currently, the system requires that every item have a Dublin Core record.

There is a set of Dublin Core Elements, which is used by the system and should not be removed or moved
to another schema, see Appendix: Default Dublin Core Metadata registry.

Note: altering a Metadata Registry has no effect on corresponding parts, e.g. item submission interface, item
display, item import and vice versa. Every metadata element used in submission interface or item import
must be registered before using it.

Note also that deleting a metadata element will delete all its corresponding values.

If you wish to add more metadata elements, you can do this in one of two ways. Via the DSpace admin UI
you may define new metadata elements in the different available schemas. But you may also modify the
XML file (or provide an additional one), and re-import the data as follows:

[dspace]/bin/dsrun org.dspace.administer.MetadataImporter -f [xml file]

The XML file should be structured as follows:

<dspace-dc-types>
 <dc-type>
 <schema>dc</schema>
 <element>contributor</element>

Optional or Advanced Configuration Settings

124

 <qualifier>advisor</qualifier>
 <scope_note>Use primarily for thesis advisor.</scope_note>
 </dc-type>
</dspace-dc-types>

Bitstream Format Registry

The bitstream formats recognized by the system and levels of support are similarly stored in the bitstream
format registry. This can also be edited at install-time via [dspace]/config/registries/bitstream-formats.xml
or by the administation Web UI. The contents of the bitstream format registry are entirely up to you, though
the system requires that the following two formats are present:

• Unknown

• License
Deleting a format will cause any existing bitstreams of this format to be reverted to the unknown bitstream
format.

5.4.2. XPDF Filter
This is an alternative suite of MediaFilter plugins that offers faster and more reliable text extraction from
PDF Bitstreams, as well as thumbnail image generation. It replaces the built-in default PDF MediaFilter.

If this filter is so much better, why isn't it the default? The answer is that it relies on external executable pro-
grams which must be obtained and installed for your server platform. This would add too much complexity
to the installation process, so it left out as an optional "extra" step.

Installation Overview

Here are the steps required to install and configure the filters:

1. Install the xpdf tools for your platform, from the downloads at http://www.foolabs.com/xpdf/

2. Acquire the Sun Java Advanced Imaging Tools and create a local Maven package.

3. Edit DSpace configuration properties to add location of xpdf executables, reconfigure MediaFilter plu-
gins.

4. Build and install DSpace, adding -Pxpdf-mediafilter-support to Maven invocation.

Install XPDF Tools

First, download the XPDF suite found at: http://www.foolabs.com/xpdf/ and install it on your server. The
executables can be located anywhere, but make a note of the full path to each command.

You may be able to download a binary distribution for your platform, which simplifies installation. Xpdf
is readily available for Linux, Solaris, MacOSX, Windows, NetBSD, HP-UX, AIX, and OpenVMS, and is
reported to work on AIX, OS/2, and many other systems.

The only tools you really need are:

• pdfinfo - displays properties and Info dict

• pdftotext - extracts text from PDF

• pdftoppm - images PDF for thumbnails

Fetch and install jai_imageio JAR

Fetch and install the Java™ Advanced Imaging Image I/O Tools.

http://www.foolabs.com/xpdf
http://www.foolabs.com/xpdf

Optional or Advanced Configuration Settings

125

For AIX, Sun support has the following: "JAI has native acceleration for the above but it also works in pure
Java mode. So as long as you have an appropriate JDK for AIX (1.3 or later, I believe), you should be able
to use it. You can download any of them, extract just the jars, and put those in your $CLASSPATH."

Download the jai_imageio library version 1.0_01 or 1.1 found at: https://jai-imageio.dev.java.net/bina-
ry-builds.html#Stable_builds .

For these filters you do NOT have to worry about the native code, just the JAR, so choose a download for
any platform.

curl -O http://download.java.net/media/jai-imageio/builds/release/1.1/jai_imageio-1_1-
lib-linux-i586.tar.gz
tar xzf jai_imageio-1_1-lib-linux-i586.tar.gz

The preceding example leaves the JAR in jai_imageio-1_1/lib/jai_imageio.jar . Now install it in your local
Maven repository, e.g.: (changing the path after file= if necessary)

mvn install:install-file \
 -Dfile=jai_imageio-1_1/lib/jai_imageio.jar \
 -DgroupId=com.sun.media \
 -DartifactId=jai_imageio \
 -Dversion=1.0_01 \
 -Dpackaging=jar \
 -DgeneratePom=true

You may have to repeat this procedure for the jai_core.jar library, as well, if it is not available in any of the
public Maven repositories. Once acquired, this command installs it locally:

mvn install:install-file -Dfile=jai_core-1.1.2_01.jar \
 -DgroupId=javax.media -DartifactId=jai_core -Dversion=1.1.2_01 -Dpackaging=jar -
DgeneratePom=true

Edit DSpace Configuration

First, be sure there is a value for thumbnail.maxwidth and that it corresponds to the size you want for preview
images for the UI, e.g.: (NOTE: this code doesn't pay any attention to thumbnail.maxheight but it's best to
set it too so the other thumbnail filters make square images.)

maximum width and height of generated thumbnails
 thumbnail.maxwidth 300
 thumbnail.maxheight 300

Now, add the absolute paths to the XPDF tools you installed. In this example they are installed under /usr/
local/bin (a logical place on Linux and MacOSX), but they may be anywhere.

xpdf.path.pdftotext = /usr/local/bin/pdftotext
 xpdf.path.pdftoppm = /usr/local/bin/pdftoppm
 xpdf.path.pdfinfo = /usr/local/bin/pdfinfo

Change the MediaFilter plugin configuration to remove the old org.dspace.app.mediafilter.PDFFilter and
add the new filters, e.g: (New sections are in bold)

filter.plugins = \
 PDF Text Extractor, \
 PDF Thumbnail, \
 HTML Text Extractor, \
 Word Text Extractor, \
 JPEG Thumbnail
 plugin.named.org.dspace.app.mediafilter.FormatFilter = \
 org.dspace.app.mediafilter.XPDF2Text = PDF Text Extractor, \
 org.dspace.app.mediafilter.XPDF2Thumbnail = PDF Thumbnail, \
 org.dspace.app.mediafilter.HTMLFilter = HTML Text Extractor, \
 org.dspace.app.mediafilter.WordFilter = Word Text Extractor, \
 org.dspace.app.mediafilter.JPEGFilter = JPEG Thumbnail, \
 org.dspace.app.mediafilter.BrandedPreviewJPEGFilter = Branded Preview JPEG

Then add the input format configuration properties for each of the new filters, e.g.:

https://jai-imageio.dev.java.net/binary-builds.html#Stable_builds
https://jai-imageio.dev.java.net/binary-builds.html#Stable_builds

Optional or Advanced Configuration Settings

126

filter.org.dspace.app.mediafilter.XPDF2Thumbnail.inputFormats = Adobe
 PDFfilter.org.dspace.app.mediafilter.XPDF2Text.inputFormats = Adobe PDF

Finally, if you want PDF thumbnail images, don't forget to add that filter name to the filter.plugins property,
e.g.:

filter.plugins = PDF Thumbnail, PDF Text Extractor, ...

Build and Install

Follow your usual DSpace installation/update procedure, only add -Pxpdf-mediafilter-support to the Maven
invocation:

mvn -Pxpdf-mediafilter-support package
 ant -Dconfig=etc. ...

5.4.3. Creating a new Media/Format Filter

Creating a simple Media Filter

New Media Filters must implement the org.dspace.app.mediafilter.FormatFilter interface. More informa-
tion on the methods you need to implement is provided in the FormatFilter.java source file. For example:

public class MySimpleMediaFilter implements
 FormatFilter

Alternatively, you could extend the org.dspace.app.mediafilter.MediaFilter class, which just defaults to
performing no pre/post-processing of bitstreams before or after filtering.

public class MySimpleMediaFilter extends
 MediaFilter

You must give your new filter a "name", by adding it and its name to the
plugin.named.org.dspace.app.mediafilter.FormatFilter field in dspace.cfg. In addition to naming your fil-
ter, make sure to specify its input formats in the filter.<class path>.inputFormats config item. Note the
input formats must match the short description field in the Bitstream Format Registry (i.e. bitstreamforma-
tregistry table).

plugin.named.org.dspace.app.mediafilter.FormatFilter = \
 org.dspace.app.mediafilter.MySimpleMediaFilter = My Simple Text
 Filter, \ ...
 filter.org.dspace.app.mediafilter.MySimpleMediaFilter.inputFormats =
 Text

WARNING: If you neglect to define the _inputFormats for a particular filter, the MediaFilterManager will
never call that filter, since it will never find a bitstream which has a format matching that filter's input
format(s)._
If you have a complex Media Filter class, which actually performs different filtering for different formats
(e.g. conversion from Word to PDF and conversion from Excel to CSV), you should define this as a [self-
namedfilter|Dynamic / Self-Named Format Filter].

Creating a Dynamic or "Self-Named" Format Filter

If you have a more complex Media/Format Filter, which actually performs multiple filtering or conver-
sions for different formats (e.g. conversion from Word to PDF and conversion from Excel to CSV),
you should have define a class which implements the FormatFilter interface, while also extending the
business.html#selfnamedplugin class. For example:

public class MyComplexMediaFilter extends
 SelfNamedPlugin implements FormatFilter

Optional or Advanced Configuration Settings

127

Since SelfNamedPlugins are self-named (as stated), they must provide the various names the plugin uses by
defining a getPluginNames() method. Generally speaking, each "name" the plugin uses should correspond
to a different type of filter it implements (e.g. "Word2PDF" and "Excel2CSV" are two good names for a
complex media filter which performs both Word to PDF and Excel to CSV conversions).

Self-Named Media/Format Filters are also configured differently in dspace.cfg. Below is a general template
for a Self Named Filter (defined by an imaginary MyComplexMediaFilter class, which can perform both
Word to PDF and Excel to CSV conversions):

#Add to a list of all Self Named filters
 plugin.selfnamed.org.dspace.app.mediafilter.FormatFilter = \
 org.dspace.app.mediafilter.MyComplexMediaFilter #Define input formats
 for each "named" plugin this filter implements
 filter.org.dspace.app.mediafilter.MyComplexMediaFilter.Word2PDF.inputF
ormats = Microsoft Word
 filter.org.dspace.app.mediafilter.MyComplexMediaFilter.Excel2CSV.input
Formats = Microsoft Excel

As shown above, each Self-Named Filter class must be listed in the
plugin.selfnamed.org.dspace.app.mediafilter.FormatFilter item in dspace.cfg. In addition, each Self-Named
Filter must define the input formats for each named plugin defined by that filter. In the above example the
MyComplexMediaFilter class is assumed to have defined two named plugins, Word2PDF and Excel2CSV.
So, these two valid plugin names ("Word2PDF" and "Excel2CSV") must be returned by the getPlugin-
Names() method of the MyComplexMediaFilter class.

These named plugins take different input formats as defined above (see the corresponding inputFormats
setting). WARNING: If you neglect to define the _inputFormats for a particular named plugin, the MediaFil-
terManager will never call that plugin, since it will never find a bitstream which has a format matching that
plugin's input format(s)._

For a particular Self-Named Filter, you are also welcome to define additional configuration settings in
dspace.cfg. To continue with our current example, each of our imaginary plugins actually results in a dif-
ferent output format (Word2PDF creates "Adobe PDF", while Excel2CSV creates "Comma Separated Val-
ues"). To allow this complex Media Filter to be even more configurable (especially across institutions, with
potential different "Bitstream Format Registries"), you may wish to allow for the output format to be cus-
tomizable for each named plugin. For example:

#Define output formats for each named plugin
 filter.org.dspace.app.mediafilter.MyComplexMediaFilter.Word2PDF.output
Format = Adobe PDF
 filter.org.dspace.app.mediafilter.MyComplexMediaFilter.Excel2CSV.outpu
tFormat = Comma Separated Values

Any custom configuration fields in dspace.cfg defined by your filter are ignored by the MediaFilterManager,
so it is up to your custom media filter class to read those configurations and apply them as necessary. For
example, you could use the following sample Java code in your MyComplexMediaFilter class to read these
custom outputFormat configurations from dspace.cfg :

//get "outputFormat" configuration from dspace.cfg
 String outputFormat =
 ConfigurationManager.getProperty(MediaFilterManager.FILTER_PREFIX +
 "." + MyComplexMediaFilter.class.getName() + "." +
 this.getPluginInstanceName() + ".outputFormat");

5.4.4. Configuration Files for Other Applications
To ease the hassle of keeping configuration files for other applications involved in running a DSpace site, for
example Apache, in sync, the DSpace system can automatically update them for you when the main DSpace
configuration is changed. This feature of the DSpace system is entirely optional, but we found it useful.

The way this is done is by placing the configuration files for those applications in [dspace]/config/templates,
and inserting special values in the configuration file that will be filled out with appropriate DSpace config-
uration properties. Then, tell DSpace where to put filled-out, 'live' version of the configuration by adding an
appropriate property to dspace.cfg, and run [dspace]/bin/install-configs.

Optional or Advanced Configuration Settings

128

Take the apache13.conf file as an example. This contains plenty of Apache-specific stuff, but where it uses a
value that should be kept in sync across DSpace and associated applications, a 'placeholder' value is written.
For example, the host name:

ServerName @@dspace.hostname@@

The text @@dspace.hostname@@ will be filled out with the value of the dspace.hostname property in
dspace.cfg. Then we decide where we want the 'live' version, that is, the version actually read in by Apache
when it starts up, will go.

Let's say we want the live version to be located at /opt/apache/conf/dspace-httpd.conf. To do this, we add
the following property to dspace.cfg so DSpace knows where to put it:

config.template.apache13.conf = /opt/apache/conf/dspace-httpd.conf

Now, we run [dspace]/bin/install-configs. This reads in [dspace]/config/templates/apache13.conf, and
places a copy at /opt/apache/conf/dspace-httpd.conf with the placeholders filled out.

So, in /opt/apache/conf/dspace-httpd.conf, there will be a line like:

ServerName dspace.myu.edu

The advantage of this approach is that if a property like the hostname changes, you can just change it in
dspace.cfg and run install-configs, and all of your tools' configuration files will be updated.

However, take care to make all your edits to the versions in [dspace]/config/templates! It's a wise idea to
put a big reminder at the top of each file, since someone might unwittingly edit a 'live' configuration file
which would later be overwritten.

5.4.5. Configuring Usage Instrumentation Plugins
A usage instrumentation plugin is configured as a singleton plugin for the abstract class
org.dspace.app.statistics.AbstractUsageEvent.

The Passive Plugin

The Passive plugin is provided as the class org.dspace.app.statistics.PassiveUsageEvent. It absorbs events
without effect. Use the Passive plugin when you have no use for usage event postings. This is the default
if no plugin is configured.

The Tab File Logger Plugin

The Tab File Logger plugin is provided as the class org.dspace.app.statistics.UsageEventTabFileLogger. It
writes event records to a file in tab-separated column format. If left unconfigured, an error will be noted in
the DSpace log and no file will be produced. To specify the file path, provide an absolute path as the value
for usageEvent.tabFileLogger.file in dspace.cfg.

The XML Logger Plugin

The XML Logger plugin is provided as the class org.dspace.app.statistics.UsageEventXMLLogger. It writes
event records to a file in a simple XML-like format. If left unconfigured, an error will be noted in the
DSpace log and no file will be produced. To specify the file path, provide an absolute path as the value for
usageEvent.xmlLogger.file in dspace.cfg.

5.4.6. SWORD Configuration
SWORD (Simple Web-service Offering Repository Deposit) is a protocol that allows the remote deposit
of items into repositories. DSpace implements the SWORD protocol via the 'sword' web application. The
version of SWORD currently supported by DSpace is 1.3. The specification and further information can be
downloaded fromhttp://swordapp.org/.

http://swordapp.org

Optional or Advanced Configuration Settings

129

SWORD is based on the Atom Publish Protocol and allows service documents to be requested which describe
the structure of the repository, and packages to be deposited.

Properties: sword.mets-ingester.package-ingester

Example Value: sword.mets-ingester.package-ingester = METS

Informational Note: The property key tell the SWORD METS implemen-
tation which package ingester to use to install de-
posited content. This should refer to one of the class-
es configured for:

plugin.named.org.dspace.content.packager.PackageIngester

The value of sword.mets-ingester.package-ingester
tells the system which named plugin for this interface
should be used to ingest SWORD METS packages.

Properties: mets.submission.crosswalk.EPDCX

Example Value: mets.submission.crosswalk.EPDCX = SWORD

Informational Note: Define the metadata type EPDCX (EPrints DC
XML)to be handled by the SWORD crosswalk con-
figuration.

Properties: crosswalk.submission.SWORD.stylesheet

Example Value: crosswalk.submission.SWORD.stylesheet = cross-
walks/sword-swap-ingest.xsl

Informational Note: Define the stylesheet which will be used by the self-
named XSLTIngestionCrosswalk class when asked
to load the SWORD configuration (as specified
above). This will use the specified stylesheet to
crosswalk the incoming SWAP metadata to the DIM
format for ingestion.

Properties: sword.deposit.url

Example Value: _sword.deposit.url = http://www.myu.ac.uk/sword/
deposit_

Informational Note: The base URL of the SWORD deposit. This is the
URL from which DSpace will construct the de-
posit location urls for collections. The default is
{dspace.url}/sword/deposit. In the event that you
are not deploying DSpace as the ROOT application
in the servlet container, this will generate incorrect
URLs, and you should override the functionality by
specifying in full as shown in the example value.

Properties: _sword.servicedocument.url _

Example Value: _sword.servicedocument.url = http://
www.myu.ac.uk/sword/servicedocument_

Informational Note: The base URL of the SWORD service document.
This is the URL from which DSpace will construct
the service document location urls for the site, and for
individual collections. The default is {dspace.url}/

http://www.myu.ac.uk/sword/deposit_
http://www.myu.ac.uk/sword/deposit_
http://www.myu.ac.uk/sword/servicedocument_
http://www.myu.ac.uk/sword/servicedocument_

Optional or Advanced Configuration Settings

130

sword/servicedocument . In the event that you are not
deploying DSpace as the ROOT application in the
servlet container, this will generate incorrect URLs,
and you should override the functionality by speci-
fying in full as shown in the example value.

Properties: sword.media-link.url

Example Value: _sword.media-link.url = http://www.myu.ac.uk/
sword/media-link_

Informational Note: The base URL of the SWORD media links. This
is the URL which DSpace will use to construct the
media link urls for items which are deposited via
sword. The default is {dspace.url}/sword/media-link.
In the event that you are not deploying DSpace as
the ROOT application in the servlet container, this
will generate incorrect URLs, and you should over-
ride the functionality by specifying in full as shown
in the example value.

Properties: sword.generator.url

Example Value: _sword.generator.url = http://www.dspace.org/ns/
sword/1.3.1_

Informational Note: The URL which identifies the sword software which
provides the sword interface. This is the URL which
DSpace will use to fill out the atom:generator ele-
ment of its atom documents. The default is: _http://
www.dspace.org/ns/sword/1.3.1_. If you have mod-
ified your sword software, you should change this
URI to identify your own version. If you are using
the standard dspace-sword module you will not, in
general, need to change this setting.

Properties: sword.updated.field

Example Value: sword.updated.field = dc.date.updated

Informational Note: The metadata field in which to store the updated date
for items deposited via SWORD.

Properties: sword.slug.field

Example Value: sword.slug.field = dc.identifier.slug

Informational Note: The metadata field in which to store the value of the
slug header if it is supplied.

Properties: sword.accept-
packaging.METSDSpaceSIP.identifier
sword.accept-packaging.METSDSpaceSIP.q

Example Value: _(See example below) _

sword.accept-
packaging.METSDSpaceSIP.identifier
 = http://purl.org/net/sword-types/
METSDSpaceSIP

http://www.myu.ac.uk/sword/media-link_
http://www.myu.ac.uk/sword/media-link_
http://www.dspace.org/ns/sword/1.3.1_
http://www.dspace.org/ns/sword/1.3.1_
http://www.dspace.org/ns/sword/1.3.1_
http://www.dspace.org/ns/sword/1.3.1_

Optional or Advanced Configuration Settings

131

sword.accept-packaging.METSDSpaceSIP.q =
 1.0

Informational Note: The accept packaging properties, along with their as-
sociated quality values where appropriate. This is a
Global Setting; these will be used on all DSpace col-
lections

Properties: sword.accept-packaging.
[handle].METSDSpaceSIP.identifier
sword.accept-packaging.
[handle].METSDSpaceSIP.q

Example Value: (See example below)

sword.accept-packaging.
[handle].METSDSpaceSIP.identifier = http://
purl.org/net/sword-types/METSDSpaceSIP
sword.accept-packaging.
[handle].METSDSpaceSIP.q = 1.0

Informational Note: Collection Specific settings: these will be used on the
collections with the given handles.

Properties: sword.expose-items

Example Value: sword.expose-items = false

Informational Note: Should the server offer up items in collections as
sword deposit targets. This will be effected by plac-
ing a URI in the collection description which will list
all the allowed items for the depositing user in that
collection on request. NOTE: this will require an im-
plementation of deposit onto items, which will not be
forthcoming for a short while.

Properties: sword.expose-communities

Example Value: sword.expose-communities = false

Informational Note: Should the server offer as the default the list of all
Communities to a Service Document request. If false,
the server will offer the list of all collections, which is
the default and recommended behavior at this stage.
NOTE: a service document for Communities will
not offer any viable deposit targets, and the client will
need to request the list of Collections in the target
before deposit can continue.

Properties: sword.max-upload-size

Example Value: sword.max-upload-size = 0

Informational Note: The maximum upload size of a package through the
sword interface, in bytes. This will be the combined
size of all the files, the metadata and any manifest
data. It is NOT the same as the maximum size set for
an individual file upload through the user interface.
If not set, or set to 0, the sword service will default
to no limit.

Optional or Advanced Configuration Settings

132

Properties: sword.keep-original-package

Example Value: sword.keep-original-package = true

Informational Note: Whether or not DSpace should store a copy of the
original sword deposit package. NOTE: this will
cause the deposit process to run slightly slower, and
will accelerate the rate at which the repository con-
sumes disk space. BUT, it will also mean that the
deposited packages are recoverable in their original
form. It is strongly recommended, therefore, to leave
this option turned on. When set to "true", this requires
that the configuration option upload.temp.dir above
is set to a valid location.

Properties: sword.bundle.name

Example Value: sword.bundle.name = SWORD

Informational Note: The bundle name that SWORD should store incom-
ing packages under if sword.keep-original-package
is set to true. The default is "SWORD" if not value
is set

Properties: sword.identify-version

Example Value: sword.identify-version = true

Informational Note: Should the server identify the sword version in a de-
posti response. It is recommended to leave this un-
changed.

Properties: sword.on-behalf-of.enable

Example Value: sword.on-behalf-of.enable = true

Informational Note: Should mediated deposit via sowrd be supported. If
enabled, this will allow users to deposit content pack-
ages on behalf of other users.

Properties: plugin.named.org.dspace.sword.SWORDingester

Example Value: (See example below)

plugin.named.org.dspace.sword.SWORDIngester
 = \
 org.dspace.sword.SWORDMETSIngester
 = http://purl.org/net/sword-types/
METSDSpaceSIP \
 org.dspace.sword.SimpleFileIngester =
 SimpleFileIngester

Informational Note: Configure the plugins to process incoming pack-
ages. The form of this configuration is as per
the Plugin Manager's Named Plugin documenta-
tion: plugin.named.[interface] = [implementation] =
[package format identifier] _ . Package ingesters
should implement the SWORDIngester interface, and
will be loaded when a package of the format spec-
ified above in: _sword.accept-packaging.[package
format].identifier = [package format identifier] is
received. In the event that this is a simple file de-

Optional or Advanced Configuration Settings

133

posit, with no package format, then the class named
by "SimpleFileIngester" will be loaded and executed
where appropriate. This case will only occur when a
single file is being deposited into an existing DSpace
Item.

Properties: sword.accepts

Example Value: sword.accepts = application/zip, foo/bar

Informational Note: A comma separated list of MIME types that SWORD
will accept.

5.4.7. OpenSearch Support

OpenSearch is a small set of conventions and documents for describing and using "serach enginges", mean-
ing any service that returns a set of results for a query. See extensive description in the Business Layer
section of the documentation.

Please note that for result data formatting, OpenSearch uses Syndication Feed Settings (RSS). So, even if
Syndication Feeds are not enable, they must be configured to enable OpenSearch. OpenSearch uses all the
configuration properties for DSpace RSS to determine the mapping of metadata fields to feed fields. Note
that a new field for authors has been added (used in Atom format only).

Property: websvc.opensearch.enable

Example Value: websvc.opensearch.enable = false

Informational Note: Whether or not OpenSearch is enabled. By default,
the feature is disabled. Change the property key to
'ture' to enable.

Property: websvc.opensearch.uicontext

Example Value: websvc.opensearch.uicontext = simple-search

Informational Note: Context for HTML request URLs. Change only for
non-standard servlet mapping.

Property: websvc.opensearch.svccontext

Example Value: websvc.opensearch.svccontext = open-search/

Informational Note: Context for RSS/Atom request URLs. Change only
for non-standard servlet mapping.

Property: websvc.opensearch.autolink

Example Value: websvc.opensearch.autolink = true

Informational Note: Present autodiscovery link in every page head.

Property: websvc.opensearch.validity

Example Value: websvc.opensearch.validity = 48

Informational Note: Number of hours to retain results before recalculat-
ing. This applies to the Manakin interface only.

Property: websvc.opensearch.shortname

Optional or Advanced Configuration Settings

134

Example Value: websvc.opensearch.shortname = DSpace

Informational Note: A short name used in browsers for search service. It
should be sixteen (16) or fewer characters.

Property: websvc.opensearch.longname

Example Value: websvc.opensearch.longname = ${dspace.name}

Informational Note: A longer name up to 48 characters.

Property: websvc.opensearch.description

Example Value: websvc.opensearch.description = ${dspace.name}
DSpace repository

Informational Note: Brief service description

Property: websvc.opensearch.faviconurl

Example Value: _websvc.opensearch.faviconurl = http://
www.dspace.org/images/favicon.ico_

Informational Note: Location of favicon for service, if any. They must
by 16 x 16 pixels. You can profide your own local
favicon instead of the default.

Property: websvc.opensearch.samplequery

Example Value: websvc.opensearch.samplequery = photosynthesis

Informational Note: Sample query. This should return results. You can re-
place the sample query with search terms that should
actually yield results in your repository.

Property: websvc.opensearch.tags

Example Value: websc.opensearch.tags = IR DSpace

Informational Note: Tags used to describe search service.

Property: websvc.opensearch.formats

Example Value: websvc.opensearch.formats = html,atom,rss

Informational Note: Result formats offered. Use one or more comma-sep-
arated from the list: html, atom, rss. Please note
that html is requred for autodiscovery in browsers to
function, and must be the first in the list if present.

5.4.8. Embargo
It is possible now to configure a DSpace instance to have an "Embargo" feature uses for thesis and disser-
tations.

Property: embargo.field.terms

Example Value: embargo.field.terms =
SCHEMA.ELEMENT.QUALIFIER

Informational Note: DC metadata field to hold the user-supplied embargo
terms

http://www.dspace.org/images/favicon.ico_
http://www.dspace.org/images/favicon.ico_

DSpace Services Framework

135

Property: embargo.field.lift

Example Value: embargo.field.lift =
SCHEMA.ELEMENT.QUALIFIER

Informational Note: DC metadata field to hold computed "lift date" of em-
bargo

Property: embargo.terms.open

Example Value: embargo.terms.open = forever

Informational Note: The string in terms field to indicate indefinite embar-
go

Property: plugin.single.org.dspace.embargo.EmbargoSetter

Example Value: plugin.single.org.dspace.embargo.EmbargoSetter =
CLASSNAME

Informational Note: Implementation of embargo setter plugin

Property: plugin.single.org.dspace.embargo.EmbargoLifter

Example Value: plugin.single.org.dspace.embargo.EmbargoLifter =
org.dspace.embargo.DefaultEm

Informational Note: Implementation of embargo lifter plugin

Remember that you need to replace SCHEMA.ELEMENT.QUALIFIER with a real metadata field. Addition-
ally, you need to replace the CLASSNAME with a properly impleented plugin.

5.5. DSpace Services Framework

5.5.1. Implementing Providers

TODO: Provide examples of Implementing and Configuring Services in Spring and Guice

TODO: Provide examples of Implementing and Registering EventListeners in Spring and Guice.

Configuring Event Listeners

Event Listeners can be created by overriding the the EventListener interface:

<?xml version="1.0" encoding="UTF-8"?>
<beans>

 <bean id="dspace" class="org.dspace.utils.DSpace"/>

 <bean id="dspace.eventService"
 factory-bean="dspace"
 factory-method="getEventService"/>

 <bean class="org.my.EventListener">
 <property name="eventService" >
 <ref bean="dspace.eventService"/>
 </property>
 </bean>
</beans>

TODO: Provide examples of Implementing and Registering Configurations in Spring and Guice.

DSpace Services Framework

136

5.5.2. Architectural Overview

DSpace 2 Kernel

The DS2 (DSpace 2.0) kernel manages the start up and access to the core servicesin DS2. It is meant to
allow for a simple way to control the core parts of DSpace and allow for flexible ways to startup the kernel.
For example, the kernel can be run inside a single webapp along with a frontend piece (like JSPUI) or it can
be started as part of the servlet container so that multiple webapps can use a single kernel (this increases
speed and efficiency). The kernel is also designed to happily allow multiple kernels to run in a single servlet
container using identifier keys.

Kernel registration

The kernel will automatically register itself as an MBean in when it starts up so that it can be managed. It
allows startup and shutdown and provides direct access to the ServiceManager and the ConfigurationService.
All the other core services can be retrieved from the ServiceManager by their APIs.

Kernel Startup and Access

The kernel can be started and accessed through the use of Servlet Filter/ContextListeners which are provided
as part of the DSpace 2 utilities. Developers don't need to understand what is going on behind the scenes
and can simply write their applications and package them as webapps and take advantage of the services
which are offered by DSpace 2. Access to the kernel is provided via the Kernel Manager and the DSpace
object which will locate the kernel object and allow it to be used.

Service Manager

The ServiceManager abstracts the concepts of service lookups and lifecycle control. It also manages the
configuration of services by allowing properties to be pushed into the services as they start up (mostly from
the ConfigurationService). The ServiceManagerSystem abstraction allows the DSpace ServiceManager to
use different systems to manage it's services. The current implementations include Spring and Guice. This
allows DSpace 2 to have very little service management code but still be flexible and not tied to specific
technology. Developers who are comfortable with those technologies can consume the services from a parent
Spring ApplicationContext or a parent Guice Module. The abstraction also means that we can replace Spring/
Guice or add other dependency injection systems later without requiring developers to change their code.
The interface provides simple methods for looking up services by interface type for developers who do not
want to have to use or learn a dependency injection system or are using one which is not currently supported.

http://wiki.dspace.org/index.php/DSpace_2.0
http://wiki.dspace.org/index.php/DSpace_2.0/Core_Services

DSpace Services Framework

137

5.5.3.
The DS2 kernel is compact so it can be completely started up in a unit test (technically integration test)
environment (this is who we test the kernel and core services currently). This allows developers to execute
code against a fully functional kernel while developing and then deploy their code with high confidence.

5.5.4. Providers and Plugins
For developers (how we are trying to make your lives easier): The DS2 ServiceManager supports a plug-
in/provider system which is runtime hot-swappable. The implementor can register any service/provider bean
or class with the DS2 kernel ServiceManager. The ServiceManager will manage the lifecycle of beans (if
desired) and will instantiate and manage the lifecycle of any classes it is given. This can be done at any time
and does not have to be done during Kernel startup. This allows providers to be swapped out at runtime
without disrupting the service if desired. The goal of this system is to allow DS2 to be extended without
requiring any changes to the core codebase or a rebuild of the code code.

Activators

Developers can use an activator to allow the system to startup their service or provider. It is a simple inter-
face with 2 methods which are called to startup the provider(s) and later to shut them down. These simply
allow a developer to run some arbitrary code in order to create and register services if desired. It is the
method provided to add plugins directly to the system via configuration as the activators are just listed in
the configuration file and the system starts them up in the order it finds them.

Provider Stacks

Utilities are provided to assist with stacking and ordering providers. The priority is handled via a priority
number such that 1 is the highest priority and something like 10 would be lower. 0 indicates that priority

DSpace Services Framework

138

is not important for this service and can be used to ensure the provider is placed at or near the end without
having to set some arbitrarily high number.

The DSpace Services Framework is a backporting of the DSpace 2.0 Development Groups work in creating
a reasonable and abstractable "Core Services" layer for DSpace components to operate within. The Services
Framework represents a "best practices" for new DSpace architecture and implementation of exentsions to
the DSpace application. DSpace Services are best described as a "Simple Registry" where plugins. The DS2
(DSpace 2.0) core services are the main services that make up a DS2 system. These includes services for
things like user and permissions management and storage and caching. These services can be used by any
developer writing DS2 plugins (e.g. statistics), providers (e.g. Authn), or user interfaces (e.g. JSPUI).

5.5.5. Core Services

The core services are all behind APIs so that they can be reimplemented without affecting developers who
are using the services. Most of the services have plugin/provider points so that customizations can be added
into the system without touching the core services code. For example, let's say a deployer has a specialized
authentication system and wants to manage the authentication calls which come into the system. The imple-
mentor can simply implement an AuthenticationProvider and then register it with the DS2 kernel Service-
Manager. This can be done at any time and does not have to be done during Kernel startup. This allows
providers to be swapped out at runtime without disrupting the DS2 service if desired. It can also speed up
development by allowing quick hot redeploys of code during development.

Caching Service

Provides for a centralized way to handle caching in the system and thus a single point for configuration and
control over all caches in the system. Provider and plugin developers are strongly encouraged to use this
rather than implementing their own caching. The caching service has the concept of scopes so even storing
data in maps or lists is discouraged unless there are good reasons to do so.

Configuration Service

The ConfigurationService controls the external and internal configuration of DSpace 2. It reads in properties
files when the kernel starts up and merges them with any dynamic configuration data which is available from
the services. The service allows settings to be updated as the system is running and also provides listeners
which allow services to know when their configuration settings have changed and take action if desired. It
is the central point to access and manage all the configuration settings in DSpace 2.

Manages the configuration of the DSpace 2 system. Can be used to manage configuration for providers and
plugins also.

EventService

Handles events and provides access to listeners for consumption of events.

RequestService

In DS2 a request is the concept of a request (HTTP) or an atomic transaction in the system. It is likely to be
an HTTP request in many cases but it does not have to be. This service provides the core services with a way
to manage atomic transactions so that when a request comes in which requires mutliple things to happen they
can either all suceed or all fail without each service attempting to manage this independently. In a nutshell
this simply allows identification of the current request and the ability to discover if it succeeded or failed
when it ends. Nothing in the system will enforce usage of the service but we encourage developers who are
interacting with the system to make use of this service so they know if the request they are participating in
with has succeeded or failed and take appropriate actions.

http://wiki.dspace.org/index.php/DSpace_2.0

DSpace Statistics

139

SessionService

In DS2 a session is like an HttpSession (and generally is actually one) so this service is here to allow devel-
opers to find information about the current session and to access information in it. The session identifies the
current user (if authenticated) so it also serves as a way to track user sessions. Since we use HttpSession
directly it is easy to mirror sessions across multiple servers in order to allow for no-interruption failover for
users when servers go offline.

5.6. DSpace Statistics
DSpace uses the Apache Solr application underlaying the statistics. There is no need to download any sep-
arate software. All the necessary software is included.

5.6.1. Usage Event Logging and Usage Statistics Gathering
The DSpace Statistics Implementation is a Client/Server architecture based on Solr for collecting usage
events in the JSPUI and XMLUI user interface applications of DSpace. Solr runs as a separate webapplica-
tion and an instance of Apache Http Client is utilized to allow parallel requests to log statistics events into
this Solr instance. The Usage Event framework has a couple EventListeners installed which assist in

5.6.2. Configuration settings for Statistics
In the dspace.cfg file review the following fields to make sure they are uncommented:

Property Name Default Value Type Description

solr.log.server ${dspace.baseUrl}/solr/
statistics

String Is used by the SolrLogger
Client class to connect tot
the Solr server over http
and perform updates and
queries. Access to this

solr.spidersfile ${dspace.dir}/
config/spiders.txt

String Spiders file is utilized by
the SolrLogger, this will
be populated by running
the following command:

dsrun
 org.dspace.statistics.util.SpiderDetector
 -i <httpd log file>

solr.dbfile ${dspace.dir}/
config/GeoLiteCity.dat

String The following referes to
the GeoLiteCity database
file utilized by the Loca-
tionUtils to calculate the
location of client requests
based on IP address. Dur-
ing the Ant build process
(both fresh_install and
update) this file will be
downloaded from http://
www.maxmind.com/app/
geolitecity if a new ver-
sion has been published
or it is absent from your
[dspace]/config directo-
ry.

useProxies true boolean Will cause Statistics
loging to look for X-

http://www.maxmind.com/app/geolitecity
http://www.maxmind.com/app/geolitecity
http://www.maxmind.com/app/geolitecity

DSpace Statistics

140

Property Name Default Value Type Description

Forward URI to detect
clients IP that have ac-
cessed it through a Proxy
service. Allows detection
of client IP when access-
ing DSpace.

statistics.item.authorization.admintrue boolean Enables access control
restriction on DSpace
Statistics pages, Restric-
tions are based on ac-
cess rights to Communi-
ty, Collection and Item
Pages. This will require
the user to sign on to see
that statistics. Setting the
statistics to "false" will
make them publicly avail-
able.

Upgrade Process for Statistics.

Example of rebuild and redeploy DSpace (only if you have configured your distribution in this manner)

First approach the traditional DSpace build process for updating

cd [dspace-source]/dspace
 mvn package
 cd [dspace-source]/dspace/target/dspace-<version>-build.dir
 ant -Dconfig=[dspace]/config/dspace.cfg update
 cp -R [dspace]/webapps/* [TOMCAT]/webapps

The last step is only used if you are not mounting [~mdiggory:dspace]/webapps directly into your Tomcat,
Resin or Jetty host (the recommended practice)If you only need to build the statistics, and don't make any
changes to other web applications, you can replace the copy step above with:

cp -R dspace/webapps/solr TOMCAT/webapps

Again, only if you are not mounting [~mdiggory:dspace]/webapps directly into your Tomcat, Resin or Jetty
host (the recommended practice)

Restart your webapps (Tomcat/Jetty/Resin)

5.6.3. Older setting that are no currently utilized in the reports
Are the following Dspace.cfg fields still used by the new 1.6 Statistics? If not, we need to either document
this well or remove them altogether:

Statistical Report Configuration Settings

 # should the stats be publicly available? should be set to false if you only
 # want administrators to access the stats, or you do not intend to generate
 # any
 report.public = false

 # directory where live reports are stored
 report.dir = ${dspace.dir}/reports/

These fields are not used by the new 1.6 Statistics, but are only related to the Statistics from previous DSpace
releases

JSPUI Configuration and Customization

141

5.7. JSPUI Configuration and Customization

5.7.1. Configuration
The user will need to refer to the extensive WebUI/JSPUI configurations that are contained in 5.2.36 JSP
Web Interface Settings.

5.7.2. Customizing the JSP pages
The JSPUI interface is implemented using Java Servlets which handle the business logic, and JavaServer
Pages (JSPs) which produce the HTML pages sent to an end-user. Since the JSPs are much closer to HTML
than Java code, altering the look and feel of DSpace is relatively easy.

To make it even easier, DSpace allows you to 'override' the JSPs included in the source distribution with
modified versions, that are stored in a separate place, so when it comes to updating your site with a new
DSpace release, your modified versions will not be overwritten. It should be possible to dramatically change
the look of DSpace to suit your organization by just changing the CSS style file and the site 'skin' or 'layout'
JSPs in jsp/layout; if possible, it is recommended you limit local customizations to these files to make future
upgrades easier.

You can also easily edit the text that appears on each JSP page by editing the Messages.properties file.
However, note that unless you change the entry in all of the different language message files, users of other
languages will still see the default text for their language. See Internationalization in Application Layer.

Note that the data (attributes) passed from an underlying Servlet to the JSP may change between versions,
so you may have to modify your customized JSP to deal with the new data.

Thus, if possible, it is recommended you limit your changes to the 'layout' JSPs and the stylesheet.

The JSPs are available in one of two places:

• [dspace-source]/dspace-jspui/dspace-jspui-webapp/src/main/webapp/ - Only exists if you downloaded
the full Source Release of DSpace

• [dspace-source]/dspace/target/dspace-[version].dir/webapps/dspace-jspui-webapp/ - The location
where they are copied after first building DSpace.
If you wish to modify a particular JSP, place your edited version in the [dspace-source]/dspace/mod-
ules/jspui/src/main/webapp/ directory (this is the replacement for the pre-1.5 _/jsp/local directory_),
with the same path as the original. If they exist, these will be used in preference to the default JSPs. For
example:

DSpace default Locally-modified version

[jsp.dir]/community-list.jsp [jsp.custom-dir]/dspace/modules/jspui/src/main/
webapp/community-list.jsp

[jsp.dir]/mydspace/main.jsp [jsp.custom-dir]/dspace/modules/jspui/src/main/
webapp/mydspace/main.jsp

Heavy use is made of a style sheet, styles.css.jsp. If you make edits, copy the local version to [jsp.custom-
dir]/dspace/modules/jspui/src/main/webapp/styles.css.jsp, and it will be used automatically in preference to
the default, as described above.

Fonts and colors can be easily changed using the stylesheet. The stylesheet is a JSP so that the user's browser
version can be detected and the stylesheet tweaked accordingly.

The 'layout' of each page, that is, the top and bottom banners and the navigation bar, are determined by the
JSPs /layout/header-.jspand/layout/footer-.jsp. You can provide modified versions of these (in [jsp.custom-
dir]/dspace/modules/jspui/src/main/webapp/layout), or define more styles and apply them to pages by using
the "style" attribute of the dspace:layout tag.

XMLUI Configuration and Customization

142

1. Rebuild the DSpace installation package by running the following command from your [dspace-source]/
dspace/ directory:

mvn package

2. Update all DSpace webapps to [dspace]/webapps by running the following command from your [dspace-
source]/dspace/target/dspace-[version]-build.dir directory:

ant -Dconfig=[dspace]/config/dspace.cfg update

3. Deploy the the new webapps:

cp -R /[dspace]/webapps/* /[tomcat]/webapps

4. Restart Tomcat
When you restart the web server you should see your customized JSPs.

5.8. XMLUI Configuration and Customization

5.8.1. Manakin Configuration Property Keys
In an effort to save the programmer/administrator some time, the configuration table below is taken from
5.3.43. XMLUI Specific Configuration.

Property: xmlui.supportedLocales

Example Value: xmlui.supportedLocales = en, de

Informational Note: A list of supported locales for Manakin. Manakin
will look at a user's browser configuration for the first
language that appears in this list to make available
to in the interface. This parameter is a comma sep-
arated list of Locales. All types of Locales country,
country_language, country_language_variant. Note
that if the appropriate files are not present (i.e.
Messages_XX_XX.xml) then Manakin will fall back
through to a more general language.

Property: xmlui.force.ssl

Example Value: xmlui.force.ssl = true

Informational Note: Force all authenticated connections to use SSL, on-
ly non-authenticated connections are allowed over
plain http. If set to true, then you need to ensure that
the 'dspace.hostname' parameter is set to the correct-
ly.

Property: xmlui.user.registration

Example Value: xmlui.user.registration = true

Informational Note: Determine if new users should be allowed to register.
This parameter is useful in conjunction with Shibbo-
leth where you want to disallow registration because
Shibboleth will automatically register the user. De-
fault value is true.

XMLUI Configuration and Customization

143

Property: xmlui.user.editmetadata

Example Value: xmlui.user.editmetadata = true

Informational Note: Determines if users should be able to edit their own
metadata. This parameter is useful in conjunction
with Shibboleth where you want to disable the user's
ability to edit their metadata because it came from
Shibboleth. Default value is true.

Property: xmlui.user.assumelogon

Example Value: xmlui.user.assumelogon = true

Informational Note: Determine if super administrators (those whom are in
the Administrators group) can login as another user
from the "edit eperson" page. This is useful for de-
bugging problems in a running dspace instance, es-
pecially in the workflow process. The default value
is false, i.e., no one may assume the login of another
user.

Property: xmlui.user.loginredirect

Example Value: xmlui.user.loginredirect = /profile

Informational Note: After a user has logged into the system, which url
should they be directed? Leave this parameter blank
or undefined to direct users to the homepage, or /pro-
file for the user's profile, or another reasonable choice
is /submissions to see if the user has any tasks await-
ing their attention. The default is the repository home
page.

Property: xmlui.theme.allowoverrides

Example Value: xmlui.theme.allowoverrides = false

Informational Note: Allow the user to override which theme is used to dis-
play a particular page. When submitting a request add
the HTTP parameter "themepath" which corresponds
to a particular theme, that specified theme will be
used instead of the any other configured theme. Note
that this is a potential security hole allowing execu-
tion of unintended code on the server, this option
is only for development and debugging it should be
turned off for any production repository. The default
value unless otherwise specified is "false".

Property: xmlui.bundle.upload

Example Value: xmlui.bundle.upload = ORIGINAL, METADATA,
THUMBNAIL, LICENSE, CC_LICENSE

Informational Note: Determine which bundles administrators and collec-
tion administrators may upload into an existing item
through the administrative interface. If the user does
not have the appropriate privileges (add and write)
on the bundle then that bundle will not be shown to
the user as an option.

XMLUI Configuration and Customization

144

Property: xmlui.community-list.render.full

Example Value: xmlui.community-list.render.full = true

Informational Note: On the community-list page should all the metada-
ta about a community/collection be available to the
theme. This parameter defaults to true, but if you
are experiencing performance problems on the com-
munity-list page you should experiment with turning
this option off.

Property: xmlui.community-list.cache

Example Value: xmlui.community-list.cache = 12 hours

Informational Note: Normally, Manakin will fully verify any cache pages
before using a cache copy. This means that when
the community-list page is viewed the database is
queried for each community/collection to see if their
metadata has been modified. This can be expensive
for repositories with a large community tree. To help
solve this problem you can set the cache to be as-
sumed valued for a specific set of time. The downside
of this is that new or editing communities/collections
may not show up the website for a period of time.

Property: xmlui.bistream.mods

Example Value: xmlui.bistream.mods = true

Informational Note: Optionally, you may configure Manakin to take
advantage of metadata stored as a bitstream. The
MODS metadata file must be inside the "METADA-
TA" bundle and named MODS.xml. If this option is
set to 'true' and the bitstream is present then it is made
available to the theme for display.

Property: xmlui.bitstream.mets

Example Value: xmlui.bitstream.mets = true

Informational Note: Optionally, you may configure Manakin to take ad-
vantage of metadata stored as a bitstream. The METS
metadata file must be inside the "METADATA" bun-
dle and named METS.xml. If this optino is set to
"true" and the bitstream is present then it is made
available to the theme for display.

Property: xmlui.google.analytics.key

Example Value: xmlui.google.analytics.key = UA-XXXXXX-X

Informational Note: If you would like to use google analytics to track gen-
eral website statistics then use the following param-
eter to provide your analytics key. First sign up for
an account at http://analytics.google.com, then create
an entry for your repositories website. Google An-
alytics will give you a snipit of javascript code to
place on your site, inside that snip it is your google

http://analytics.google.com

XMLUI Configuration and Customization

145

analytics key usually found in the line: _uacct =
"UA-XXXXXXX-X" Take this key (just the UA-
XXXXXX-X part) and place it here in this parame-
ter.

Property: xmlui.controlpanel.activity.max

Example Value: xmlui.controlpanel.activity.max = 250

Informational Note: Assign how many page views will be recorded and
displayed in the control panel's activity viewer. The
activity tab allows an administrator to debug prob-
lems in a running DSpace by understanding who and
how their dspace is currently being used. The default
value is 250.

Property: xmlui.controlpanel.activity.ipheader

Example Value: xmlui.controlpanel.activity.ipheader = X-For-
ward-For

Informational Note: Determine where the control panel's activity viewer
recieves an events IP address from. If your DSpace is
in a load balanced enviornment or otherwise behind
a context-switch then you will need to set the para-
mater to the HTTP parameter that records the origi-
nal IP address.

5.8.2. Configuring Themes and Aspects
The Manakin user interface is composed of two distinct components: aspects and themes. Manakin aspects
are like extensions or plugins for Manakin; they are interactive components that modify existing features or
provide new features for the digital repository. Manakin themes stylize the look-and-feel of the repository,
community, or collection.

The repository administrator is able to define which aspects and themes are installed for the particular repos-
itory by editing the [dspace]/config/xmlui.xconf configuration file. The xmlui.xconf file consists of two ma-
jor sections: Aspects and Themes.

Aspects

The <aspects> section defines the "Aspect Chain", or the linear set of aspects that are installed in the repos-
itory. For each aspect that is installed in the repository, the aspect makes available new features to the inter-
face. For example, if the "submission" aspect were to be commented out or removed from the xmlui.xconf,
then users would not be able to submit new items into the repository (even the links and language prompting
users to submit items are removed). Each <aspect> element has two attributes, name and path. The name
is used to identify the Aspect, while the path determines the directory where the aspect's code is located.
Here is the default aspect configuration:

<aspects>
 <aspect name="Artifact Browser" path="resource://aspects/ArtifactBrowser/" />
 <aspect name="Administration" path="resource://aspects/Administrative/" />
 <aspect name="E-Person" path="resource://aspects/EPerson/" />
 <aspect name="Submission and Workflow" path="resource://aspects/Submission/" />
 </aspects>

A standard distribution of Manakin/DSpace includes four "core" aspects:

• *Artifact Browser*The Artifact Browser Aspect is responsible for browsing communities, collections,
items and bitstreams, viewing an individual item and searching the repository.

XMLUI Configuration and Customization

146

• *E-Person*The E-Person Aspect is responsible for logging in, logging out, registering new users, dealing
with forgotten passwords, editing profiles and changing passwords.

• *Submission*The Submission Aspect is responsible for submitting new items to DSpace, determining
the workflow process and ingesting the new items into the DSpace repository.

• *Administrative*The Administrative Aspect is responsible for administrating DSpace, such as creating,
modifying and removing all communities, collections, e-persons, groups, registries and authorizations.

Themes

The <themes> section defines a set of "rules" that determine where themes are installed in the repository.
Each rule is processed in the order that it appears, and the first rule that matches determines the theme that
is applied (so order is important). Each rule consists of a <theme> element with several possible attributes:

• name (always required)The name attribute is used to document the theme's name.

• path (always required)The path attribute determines where the theme is located relative to the themes/
directory and must either contain a trailing slash or point directly to the theme's sitemap.xmap file.

• regex (either regex and/or handle is required)The regex attribute determines which URLs the theme
should apply to.

• handle (either regex and/or handle is required)The handle attribute determines which community, col-
lection, or item the theme should apply to.
If you use the "handle" attribute, the effect is cascading, meaning if a rule is established for a community
then all collections and items within that community will also have this theme apply to them as well. Here
is an example configuration:

<themes>
 <theme name="Theme 1" handle="123456789/23" path="theme1/"/>
 <theme name="Theme 2" regex="community-list" path="theme2/"/>
 <theme name="Reference Theme" regex=".*" path="Reference/"/>
 </themes>

In the example above three themes are configured: "Theme 1", "Theme 2", and the "Reference Theme".
The first rule specifies that "Theme 1" will apply to all communities, collections, or items that are con-
tained under the parent community "123456789/23". The next rule specifies any URL containing the
string "community-list" will get "Theme 2". The final rule, using the regular expression ".", will match
*anything, so all pages which have not matched one of the preceding rules will be matched to the Ref-
erence Theme.

5.8.3. Multilingual Support
The XMLUI user interface supports multiple languages through the use of internationalization catalogues
as defined by the http://cocoon.apache.org/2.1/userdocs/i18nTransformer.html. Each catalog contains the
translation of all user-displayed strings into a particular language or variant. Each catalog is a single xml
file whose name is based upon the language it is designated for, thus:

messages_language_country_variant.xml

messages_language_country.xml

messages_language.xml

messages.xml

The interface will automatically determine which file to select based upon the user's browser and system
configuration. For example, if the user's browser is set to Australian English then first the system will check
if messages_en_au.xml is available. If this translation is not available it will fall back to messages_en.xml,
and finally if that is not available, messages.xml.

XMLUI Configuration and Customization

147

Manakin supplies an English only translation of the interface. In order to add other translations to the system,
locate the [dspace-source]/dspace/modules/xmlui/src/main/webapp/i18n/ directory. By default this directo-
ry will be empty; to add additional translations add alternative versions of the messages.xml file in specific
language and country variants as needed for your installation.

To set a language other than English as the default language for the repository's interface, simply name the
translation catalogue for the new default language "messages.xml"

5.8.4. Creating a New Theme

Manakin themes stylize the look-and-feel of the repository, community, or collection and are distributed as
self-contained packages. A Manakin/DSpace installation may have multiple themes installed and available
to be used in different parts of the repository. The central component of a theme is the sitemap.xmap, which
defines what resources are available to the theme such as XSL stylesheets, CSS stylesheets, images, or
multimedia files.
1) Create theme skeleton
Most theme developers do not create a new theme from scratch; instead they start from the standard theme
template, which defines a skeleton structure for a theme. The template is located at: [dspace-source]/dspace-
xmlui/dspace-xmlui-webbapp/src/main/webbapp/themes/template. To start your new theme simply copy the
theme template into your locally defined modules directory, [dspace-source]/dspace/modules/xmlui/src/
main/webbapp/themes/[your theme's directory]/.
2) Modify theme variables
The next step is to modify the theme's parameters so that the theme knows where it is located. Open the
[your theme's directory]/sitemap.xmap and look for <global-variables>

<global-variables>
 <theme-path>[your theme's directory]</theme-path>
 <theme-name>[your theme's name]</theme-name>
 </global-variables>

Update both the theme's path to the directory name you created in step one. The theme's name is used only
for documentation.
3) Add your CSS stylesheets
The base theme template will produce a repository interface without any style - just plain XHTML with no
color or formatting. To make your theme useful you will need to supply a CSS Stylesheet that creates your
desired look-and-feel. Add your new CSS stylesheets:

[your theme's directory]/lib/style.css (The base style sheet used for all browsers)

[your theme's directory]/lib/style-ie.css (Specific stylesheet used for internet explorer)
4) Install theme and rebuild DSpace
Next rebuild and deploy Dspace (replace <version> with the your current release):

1. Rebuild the DSpace installation package by running the following command from your [dspace-source]/
dspace/ directory:

mvn package

2. Update all DSpace webapps to [dspace]/webapps by running the following command from your [dspace-
source]/dspace/target/dspace-[version]-build.dir directory:

ant -Dconfig=[dspace]/config/dspace.cfg update

3. Deploy the the new webapps:

cp -R /[dspace]/webapps/* /[tomcat]/webapps

4. Restart Tomcat

System Administration

148

This will ensure the theme has been installed as described in the previous section "Configuring Themes
and Aspects".

5.8.5. Adding Static Content

The XMLUI user interface supports the addition of globally static content (as well as static content within
individual themes).

Globally static content can be placed in the [dspace-source]/dspace/modules/xmlui/src/main/webapp/stat-
ic/ directory. By default this directory only contains the default robots.txt file, which provides helpful site
information to web spiders/crawlers. However, you may also add static HTML (*.html) content to this di-
rectory, as needed for your installation.

Any static HTML content you add to this directory may also reference static content (e.g. CSS, Javascript,
Images, etc.) from the same [dspace-source]/dspace/modules/xmlui/src/main/webapp/static/ directory. You
may reference other static content from your static HTML files similar to the following:

<link href="./static/mystyle.css" rel="stylesheet" type="text/css"/>
 <img src="./static/images/static-image.gif" alt="Static image in /static/images/
 directory"/>

6. System Administration

6.1. Community and Collection Structure Importer
This CLI tool gives you the ability to import acommunity and collection structure directory froma source
XML file.

Command used: [dspace]/bin/dspace structure-builder

Java class: org.dspace.administer.StructBuilder

Argument: short and long (if available) forms: Description of the argument

-f Source xml file.

-o Output xml file.

-e Email of DSpace Administrator.

The administrator need to build the source xml document in the following format:

<import_structure>
 <community>
 <name>Community Name</name>
 <description>Descriptive text</description>
 <intro>Introductory text</intro>
 <copyright>Special copyright notice</copyright>
 <sidebar>Sidebar text</sidebar>
 <community>
 <name>Sub Community Name</name>
 <community> ...[ad infinitum]...
 </community>
 </community>
 <collection>
 <name>Collection Name</name>
 <description>Descriptive text</description>
 <intro>Introductory text</intro>
 <copyright>Special copyright notice</copyright>

Package Importer and Exporter

149

 <sidebar>Sidebar text</sidebar>
 <license>Special licence</license>
 <provenance>Provenance information</provenance>
 </collection>
 </community>
</import_structure>

The resulting output document will be as follows:

<import_structure>
 <community identifier="123456789/1">
 <name>Community Name</name>
 <description>Descriptive text</description>
 <intro>Introductory text</intro>
 <copyright>Special copyright notice</copyright>
 <sidebar>Sidebar text</sidebar>
 <community identifier="123456789/2">
 <name>Sub Community Name</name>
 <community identifier="123456789/3"> ...[ad infinitum]...
 </community>
 </community>
 <collection identifier="123456789/4">
 <name>Collection Name</name>
 <description>Descriptive text</description>
 <intro>Introductory text</intro>
 <copyright>Special copyright notice</copyright>
 <sidebar>Sidebar text</sidebar>
 <license>Special licence</license>
 <provenance>Provenance information</provenance>
 </collection>
 </community>
</import_structure>

This command-line tool gives you the ability to import a community and collection structure directly from
a source XML file. It is executed as follows:

[dspace]/bin/dspace structure-builder -f /path/to/source.xml -o path/to/output.xml -e admin@user.com

This will examine the contents of [source xml], import the structure into DSpace while logged in as the
supplied administrator, and then output the same structure to the output file, but including the handle for
each imported community and collection as an attribute.

6.1.1. Limitation

• Currently this does not export community and collection structures, although it should only be a small
modification to make it do so

6.2. Package Importer and Exporter
This command-line tool gives you access to the Packager plugins. It can ingest a package to create a new
DSpace Item, or disseminate an Item as a package.

To see all the options, invoke it as:

[dspace]/bin/packager --help

This mode also displays a list of the names of package ingesters and disseminators that are available.

6.2.1. Ingesting

To ingest a package from a file, give the command:

Item Importer and Exporter

150

[dspace]/bin/packager -e user -c handle -t packagerpath

Where _user_ is the e-mail address of the E-Person under whose authority this runs; _handle_ is the Handle
of the collection into which the Item is added, _packager_ is the plugin name of the package ingester to use,
and _path_ is the path to the file to ingest (or "-" to read from the standard input).

Here is an example that loads a PDF file with internal metadata as a package:

/dspace/bin/packager -e florey@mit.edu -c 1721.2/13 -t pdf thesis.pdf

This example takes the result of retrieving a URL and ingests it:

wget -O - http://alum.mit.edu/jarandom/my-thesis.pdf | \
/dspace/bin/packager -e florey@mit.edu -c 1721.2/13 -t pdf -

6.2.2. Disseminating

To disseminate an Item as a package, give the command:

[dspace]/bin/packager -e user -d -i handle -t packager path

Where _user_ is the e-mail address of the E-Person under whose authority this runs; _handle_ is the Handle
of the Item to disseminate; _packager_ is the plugin name of the package disseminator to use; and _path_
is the path to the file to create (or "-" to write to the standard output). This example writes an Item out as
a METS package in the file "454.zip":

/dspace/bin/packager -e florey@mit.edu -d -i 1721.2/454 -t METS 454.zip

6.2.3. METS packages

Since DSpace 1.4 release, the software includes a package disseminator and matching ingester for the
DSpace METS SIP (Submission Information Package) format. They were created to help end users pre-
pare sets of digital resources and metadata for submission to the archive using well-defined standards such
as http://www.loc.gov/standards/mets/, http://www.loc.gov/standards/mods/, and http://www.loc.gov/stan-
dards/premis/. The plugin name is METS by default, and it uses MODS for descriptive metadata.

The DSpace METS SIP profile is available at: http://www.dspace.org/standards/METS/SIP/profilev1p0/
metsipv1p0.pdf .

6.3. Item Importer and Exporter
DSpace has a set of command line tools for importing and exporting items in batches, using the DSpace
simple archive format. The tools are not terribly robust, but are useful and are easily modified. They also
give a good demonstration of how to implement your own item importer if desired.

6.3.1. DSpace Simple Archive Format

The basic concept behind the DSpace's simple archive format is to create an archive, which is directory full
of items, with a subdirectory per item. Each item directory contains a file for the item's descriptive metadata,
and the files that make up the item.

archive_directory/
 item_000/
 dublin_core.xml -- qualified Dublin Core metadata for metadata fields
 belonging to the dc schema

http://www.dspace.org/standards/METS/SIP/profilev1p0/metsipv1p0.pdf
http://www.dspace.org/standards/METS/SIP/profilev1p0/metsipv1p0.pdf

Item Importer and Exporter

151

 metadata_[prefix].xml -- metadata in another schema, the prefix is the name of
 the schema as registered with the metadata registry
 contents -- text file containing one line per filename
 file_1.doc -- files to be added as bitstreams to the item
 file_2.pdf
 item_001/
 dublin_core.xml
 contents
 file_1.png
 ...

The dublin_core.xml or metadata[prefix].xml_file has the following format, where each metadata element
has it's own entry within a <dcvalue> tagset. There are currently three tag attributes available in the <dc-
value> tagset:

• <element> - the Dublin Core element

• <qualifier> - the element's qualifier

• <language> - (optional)ISO language code for element

<dublin_core>
 <dcvalue element="title" qualifier="none">A Tale of Two Cities</dcvalue>
 <dcvalue element="date" qualifier="issued">1990</dcvalue>
 <dcvalue element="title" qualifier="alternate" language="fr">J'aime les
 Printemps</dcvalue>
</dublin_core>

(Note the optional language tag attribute which notifies the system that the optional title is in French.)

Every metadata field used, must be registered via the metadata registry of the DSpace instance first.

The contents file simply enumerates, one file per line, the bitstream file names. See the following example:

file_1.doc
 file_2.pdf
 license

Please notice that the license is optional, and if you wish to have one included, you can place the file in
the .../item_001/ directory, for example.

The bitstream name may optionally be followed by the sequence:

\tbundle:bundlename

where '\t' is the tab character and 'bundlename' is replaced by the name of the bundle to which the bitstream
should be added. If no bundle is specified, the bitstream will be added to the 'ORIGINAL' bundle.

6.3.2. Importing Items

Before running the item importer over items previously exported from a DSpace instance, please first refer
to Transferring Items Between DSpace Instances.

Command used: _[dspace]_/bin/dspace import

Java class: org.dspace.app.itemimport.ItemImport

Arguments short and (long) forms: Description

a or -add Add items to DSpace †

r or -replace Replace items listed in mapfile †

Item Importer and Exporter

152

d or -delete Delete items listed in mapfile †

s or -source Source of the items (directory)

c or -collection Destination Collection by their Handle or database
ID

m or -mapfile Where the mapfile for items can be found (name and
directory)

e or -eperson Email of eperson doing the importing

w or -workflow Send submission through collection' workflow

n or -notify Kicks off the email alerting of the item(s) has(have)
been imported

t or -test Test run—do not actually import items

p or -template Apply the collection template

R or -resume Resume a failed import (Used on Add only)

h or -help Command help

† These are mutually exclusive.

The item importer is able to batch import unlimited numbers of items for a particular collection using a very
simple CLI command and 'arguments'

Adding Items to a Collection

To add items to a collection, you gather the following information:

• eperson

• Collection ID (either Handle (e.g. 123456789/14) or Database ID (e.g. 2)

• Source directory where the items reside

• Mapfile. Since you don't have one, you need to determine where it will be (e.g. /Import/Col_14/mapfile)
At the command line:

[dspace]/bin/import --add --eperson=joe@user.com --collection=CollectionID --source=items_dir --
mapfile=mapfile

or by using the short form:

[dspace]/bin/import -a -e joe@user.com -c CollectionID -s items_dir -m mapfile

The above command would cycle through the archive directory's items, import them, and then generate a
map file which stores the mapping of item directories to item handles. SAVE THIS MAP FILE. Using the
map file you can use it for replacing or deleting (unimporting) the file.

Testing. You can add --test (or -t) to the command to simulate the entire import process without actually
doing the import. This is extremely useful for verifying your import files before doing the actual import.

Replacing Items in Collection

Replacing existing items is relatively easy. Remember that mapfile you were supposed to save? Now you
will use it. The command (in short form):

[dspace]/bin/import -r -e joe@user.com -c collectionID -s items_dir -m mapfile

Long form:

Item Importer and Exporter

153

[dspace]/bin/import --replace --eperson=joe@user.com --collection=collectionID --source=items_dire --
mapfile=mapfile

Deleting or Unimporting Items in a Collection

You are able to unimport or delete items provided you have the mapfile. Remember that mapfile you were
supposed to save? The command is (in short form):

[dspace]/bin/import -d -m mapfile

In long form:

[dspace/bin/import --delete --mapfile mapfile

. Other Options

Workflow. The importer usually bypasses any workflow assigned to a collection. But add the --workflow
(-w) argument will route the imported items through the workflow system.

Templates. If you have templates that have constant data and you wish to apply that data during batch
importing, add the --template _(-p_) argument.

Resume. If, during importing, you have an error and the import is aborted, you can use the --resume _(-R_)
flag that you can try to resume the import where you left off after you fix the error.

6.3.3. Exporting Items

The item exporter can export a single item or a collection of items, and creates a DSpace simple archive
for each item to be exported.

Command used: _[dspace]_/bin/dspace export

Java class: org.dspace.app.itemexport.ItemExport

Arguments short and (long) forms: Description

t or -type Type of export. COLLECTION will inform the pro-
gram you want the whole collection. ITEM will be
only the specific item. (You will actually key in the
keywords in all caps. See examples below.)

i or -ed The ID or Handle of the Collection or Item to export.

d or -dest The destination of where you want the file of items
to be placed. You place the path if necessary.

n or -number Sequence number to begin export the items with.
Whatever number you give, this will be the name of
the first directory created for your export. The layout
of the export is the same as you would set your layout
for an Import.

m or -migrate Export the item/collection for migration. This will re-
move the handle and metadata that will be re-created
in the new instance of DSpace.

h or -help Brief Help.

Table 4. Exporting a Collection

To export a collection's items you type at the CLI:

[dspace]/bin/dspace export --type=COLLECTION --id=collID --dest=dest_dir --number=seq_num

Short form:

Transferring Items Between DSpace Instances

154

[dspace]/bin/dspace export -t COLLECTION -d CollID or Handle -d /path/to/destination -n Some_number

Exporting a Single Item

The keyword COLLECTION means that you intend to export an entire collection. The ID can either be the
database ID or the handle. The exporter will begin numbering the simple archives with the sequence number
that you supply. To export a single item use the keyword ITEM and give the item ID as an argument:

[dspace]/bin/dspace export --type=ITEM --id=itemID --dest=dest_dir --number=seq_num

Short form:

[dspace]/bin/dspace export -t ITEM -i itemID or Handle -d /path/to/destination -n some_unumber

Each exported item will have an additional file in its directory, named 'handle'. This will contain the handle
that was assigned to the item, and this file will be read by the importer so that items exported and then
imported to another machine will retain the item's original handle.

The -m Arugment

Using the -m argument will export the item/collection and also perform the migration step. It will perform the
same process that the next section Transferring Items Between DSpace Instances performs. We recommend
that the next section be read in conjunction with this flag being used.

6.4. Transferring Items Between DSpace Instances
Migration of Data
Where items are to be moved between DSpace instances (for example from a test DSpace into a production
DSpace) the item exporter and item importer can be used in conjunction with a script to assist in this process.

After running the item exporter each dublin_core.xml file will contain metadata that was automatically added
by DSpace. These fields are as follows:

• date.accessioned

• date.available

• date.issued

• description.provenance

• format.extent

• format.mimetype

• identifier.uri
In order to avoid duplication of this metadata, run

dspace_migrate </path/to/exported item directory>

prior to running the item importer. This will remove the above metadata items, except for date.issued - if
the item has been published or publicly distributed before and identifier.uri - if it is not the handle, from the
dublin_core.xml file and remove all handle files. It will then be safe to run the item exporter.

6.5. Item Update
ItemUpdate is a batch-mode command-line tool for altering the metadata and bitstream content of existing
items in a DSpace instance. It is a companion tool to ItemImport and uses the DSpace simple archive format
to specify changes in metadata and bitstream contents. Those familiar with generating the source trees for
ItemImporter will find a similar environment in the use of this batch processing tool.

Item Update

155

For metadata, ItemUpdate can perform 'add' and 'delete' actions on specified metadta elements. For bit-
streams, 'add' and 'delete' are similarly available. All these actions can be combined in a single batch run.

ItemUpdate supports an undo feature for all actions except bitstream deletion. There is also a test mode, as
with ItemImport. However, unlike ItemImport, there is no resume feature for incomplete processing. There
is more extensive logging with a summary statement at the end with counts of successful and unsuccessful
items processed.

One probable scenario for using this tool is where there is an external primary data source for which the
DSpace instance is a secondary or down-stream system. Metadata and/or bitstream content changes in the
primary system can be exported to the simple archive format to be used by ItemUpdate to synchronize the
changes.

A note on terminology: item refers to a DSpace item. metadata element refers generally to a qualified
or unqualified element in a schema in the form [schema].[element].[qualifier] or [schema].[element] and
occasionally in a more specific way to the second part of that form. metadata field refers to a specific
instance pairing a metadata element to a value.

6.5.1. DSpace simple Archive Format

As with ItemImporter, the idea behind the DSpace's simple archive format is to create an archive directo-
ry with a subdirectory per item. There are a few additional features added to this format specifically for
ItemUpdate. Note that in the simple archive format, the item directories are merely local references and only
used by ItemUpdate in the log output.

The user is referred to the previous section DSpace Simple Archive Format.

Additionally, the use of a delete_contents is now available. This file lists the bitstreams to be deleted, one
bitstream ID per line. Currently, no other identifiers for bitstreams are usable for this function. This file is
an addition to the Archive format specifically for ItemUpdate.

The optional suppress_undo file is a flag to indicate that the 'undo archive' should not be written to disk.
This file is usually written by the application in an undo archive to prevent a recursive undo. This file is an
addition to the Archive format specifically for ItemUpdate.

6.5.2. ItemUpdate Commands

Command used: _[dspace]_/bin/dspace itemupdate

Java class: org.dspace.app.itemimport.ItemUpdate

Arguments short and (long) forms: Description

a or -addmetadata [metadata element] Repeatable for multiple elements. The metadata el-
ement should be in the form dc.x or dc.x.y. The
mandatory argument indicates the metadata fields in
the dublin_core.xml file to be added unless already
present. However, duplicate fields will not be added
to the item metadata without warning or error.

d or -deletemetadata [metadata element] Repeatable for multiple elements. All metadata fields
matching the element will be deleted.

A or -addbitstream Adds bitstreams listed in the contents file with the
bistream metadata cited there.

D or -deletebitstream [filter plug classname or alis] Not repeatable. With no argument, this opera-
tion deletes bistreams listed in the deletes_contents
file. Only bitstream ids are recognized identi-
fiers for this operatiotn. The optional filter argu-
ment is the classname of an implementation of

Registering (Not Importing) Bitstreams

156

org.dspace.app.itemdupate.BitstreamFilter class to
identify files for deletion or one of the aliases
(ORIGINAL, ORIGINAL_AND_DERIVATIVES,
TEXT, THUMBNAIL) which reference existing fil-
ters based on membership in a bundle of that name.
IN this case, the delete_contents file is not required
for any item. The filter properties file will contains
properties pertinent to the particular filer used. Mul-
tiple filters are not allowed.

h or -help Displays brief command line help.

e or -eperson Email address of the person or the user's database ID
(Required)

s or -source Directory archive to process (Required)

i or -itemidentifier Specifies an alternate metadata field (not a handle)
used to hold an identifier used to match the DSpace
item with that in the archive. If omitted, the item han-
dle is expected to be located in the dc.identifier.uri
field. (Optional)

t or -test Runs the process in test mode with logging but no
changes applied to the DSpace instance. (Optional)

P or -alterprovenance Prevents any changes to the provenance field to rep-
resent changes in the bitstream content resulting from
an Add or Delete. No provenance statements are
written for thumbnails or text derivative bitstreams,
un keepin with the practice of MediaFilterManager.
(Optional)

F or -filterproperties The filter properties files to be used by the delete bit-
streams action (Optional)

. CLI Examples

Adding Metadata:

[dspace]/bin/dspace updateitem -e joe@user.com -s [path/to/archive] -a dc.description

This will add from your archive the dc element description based on the handle from the URI (since the -
i argument wasn't used).

6.6. Registering (Not Importing) Bitstreams
Registration is an alternate means of incorporating items, their metadata, and their bitstreams into DSpace
by taking advantage of the bitstreams already being in storage accessible to DSpace. An example might be
that there is a repository for existing digital assets. Rather than using the normal interactive ingest process
or the batch import to furnish DSpace the metadata and to upload bitstreams, registration provides DSpace
the metadata and the location of the bitstreams. DSpace uses a variation of the import tool to accomplish
registration.

6.6.1. Accessible Storage

To register an item its bitstreams must reside on storage accessible to DSpace and therefore referenced by
an asset store number in dspace.cfg. The configuration file dspace.cfg establishes one or more asset stores
through the use of an integer asset store number. This number relates to a directory in the DSpace host's
file system or a set of SRB account parameters. This asset store number is described in The dspace.cfg
Configuration Properties File section and in the dspace.cfg file itself. The asset store number(s) used for

Registering (Not Importing) Bitstreams

157

registered items should generally not be the value of the assetstore.incoming property since it is unlikely
that you will want to mix the bitstreams of normally ingested and imported items and registered items.

6.6.2. Registering Items Using the Item Importer

DSpace uses the same import tool that is used for batch import except that several variations are employed
to support registration. The discussion that follows assumes familiarity with the import tool.

The archive format for registration does not include the actual content files (bitstreams) being registered.
The format is however a directory full of items to be registered, with a subdirectory per item. Each item
directory contains a file for the item's descriptive metadata (dublin_core.xml) and a file listing the item's
content files (contents), but not the actual content files themselves.

The dublin_core.xml file for item registration is exactly the same as for regular item import.

The contents file, like that for regular item import, lists the item's content files, one content file per line, but
each line has the one of the following formats:

-r -s n -f filepath
-r -s n -f filepath\tbundle:bundlename
-r -s n -f filepath\tbundle:bundlename\tpermissions: -[r|w] 'group name'
-r -s n -f filepath\tbundle:bundlename\tpermissions: -[r|w] 'group name'\tdescription:
 some text

where

• -r indicates this is a file to be registered

• -s n indicates the asset store number (n)

• -f filepath indicates the path and name of the content file to be registered (filepath)

• \t is a tab character

• bundle:bundlename is an optional bundle name

• permissions: -[r|w] 'group name' is an optional read or write permission that can be attached to the bit-
stream

• description: some text is an optional description field to add to the file
The bundle, that is everything after the filepath, is optional and is normally not used.

The command line for registration is just like the one for regular import:

[dspace]/bin/dspace import -a -e joe@user.com -c collectionID -s items_dir -m mapfile

(or by using the long form)

[dspace]/bin/dspace import --add -eperson=joe@user.com --collection=collectionID --source=items_dir
--map=mapfile

The -workflow and -test flags will function as described in Importing Items.

The --delete flag will function as described in Importing Items but the registered content files will not be
removed from storage. See Deleting Registered Items.

The -replace flag will function as described in Importing Items but care should be taken to consider different
cases and implications. With old items and new items being registered or ingested normally, there are four
combinations or cases to consider. Foremost, an old registered item deleted from DSpace using replace will
not be removed from the storage. See Deleting Registered Items. where is resides. A new item added to
DSpace using -replace will be ingested normally or will be registered depending on whether or not it is
marked in the contents files with the -r.

METS Tools

158

6.6.3. Internal Identification and Retrieval of Registered Items

Once an item has been registered, superficially it is indistinguishable from items ingested interactively or
by batch import. But internally there are some differences:

First, the randomly generated internal ID is not used because DSpace does not control the file path and name
of the bitstream. Instead, the file path and name are that specified in the contents file.

Second, the store_number column of the bitstream database row contains the asset store number specified
in the contents file.

Third, the internal_id column of the bitstream database row contains a leading flag (-R) followed by the
registered file path and name. For example, -Rfilepath where filepath is the file path and name relative to
the asset store corresponding to the asset store number. The asset store could be traditional storage in the
DSpace server's file system or an SRB account.

Fourth, an MD5 checksum is calculated by reading the registered file if it is in local storage. If the registerd
file is in remote storage (say, SRB) a checksum is calculated on just the file name! This is an efficiency choice
since registering a large number of large files that are in SRB would consume substantial network resources
and time. A future option could be to have an SRB proxy process calculate MD5s and store them in SRB's
metadata catalog (MCAT) for rapid retrieval. SRB offers such an option but it's not yet in production release.

Registered items and their bitstreams can be retrieved transparently just like normally ingested items.

6.6.4. Exporting Registered Items

Registered items may be exported as described in Exporting Items. If so, the export directory will contain
actual copies of the files being exported but the lines in the contents file will flag the files as registered. This
means that if DSpace items are "round tripped" (see Transferring Items Between DSpace Instances) using
the exporter and importer, the registered files in the export directory will again registered in DSpace instead
of being uploaded and ingested normally.

6.6.5. METS Export of Registered Items

The METS Export Tool can also be used but note the cautions described in that section and note that MD5
values for items in remote storage are actually MD5 values on just the file name.

6.6.6. Deleting Registered Items

If a registered item is deleted from DSpace, either interactively or by using the -delete or -replace flags
described in Importing Items, the item will disappear from DSpace but it's registered content files will remain
in place just as they were prior to registration. Bitstreams not registered but added by DSpace as part of
registration, such as license.txt files, will be deleted.

6.7. METS Tools
The experimental (incomplete) METS export tool writes DSpace items to a filesystem with the metadata
held in a more standard format based on METS.

6.7.1. The Export Tool

This tool is obsolete, and does not export a complete AIP. It's use is strongly deprecated.

Command used: _[dspace]_/bin/dspace mets-export

Java class: org.dspace.app.mets.METSExport

METS Tools

159

Arguments short and (long) forms: Description

a or -all Export all items in the archive.

c or -collection Handle of the collection to export.

d or -destination Destination directory.

i or -item Handle of the item to export.

h or -help Help

The following are examples of the types of process the METS tool can provide.

Exporting an individual item. From the CLI:

[dspace]/bin/dspace mets-export -i ___[handle] -d /path/to/destination_

Exporting a collection. From the CLI:

[dspace]/bin/dspace mets-export -c [handle] -d /path/to/destination

Exporting all the items in DSpace. From the CLI:

[dspace]/bin/dspace mets-export -a -d /path/to/destination

6.7.2. The AIP Format

Note that this tool is deprecated, and the output format is not a true AIP

Each exported item is written to a separate directory, created under the base directory specified in the com-
mand-line arguments, or in the current directory if --destination is omitted. The name of each directory is
the Handle, URL-encoded so that the directory name is 'legal'.

Within each item directory is a mets.xml file which contains the METS-encoded metadata for the item.
Bitstreams in the item are also stored in the directory. Their filenames are their MD5 checksums, firstly for
easy integrity checking, and also to avoid any problems with 'special characters' in the filenames that were
legal on the original filing system they came from but are illegal in the server filing system. The mets.xml
file includes XLink pointers to these bitstream files.

An example AIP might look like this:

• hdl%3A123456789%2F8/

• mets.xml – METS metadata

• 184BE84F293342 – bitstream

• 3F9AD0389CB821

• 135FB82113C32D
The contents of the METS in the mets.xml file are as follows:

• A dmdSec (descriptive metadata section) containing the item's metadata in http://www.loc.gov/stan-
dards/mods/ XML. The Dublin Core descriptive metadata is mapped to MODS since there is no official
qualified Dublin Core XML schema in existence as of yet, and the Library Application Profile of DC that
DSpace uses includes some qualifiers that are not part of the http://dublincore.org/documents/dcmi-terms/.

• An amdSec (administrative metadata section), which contains the a rights metadata element, which in turn
contains the base64-encoded deposit license (the license the submitter granted as part of the submission
process).

• A fileSec containing a list of the bitstreams in the item. Each bundle constitutes a fileGrp. Each bitstream
is represented by a file element, which contains an FLocat element with a simple XLink to the bitstream in

MediaFilters: Transforming DSpace Content

160

the same directory as the mets.xml file. The file attributes consist of most of the basic technical metadata
for the bitstream. Additionally, for those bitstreams that are thumbnails or text extracted from another
bitstream in the item, those 'derived' bitstreams have the same GROUPID as the bitstream they were
derived from, in order that clients understand that there is a relationship.The OWNERID of each file is the
'persistent' bitstream identifier assigned by the DSpace instance. The ID and GROUPID attributes consist
of the item's Handle, together with the bitstream's sequence ID, which underscores used in place of dots
and slashes. For example, a bitstream with sequence ID 24, in the item hdl:123.456/789 will have the
ID123_456_789_24. This is because ID and GROUPID attributes must be of type xsd:id.

6.7.3. Limitations

• No corresponding import tool yet

• No structmap section

• Some technical metadata not written, e.g. the primary bitstream in a bundle, original filenames or descrip-
tions.

• Only the MIME type is stored, not the (finer grained) bitstream format.

• Dublin Core to MODS mapping is very simple, probably needs verification

6.8. MediaFilters: Transforming DSpace Content
DSpace can apply filters to content/bitstreams, creating new content. Filters are included that extract text for
full-text searching, and create thumbnails for items that contain images. The media filters are controlled by
the MediaFilterManager which traverses the asset store, invoking the MediaFilter or FormatFilter classes
on bitstreams. The media filter plugin configuration filter.plugins in dspace.cfg contains a list of all enabled
media/format filter plugins (see Configuring Media Filters for more information). The media filter system
is intended to be run from the command line (or regularly as a cron task):

[dspace]/bin/filter-media

With no options, this traverses the asset store, applying media filters to bitstreams, and skipping bitstreams
that have already been filtered.

Available Command-Line Options:

• Help : [dspace]/bin/dspace filter-media -h

• Display help message describing all command-line options.

• Force mode : [dspace]/bin/dspace filter-media -f

• Apply filters to ALL bitstreams, even if they've already been filtered. If they've already been filtered,
the previously filtered content is overwritten.

• Identifier mode : [dspace]/bin/dspace filter-media -i 123456789/2

• Restrict processing to the community, collection, or item named by the identifier - by default, all bit-
streams of all items in the repository are processed. The identifier must be a Handle, not a DB key.
This option may be combined with any other option.

• Maximum mode : [dspace]/bin/dspace filter-media -m 1000

• Suspend operation after the specified maximum number of items have been processed - by default, no
limit exists. This option may be combined with any other option.

Sub-Community Management

161

• No-Index mode : [dspace]/bin/dspace filter-media -n

• Suppress index creation - by default, a new search index is created for full-text searching. This option
suppresses index creation if you intend to run index-update elsewhere.

• Plugin mode : [dspace]/bin/dspace filter-media -p "PDF Text Extractor","Word Text Extractor"

• Apply ONLY the filter plugin(s) listed (separated by commas). By default all named filters listed in
the filter.plugins field of dspace.cfg are applied. This option may be combined with any other option.
WARNING: multiple plugin names must be separated by a comma (i.e. ',') and NOT a comma followed
by a space (i.e. ', ').

• Skip mode : [dspace]/bin/dspace filter-media -s 123456789/9,123456789/100

• SKIP the listed identifiers (separated by commas) during processing. The identifiers must be Handles
(not DB Keys). They may refer to items, collections or communities which should be skipped. This
option may be combined with any other option. WARNING: multiple identifiers must be separated by
a comma (i.e. ',') and NOT a comma followed by a space (i.e. ', ').

• NOTE: If you have a large number of identifiers to skip, you may maintain this comma-separated list
within a separate file (e.g. filter-skiplist.txt). Use the following format to call the program. Please note
the use of the "grave" or "tick" (`_) symbol and do not use the single quotation. _

• [dspace]/bin/dspace filter-media -s `less filter-skiplist.txt`

• Verbose mode : [dspace]/bin/dspace filter-media -v

• Verbose mode - print all extracted text and other filter details to STDOUT.
Adding your own filters is done by creating a class which implements the
org.dspace.app.mediafilter.FormatFilter interface. See the Creating a new Media Filter topic and com-
ments in the source file FormatFilter.java for more information. In theory filters could be implemented
in any programming language (C, Perl, etc.) However, they need to be invoked by the Java code in the
Media Filter class that you create.

6.9. Sub-Community Management
DSpace provides an administrative tool—'CommunityFiliator'—for managing community sub-structure.
Normally this structure seldom changes, but prior to the 1.2 release sub-communities were not supported, so
this tool could be used to place existing pre-1.2 communities into a hierarchy. It has two operations, either
establishing a community to sub-community relationship, or dis-establishing an existing relationship.

The familiar parent/child metaphor can be used to explain how it works. Every community in DSpace can be
either a 'parent' community—meaning it has at least one sub-community, or a 'child' community—meaning
it is a sub-community of another community, or both or neither. In these terms, an 'orphan' is a community
that lacks a parent (although it can be a parent); 'orphans' are referred to as 'top-level' communities in the
DSpace user-interface, since there is no parent community 'above' them. The first operation—establishing
a parent/child relationship - can take place between any community and an orphan. The second operation -
removing a parent/child relationship—will make the child an orphan.

Command used: _[dspace]_/bin/dspace community-filiator

Java class: org.dspace.administer.CommunityFiliator

Arguments short and (long) forms: Description

s or -set Set a parent/child relationship

r or -remove Remove a parent/child relationship

c or -child Child community (Handle or database ID)

p or -parent Parent community (Handle or database ID

Batch Metadata Editing

162

h or -help Online help.

Set a parent/child relationship, issue the following at the CLI:

dsrun org.dspace.administer.CommunityFiliator --set --parent=parentID --child=childID

(or using the short form)

[dspace]/bin dspace community-filiator -s -p parentID -c childID

where 's' or '-set' means establish a relationship whereby the community identified by the '-p' parameter
becomes the parent of the community identified by the '-c' parameter. Both the 'parentID' and 'childID' values
may be handles or database IDs.

The reverse operation looks like this:

[dspace]/bin dspace community-filiator --remove --parent=parentID --child=childID

(or using the short form)

[dspace]/bin dspace community-filiator -r -p parentID -c childID

where 'r' or '-remove' means dis-establish the current relationship in which the community identified by
'parentID' is the parent of the community identified by 'childID'. The outcome will be that the 'childID'
community will become an orphan, i.e. a top-level community.

If the required constraints of operation are violated, an error message will appear explaining the problem,
and no change will be made. An example in a removal operation, where the stated child community does not
have the stated parent community as its parent: "Error, child community not a child of parent community".

It is possible to effect arbitrary changes to the community hierarchy by chaining the basic operations together.
For example, to move a child community from one parent to another, simply perform a 'remove' from its
current parent (which will leave it an orphan), followed by a 'set' to its new parent.

It is important to understand that when any operation is performed, all the sub-structure of the child com-
munity follows it. Thus, if a child has itself children (sub-communities), or collections, they will all move
with it to its new 'location' in the community tree.

6.10. Batch Metadata Editing
DSpace provides a batch metadata editing tool. The batch editing tool is able to produce a comma delimited
file in the CVS format. The batch editing tool facilitates the user to perform the following:

• Batch editing of metadata (e.g. perform an external spell check)

• Batch additions of metadata (e.g. add an abstract to a set of items, add controlled vocabulary such as
LCSH)

• Batch find and replace of metadata values (e.g. correct misspelled surname across several records)

• Mass move items between collections

• Enable the batch addition of new items (without bitstreams) via a CSV file

• Re-order the values in a list (e.g. authors) Export Function

The following table summarizes the basics.

Command used: _[dspace]_/bin/dspace metadata-export

Java class: org.dspace.app.bulkedit.MetadataExport

Batch Metadata Editing

163

Arguments short and (long) forms): Description

f or -file Required. The filename of the resulting CSV.

i or -id The Item, Collection, or Community handle or
Database ID to export. If not specified, all items will
be exported.

a or -all Include all the metadata fields that are not normally
changed (e.g. provenance) or those fields you config-
ured in the dspace.cfg to be ignored on export.

h or -help Display the help page.

6.10.1. Exporting Process
To run the batch editing exporter, at the command line:

_[dspace]/bin/dspace metadata-export -f name_of_file.csv -i 1023/24 _

Example:

[dspace]/bin/dspace metadata-export -f /batch_export/col_14.csv -i /1989.1/24

In the above example we have requested that a collection, assigned handle '1989.1/24' export the entire
collection to the file 'col_14.cvs' found in the '/batch_export' directory.

6.10.2. Import Function
The following table summarizes the basics.

Command used: _[dspace]_/bin/dspace metadata-import

Java class: org.dspace.app.bulkedit.MetadataImport

Arguments short and (long) forms: Description

f or -file Required. The filename of the CSV file to load.

s or -silent Silent mode. The import function does not prompt
you to make sure you wish to make the changes.

e or -email The email address of the user. This is only required
when adding new items.

w or -workflow When adding new items, the program will queue the
items up to use the Collection Workflow processes.

n or -notify when adding new items using a workflow, send no-
tification emails.

t or -template When adding new items, use the Collection template,
if it exists.

h or -help Display the brief help page.

Silent Mode should be used carefully. It is possible (and probable) that you can overlay the wrong data and
cause irreparable damage to the database.

Importing Process

To run the batch importer, at the command line:

_[dspace]/bin/dspace metadata-import -f name_of_file.csv _

Example

Batch Metadata Editing

164

[dspace]/bin/dspace metadata-import -f /dImport/col_14.csv

If you are wishing to upload new metadata without bistreams, at the command line:

[dspace]/bin/dspace/metadata-import -f /dImport/new_file.csv -e joe@user.com -w -n -t

In the above example we threw in all the arguments. This would add the metadata and engage the workflow,
notification, and templates to all be applied to the items that are being added.

6.10.3. The CSV Files

The csv files that this tool can import and export abide by the RFC4180 CSV format http://www.ietf.org/
rfc/rfc4180.txt. This means that new lines, and embedded commas can be included by wrapping elements in
double quotes. Double quotes can be included by using two double quotes. The code does all this for you,
and any good csv editor such as Excel or OpenOffice will comply with this convention.

File Structure. The first row of the csv must define the metadata values that the rest of the csv represents.
The first column must always be "id" which refers to the item'id. All other columns are optional. The other
columns contain the dublin core metadata fields that the data is to reside.

A typical heading row looks like:

id,collection,dc.title,dc.contributor,dc.date.issued,etc,etc,etc.

Subsequent rows in the csv file relate to items. A typical row might look like:

350,2292,Item title,"Smith, John",2008

If you want to store multiple values for a given metadata element, they can be separated with the double-pipe
'||' (or another character that you defined in your _dspace.cfg _file. For example:

Horses||Dogs||Cats

Elements are stored in the database in the order that they appear in the csv file. You can use this to order
elements where order may matter, such as authors, or controlled vocabulary such as Library of Congress
Subject Headings.

When importing a csv file, the importer will overlay the data onto what is already in the repository to de-
termine the differences. It only acts on the contents of the cvs file, rather than on the complete item meta-
data. This means that the CSV file that is exported can be manipulated quite substantially before being re-
imported. Rows (items) or Columns (metadata elements) can be removed and will be ignored. For example,
if you only want to edit item abstracts, you can remove all of the other columns and just leave the abstract
column. (You do need to leave the ID column intact. This is mandatory).

Deleting Data. It is possible to perform deletes across the board of certain metadata fields from an exported
file. For example, let's say you have used keywords (dc.subject) that need to be removed en masse. You
would leave the column (dc.subject) intact, but remove the data in the corresponding rows.

*Migrating Data or Exchanging data.*It is possbile that you have data in one Dublin Core (DC) element and
you wish to really have it in another. An example would be that your staff have input Library of Congress
Subject Headings in the Subject field (dc.subject) instead of the LCSH field (dc.subject.lcsh). Follow these
steps and your data is migrated upon import:

1. Insert a new column. The first row should be the new metadata element. (We will refer to it as the
TARGET)

2. Select the column/rows of the data you wish to change. (We will refer to it as the SOURCE)

3. Cut and paste this data into the new column (TARGET) you created in Step 1.

http://www.ietf.org/rfc/rfc4180.txt
http://www.ietf.org/rfc/rfc4180.txt

Checksum Checker

165

4. Leave the column (SOURCE) you just cut and pasteed from empty. Do not delete it.

6.11. Checksum Checker
Checksum Checker is program that can run to verify the checksum of every item within DSpace. Checksum
Checker was designed with the idea that most System Administrators will run it from the cron. Depending
on the size of the repository choose the options wisely.

Command used: _[dspace]_/bin/dspace checker

Java class: org.dspace.app.checker.ChecksumChecker

Arguments short and (long) forms): Description

L or -continuous Loop continuously through the bitstreams

a or -handle Specify a handle to check

-b <bitstream-ids> Space separated list of bitstream IDs

c or -count Check count

d or -duration Checking duration

h or -help Calls online help

l or -looping Loop once through bitstreams

-p <prune> Prune old results (optionally using specified proper-
ties file for configuration

v or -verbose Report all processing

There are three aspects of the Checksum Checker's operation that can be configured:

• the execution mode

• the logging output

• the policy for removing old checksum results from the database
The user should refer to Chapter 5. Configuration for specific configuration beys in the dspace.cfg file.

6.11.1. Checker Execution Mode

Execution mode can be configured using command line options. Information on the options are found in the
previous table above. The different modes are described below.

Unless a particular bitstream or handle is specified, the Checksum Checker will always check bitstreams in
order of the least recently checked bitstream. (Note that this means that the most recently ingested bitstreams
will be the last ones checked by the Checksum Checker.)

Available command line options

• *Limited-count mode: *[dspace]/bin/dspace checker -c_To check a specific number of bitstreams. The
_-c option if followed by an integer, the number of bitstreams to check.Example: [dspace/bin/dspace
checker -c 10_This is particularly useful for checking that the checker is executing properly. The Check-
sum Checker's default execution mode is to check a single bitstream, as if the option was _-c 1

• Duration mode:[dspace]/bin/dspace checker -d_To run the Check for a specific period of time with a
time argument. You may use any of the time arguments below: Example: _[dspace/bin/dspace checker
-d 2h (Checker will run for 2 hours)|s |Seconds |

m Minutes

Checksum Checker

166

h Hours

d Days

w Weeks

y Years

The checker will keep starting new bitstream checks for the specific durations, so actual execution duration
will be slightly longer than the specified duration. Bear this in mind when scheduling checks.

• Specific Bistream mode:[dspace]/bin/dspace checker -b_Checker will only look at the internal bitsteam
IDs. Example: _[dspace]/bin/dspace checker -b 112 113 4567 Checker will only check bitstream IDs
112, 113 and 4567.

• Specific Handle mode:[dspace]/bin/dspace checker -a_Checkr will only check bistreams within the
Community, Community or the item itself. Example: _[dspace]/bin/dspace checker -a 123456/999 Check-
er will only check this handle. If it is a Collection or Community, it will run through the entire Collection
or Community.The Check

• Looping mode:[dspace]/bin/dspace checker -l or _[dspace]/bin/dspace checker -L_There are two modes.
The lowercase 'el' (-l) specifies to check every bitstream in the repository once. This is recommended
for smaller repositories who are able to loop through all their content in just a few hours maximum. An
uppercase 'L' (-L) specifies to continuously loops through the repository. This is not recommended for
most repository systems. Cron Jobs. For large repositories that cannot be completely checked in a couple
of hours, we recommend the -d option in cron.

• Pruning mode:_[dspace]/bin/dspace checker -p_The Checksum Checker will store the result of every
check in the checksum_histroy table. By default, successful checksum matches that are eight weeks old or
older will be deleted when the -p option is used. (Unsuccessful ones will be retained indefinitel). Without
this option, the retention settings are ignored and the database table may grow rather large!

6.11.2. Checker Results Pruning
As stated above in "Pruning mode", the checksum_history table can get rather large, and that running the
checker with the -p assists in the size of the checksum_history being kept manageable. The amount of time
for which results are retained in the checksum_history table can be modified by one of two methods:

1. Editing the retention policies in [dspace]/config/dspace.cfg See Chapter 5 Configuration for the property
keys.OR

2. Pass in a properties file containting retention policies when using the -p option. To do this, create a file
with the following two property keys:

checker.retention.default = 10y
checker.retention.CHECKSUM_MATCH = 8w

You can use the table above for your time units.At the command line:

[dspace]/bin/dspace checker -p retention_file_name <ENTER>

6.11.3. Checker Reporting
Checksum Checker uses log4j to report its results. By default it will report to a log called [dspace]/log/
checker.log, and it will report only on bitstreams for which the newly calculated checksum does not match the
stored checksum. To report on all bitstreams checked regardless of outcome, use the -v (verbose) command
line option:

[dspace]/bin/dspace checker -l -v (This will loop through the repository once and report in detail about every
bitstream checked.

Checksum Checker

167

To change the location of the log, or to modify the prefix used on each line of output, edit the [dspace]/
config/templates/log4j.properties file and run [dspace]/bin/install_configs.

6.11.4. Cron or Automatic Execution of Checksum Checker

You should schedule the Checksum Checker to run automatically, based on how frequently you backup your
DSpace instance (and how long you keep those backups). The size of your repository is also a factor. For
very large repositories, you may need to schedule it to run for an hour (e.g. -d 1h option) each evening to
ensure it makes it through your entire repository within a week or so. Smaller repositories can likely get
by with just running it weekly.

Unix, Linux, or MAC OS. You can schedule it by adding a cron entry similar to the following to the crontab
for the user who installed DSpace:

0 4 ** 0 [dspace]/bin/dspace checker -d2h -p

The above cron entry would schedule the checker to run the checker every Sunday at 400 (4:00 a.m.) for 2
hours. It also specifies to 'prune' the database based on the retention settings in dspace.cfg.

Windows OS. You will be unable to use the checker shell script. Instead, you should use Windows Schedule
Tasks to schedule the following command to run at the appropriate times:

''[dspace]''/bin/dsrun.bat org.dspace.app.checker.ChecksumChecker -d2h -p (This command should appear
on a single line).

6.11.5. Automated Checksum Checkers' Results

Optionally, you may choose to receive automated emails listing the Checksum Checkers' results. Schedule
it to run after the Checksum Checker has completed its processing (otherwise the email may not contain
all the results).

Command used: _[dspace]_/bin/dspace checker

Java class: org.dspace.checker.DailyReportEmailer

Arguments short and (long) forms): Description

a or -All Send all the results (everything specified below)

d or -Deleted Send E-mail report for all bitstreams set as deleted
for today.

m or -Missing Send E-mail report for all bitstreams not found in as-
setstore for today.

c or -Changed Send E-mail report for all bitstrems where checksum
has been changed for today.

u or -Unchanged Send the Unchecked bitstream report.

n or -Not Processed Send E-mail report for all bitstreams set to longer be
processed for today.

h or -help Help

You can also combine options (e.g. -m -c) for combined reports.

Cron. Follow the same steps above as you would running checker in cron. Change the time but match the
regularity. Remember to schedule this *after* Checksum Checker has run.

. Embargo

If you have implemented the Embargo feature, you will need to run it periodically to check for Items with
expired embargoes and lift them.

Checksum Checker

168

Command used: _[dspace]_/bin/dspace embargo-lifter

Java class: org.dspace.embargo.EmbargoManager

Arguments short and (long) forms): Description

c or -check ONLY check the state of embargoed Items, do NOT
lift any embargoes

i or -identifier Process ONLY this handle identifier(s), which must
be an Item. Can be repeated.

l or -lift Only lift embargoes, do NOT check the state of any
embargoed items.

n or -dryrun Do no change anything in the data model, print mes-
sage instead.

v or -verbose Print a line describing the action taken for each em-
bargoed item found.

q or -quiet No output except upon error.

h or -help Display brief help screen.

You must run the Embargo Lifter task periodically to check for items with expired embargoes and lift them
from being embargoed. For example, to check the status, at the CLI:

[dspace]/bin/dspace embargo-lifter -c

To lift the actual embargoes on those items that meet the time criteria, at the CLI:

[dspace]/bin/dspace embargo-lifter -l

. Browse Index Creation

To create all the various browse indexes that you define in the Configuration Section (Chapter 5) there are
a variety of options available to you. You can see these options below in the command table.

Command used: _[dspace]_/bin/dspace index-init

Java class: org.dspace.browse.IndexBrowse

Arguments short and long forms): Description

r or -rebuild Should we rebuild all the indexes, which removes old
tables and creates new ones. For use with -f. Mutually
exclusive with -d

s or -start [-s <int>] _start from this index number and work
upwards (mostly only useful for debugging). For use
with _-t and -f

x or -execute Execute all the remove and create SQL against the
database. For use with -t _and _-f

i or -index Actually do the indexing. Mutually exclusive with -
t and -f.

o or -out [-o<filename>] write the remove and create SQL to
the given file. For use with -t and -f

p or -print Write the remove and create SQL to the stdout. For
use with -t and -f.

t or -tables Create the tables only, do no attempt to index. Mutu-
ally exclusive with -f and -i

f or -full Make the tables, and do the indexing. This forces -x.
Mutually exclusive with -f and -i.

Checksum Checker

169

v or -verbose Print extra information to the stdout. If used in con-
junction with -p, you cannot use the stdout to gener-
ate your database structure.

d or -delete Delete all the indexes, but do not create new ones.
For use with -f. This is mutually exclusive with -r.

h or -help Show this help documentation. Overrides all other
arguments.

. Running the Indexing Programs

Complete Index Regeneration. By running [dspace]/bin/dspace index-init you will completely regenerate
your indexes, tearing down all old tables and reconstructing with the new cofiguration. Running this is the
same as:

[dspace]/bin/dsrun org.dspace.browse.IndexBrowse -f -r

Updating the Indexes. By running dspace/bin/dspace index-update you will reindex your full browse wi-
htout modifying the table structure. (This should be your default approach if indexing, for example, via a
cron job periodically). Running this is the same as:

[dspace]/bin/dsrun org.dspace.browse.IndexBrowse -i

Destroy and rebuild. You can destroy and rebuild the database, but do not do the indexing. Output the
SQL to do this to the screen and a file, as well as executing it against the database, while being verbose.
At the CLI screen:

[dspace]/bin/dsrun org.dspace.browse.IndexBrowse -r -t -p -v -x -o myfile.sql

. Indexing Customization

DSpace provides robust browse indexing. It is possible to expand upon the default indexes delivered at the
time of the installation. The System Administrator should review "Defining the Indexes" from the Chapter 5.
Configuration to become familiar with the property keys and the definitions used therein before attempting
heavy customizations.

Through customization is is possible to:

• Add new browse indexes besides the four that are delivered upon installation. Examples:

• Series

• Specific subject fields (Library of Congress Subject Headings.(It is possible to create a browse index
based on a controlled vocabulary or thesauris.)

• Other metadata schema fields

• Combine metadata fields into one browse

• Combine different metadata schemas in one browse
Examples of new browse indexes that are possible.(The system administrator is reminded to read the
section on Defining the Indexes in Chapter 5. Configuration.)

• Add a Series Browse. You want to add a new browse using a previously unused metadata element.
webui.browse.index.6 = series:metadata:dc.relation.ispartofseries:text:single_Note: the index # need
to be adjusted to your browse stanza in the _dspace.cfg file. Also, you will need to update your
Messages.properties file.

• Combine more than one metadata field into a browse. You may have other title fields
used in your repository. You may only want one or two of them added, not all ti-
tle fields. And/or you may want your series to file in there. webui.browse.index.3 =
title:metadata:dc.title,dc:title.uniform,dc:relation.ispartofseries:title:full

Storage

170

• Separate subject browse. You may want to have a separate subject browse limited to only one type of
subject. webui.browse.index.7 = lcsubject.metdata:dc.subject.lcsh.text:single
As one can see, the choices are limited only by your metadata schema, the metadata, and your imagination.

Remember to run index-init after adding any new defitions in the dspace.cfg to have the indexes created
and the data indexed.

7. Storage

7.1. RDBMS
DSpace uses a relational database to store all information about the organization of content, metadata about
the content, information about e-people and authorization, and the state of currently-running workflows.
The DSpace system also uses the relational database in order to maintain indices that users can browse.

Most of the functionality that DSpace uses can be offered by any standard SQL database that supports
transactions. Presently, the browse indices use some features specific to http://www.postgresql.org/ and
http://www.oracle.com/database/, so some modification to the code would be needed before DSpace would
function fully with an alternative database back-end.

The org.dspace.storage.rdbms package provides access to an SQL database in a somewhat simpler form
than using JDBC directly. The main class is DatabaseManager, which executes SQL queries and returns
TableRow or TableRowIterator objects. The InitializeDatabase class is used to load SQL into the database
via JDBC, for example to set up the schema.

All calls to the Database Manager require a DSpace Context object. Example use of the database manager
API is given in the org.dspace.storage.rdbms package Javadoc.

The database schema used by DSpace is created by SQL statements stored in a directory specific to each
supported RDBMS platform:

RDBMS

171

• PostgreSQL schemas are in [dspace-source]/dspace/etc/postgres/

• Oracle schemas are in [dspace-source]/dspace/etc/oracle/ The SQL (DDL) statements to create the tables
for the current release, starting with an empty database, aer in database_schema.sql. The schema SQL
file also creates the two required e-person groups (Anonymous and Administrator) that are required for
the system to function properly.

Also in [dspace-source]/dspace/etc/[database] are various SQL files called database_schema_1x_1y. These
contain the necessary SQL commands to update a live DSpace database from version 1.x to 1.y. Note that
this might not be the only part of an upgrade process: see Updating a DSpace Installation for details.

The DSpace database code uses an SQL function getnextid to assign primary keys to newly created rows.
This SQL function must be safe to use if several JVMs are accessing the database at once; for example,
the Web UI might be creating new rows in the database at the same time as the batch item importer. The
PostgreSQL-specific implementation of the method uses SEQUENCES for each table in order to create new
IDs. If an alternative database backend were to be used, the implementation of getnextid could be updated
to operate with that specific DBMS.

The etc directory in the source distribution contains two further SQL files. clean-database.sql contains the
SQL necessary to completely clean out the database, so use with caution! The Ant target clean_database can
be used to execute this. update-sequences.sql contains SQL to reset the primary key generation sequences
to appropriate values. You'd need to do this if, for example, you're restoring a backup database dump which
creates rows with specific primary keys already defined. In such a case, the sequences would allocate primary
keys that were already used.

Versions of the .sql files for Oracle are stored in [dspace-source]/dspace/etc/oracle. These need to be copied
over their PostgreSQL counterparts in [dspace-source]/dspace/etc prior to installation.

7.1.1. Maintenance and Backup

When using PostgreSQL, it's a good idea to perform regular 'vacuuming' of the database to optimize perfor-
mance. This is performed by the vacuumdb command which can be executed via a 'cron' job, for example
by putting this in the system crontab:

clean up the database nightly
40 2 * * * /usr/local/pgsql/bin/vacuumdb --analyze dspace > /dev/null
 2>&1

The DSpace database can be backed up and restored using usual methods, for example with pg_dump and
psql. However when restoring a database, you will need to perform these additional steps:

• The fresh_install target loads up the initial contents of the Dublin Core type and bitstream format reg-
istries, as well as two entries in the epersongroup table for the system anonymous and administrator
groups. Before you restore a raw backup of your database you will need to remove these, since they will
already exist in your backup, possibly having been modified. For example, use:

DELETE FROM dctyperegistry;
DELETE FROM bitstreamformatregistry;
DELETE FROM epersongroup;

• After restoring a backup, you will need to reset the primary key generation sequences so that they do
not produce already-used primary keys. Do this by executing the SQL in [dspace-source]/dspace/etc/
update-sequences.sql, for example with:

psql -U dspace -f
 [dspace-source]/dspace/etc/update-sequences.sql

Future updates of DSpace may involve minor changes to the database schema. Specific instructions on
how to update the schema whilst keeping live data will be included. The current schema also contains a

Bitstream Store

172

few currently unused database columns, to be used for extra functionality in future releases. These unused
columns have been added in advance to minimize the effort required to upgrade.

7.1.2. Configuring the RDBMS Component

The database manager is configured with the following properties in dspace.cfg:

db.url The JDBC URL to use for accessing the database.
This should not point to a connection pool, since
DSpace already implements a connection pool.

db.driver JDBC driver class name. Since presently, DSpace
uses PostgreSQL-specific features, this should be
org.postgresql.Driver.

db.username Username to use when accessing the database.

db.password Corresponding password ot use when accessing the
database.

7.2. Bitstream Store
DSpace offers two means for storing content. The first is in the file system on the server. The second is using
http://www.sdsc.edu/srb. Both are achieved using a simple, lightweight API.

SRB is purely an option but may be used in lieu of the server's file system or in addition to the file system.
Without going into a full description, SRB is a very robust, sophisticated storage manager that offers es-
sentially unlimited storage and straightforward means to replicate (in simple terms, backup) the content on
other local or remote storage resources.

The terms "store", "retrieve", "in the system", "storage", and so forth, used below can refer to storage in the
file system on the server ("traditional") or in SRB.

The BitstreamStorageManager provides low-level access to bitstreams stored in the system. In general, it
should not be used directly; instead, use the Bitstream object in the content management API since that en-
capsulated authorization and other metadata to do with a bitstream that are not maintained by the Bitstream-
StorageManager.

The bitstream storage manager provides three methods that store, retrieve and delete bitstreams. Bitstreams
are referred to by their 'ID'; that is the primary key bitstream_id column of the corresponding row in the
database.

As of DSpace version 1.1, there can be multiple bitstream stores. Each of these bitstream stores can be
traditional storage or SRB storage. This means that the potential storage of a DSpace system is not bound by
the maximum size of a single disk or file system and also that traditional and SRB storage can be combined
in one DSpace installation. Both traditional and SRB storage are specified by configuration parameters. Also
see Configuring the Bitstream Store below.

Stores are numbered, starting with zero, then counting upwards. Each bitstream entry in the database has a
store number, used to retrieve the bitstream when required.

At the moment, the store in which new bitstreams are placed is decided using a configuration parameter, and
there is no provision for moving bitstreams between stores. Administrative tools for manipulating bitstreams
and stores will be provided in future releases. Right now you can move a whole store (e.g. you could move
store number 1 from /localdisk/store to /fs/anotherdisk/store but it would still have to be store number 1
and have the exact same contents.

Bitstreams also have an 38-digit internal ID, different from the primary key ID of the bitstream table row.
This is not visible or used outside of the bitstream storage manager. It is used to determine the exact location
(relative to the relevant store directory) that the bitstream is stored in traditional or SRB storage. The first

Bitstream Store

173

three pairs of digits are the directory path that the bitstream is stored under. The bitstream is stored in a file
with the internal ID as the filename.

For example, a bitstream with the internal ID 12345678901234567890123456789012345678 is stored in
the directory:

(assetstore dir)/12/34/56/12345678901234567890123456789012345678

The reasons for storing files this way are:

• Using a randomly-generated 38-digit number means that the 'number space' is less cluttered than simply
using the primary keys, which are allocated sequentially and are thus close together. This means that the
bitstreams in the store are distributed around the directory structure, improving access efficiency.

• The internal ID is used as the filename partly to avoid requiring an extra lookup of the filename of the
bitstream, and partly because bitstreams may be received from a variety of operating systems. The original
name of a bitstream may be an illegal UNIX filename.
When storing a bitstream, the BitstreamStorageManager DOES set the following fields in the correspond-
ing database table row:

• bitstream_id

• size

• checksum

• checksum_algorithm

• internal_id

• deleted

• store_numberThe remaining fields are the responsibility of the Bitstream content management API class.

The bitstream storage manager is fully transaction-safe. In order to implement transaction-safety, the fol-
lowing algorithm is used to store bitstreams:

1. A database connection is created, separately from the currently active connection in the current DSpace
context.

2. An unique internal identifier (separate from the database primary key) is generated.

3. The bitstream DB table row is created using this new connection, with the deleted column set to true.

4. The new connection is _commit_ted, so the 'deleted' bitstream row is written to the database

5. The bitstream itself is stored in a file in the configured 'asset store directory', with a directory path and
filename derived from the internal ID

6. The deleted flag in the bitstream row is set to false. This will occur (or not) as part of the current DSpace
Context.
This means that should anything go wrong before, during or after the bitstream storage, only one of the
following can be true:

• No bitstream table row was created, and no file was stored

• A bitstream table row with deleted=true was created, no file was stored

• A bitstream table row with deleted=true was created, and a file was stored
None of these affect the integrity of the data in the database or bitstream store.

Bitstream Store

174

Similarly, when a bitstream is deleted for some reason, its deleted flag is set to true as part of the overall
transaction, and the corresponding file in storage is not deleted.

The above techniques mean that the bitstream storage manager is transaction-safe. Over time, the bitstream
database table and file store may contain a number of 'deleted' bitstreams. The cleanup method of Bitstream-
StorageManager goes through these deleted rows, and actually deletes them along with any corresponding
files left in the storage. It only removes 'deleted' bitstreams that are more than one hour old, just in case
cleanup is happening in the middle of a storage operation.

This cleanup can be invoked from the command line via the Cleanup class, which can in turn be easily
executed from a shell on the server machine using /dspace/bin/cleanup. You might like to have this run
regularly by cron, though since DSpace is read-lots, write-not-so-much it doesn't need to be run very often.

7.2.1. Backup

The bitstreams (files) in traditional storage may be backed up very easily by simply 'tarring' or 'zipping' the
assetstore directory (or whichever directory is configured in dspace.cfg). Restoring is as simple as extracting
the backed-up compressed file in the appropriate location.

Similar means could be used for SRB, but SRB offers many more options for managing backup.

It is important to note that since the bitstream storage manager holds the bitstreams in storage, and informa-
tion about them in the database, that a database backup and a backup of the files in the bitstream store must
be made at the same time; the bitstream data in the database must correspond to the stored files.

Of course, it isn't really ideal to 'freeze' the system while backing up to ensure that the database and files
match up. Since DSpace uses the bitstream data in the database as the authoritative record, it's best to back
up the database before the files. This is because it's better to have a bitstream in storage but not the database
(effectively non-existent to DSpace) than a bitstream record in the database but not storage, since people
would be able to find the bitstream but not actually get the contents.

7.2.2. Configuring the Bitstream Store

Both traditional and SRB bitstream stores are configured in dspace.cfg.

Configuring Traditonal Storage

Bitstream stores in the file system on the server are configured like this:

assetstore.dir = [dspace]/assetstore

(Remember that [dspace] is a placeholder for the actual name of your DSpace install directory).

The above example specifies a single asset store.

assetstore.dir = [dspace]/assetstore_0
assetstore.dir.1 = /mnt/other_filesystem/assetstore_1

The above example specifies two asset stores. assetstore.dir specifies the asset store number 0 (zero); after
that use assetstore.dir.1, assetstore.dir.2 and so on. The particular asset store a bitstream is stored in is held
in the database, so don't move bitstreams between asset stores, and don't renumber them.

By default, newly created bitstreams are put in asset store 0 (i.e. the one specified by the assetstore.dir
property.) This allows backwards compatibility with pre-DSpace 1.1 configurations. To change this, for
example when asset store 0 is getting full, add a line to dspace.cfg like:

assetstore.incoming = 1

Directories

175

Then restart DSpace (Tomcat). New bitstreams will be written to the asset store specified by assetstore.dir.1,
which is /mnt/other_filesystem/assetstore_1 in the above example.

Configuring SRB Storage

The same framework is used to configure SRB storage. That is, the asset store number (0..n) can reference a
file system directory as above or it can reference a set of SRB account parameters. But any particular asset
store number can reference one or the other but not both. This way traditional and SRB storage can both be
used but with different asset store numbers. The same cautions mentioned above apply to SRB asset stores
as well: The particular asset store a bitstream is stored in is held in the database, so don't move bitstreams
between asset stores, and don't renumber them.

For example, let's say asset store number 1 will refer to SRB. The there will be a set of SRB account pa-
rameters like this:

srb.host.1 = mysrbmcathost.myu.edu
srb.port.1 = 5544
srb.mcatzone.1 = mysrbzone
srb.mdasdomainname.1 = mysrbdomain
srb.defaultstorageresource.1 = mydefaultsrbresource
srb.username.1 = mysrbuser
srb.password.1 = mysrbpassword
srb.homedirectory.1 = /mysrbzone/home/mysrbuser.mysrbdomain
srb.parentdir.1 = mysrbdspaceassetstore

Several of the terms, such as mcatzone, have meaning only in the SRB context and will be familiar to SRB
users. The last, srb.parentdir.n, can be used to used for addition (SRB) upper directory structure within an
SRB account. This property value could be blank as well.

(If asset store 0 would refer to SRB it would be srb.host = ..., srb.port = ..., and so on (.0 omitted) to be
consistent with the traditional storage configuration above.)

The similar use of assetstore.incoming to reference asset store 0 (default) or 1..n (explicit property) means
that new bitstreams will be written to traditional or SRB storage determined by whether a file system direc-
tory on the server is referenced or a set of SRB account parameters are referenced.

There are comments in dspace.cfg that further elaborate the configuration of traditional and SRB storage.

8. Directories

8.1. Overview
A complete DSpace installation consists of three separate directory trees:

• The source directory:: This is where (surprise!) the source code lives. Note that the config files here are
used only during the initial install process. After the install, config files should be changed in the install
directory. It is referred to in this document as [dspace-source].

• The install directory:: This directory is populated during the install process and also by DSpace as it runs.
It contains config files, command-line tools (and the libraries necessary to run them), and usually-although
not necessarily-the contents of the DSpace archive (depending on how DSpace is configured). After the
initial build and install, changes to config files should be made in this directory. It is referred to in this
document as [dspace].

• The web deployment directory:: This directory is generated by the web server the first time it finds a
dspace.war file in its webapps directory. It contains the unpacked contents of dspace.war, i.e. the JSPs and
java classes and libraries necessary to run DSpace. Files in this directory should never be edited directly;
if you wish to modify your DSpace installation, you should edit files in the source directory and then

Source Directory Layout

176

rebuild. The contents of this directory aren't listed here since its creation is completely automatic. It is
usually referred to in this document as [tomcat]/webapps/dspace.

8.2. Source Directory Layout
• [dspace-source]

• dspace/ - Directory which contains all build and configuration information for DSpace

• CHANGES - Detailed list of code changes between versions.

• KNOWN_BUGS - Known bugs in the current version.

• LICENSE - DSpace source code license.

• README - Obligatory basic information file.

• bin/ - Some shell and Perl scripts for running DSpace command-line tasks.

• config/ - Configuration files:

• controlled-vocabularies/ - Fixed, limited vocabularies used in metadata entry

• crosswalks/ - Metadata crosswalks - property files or XSL stylesheets

• dspace.cfg - The Main DSpace configuration file (You will need to edit this).

• dc2mods.cfg - Mappings from Dublin Core metadata to http://www.loc.gov/standards/mods/ for
the METS export.

• default.license - The default license that users must grant when submitting items.

• dstat.cfg , dstat.map - Configuration for statistical reports.

• input-forms.xml - Submission UI metadata field configuration.

• news-side.html - Text of the front-page news in the sidebar, only used in JSPUI.

• news-top.html - Text of the front-page news in the top box, only used in teh JSPUI.

• emails/ - Text and layout templates for emails sent out by the system.

• registries/ - Initial contents of the bitstream format registry and Dublin Core element/qualifier reg-
istry. These are only used on initial system setup, after which they are maintained in the database.

• docs/ - DSpace system documentation. The technical documentation for functionality, installation,
configuration, etc.

• etc/ -
This directory contains administrative files needed for the install process and by developers, most-
ly database initialization and upgrade scripts. Any .xml files in etc/ are common to all supported
database systems.

• postgres/ - Versions of the database schema and updater SQL scripts for PostgreSQL.

• oracle/ - Versions of the database schema and updater SQL scripts for Oracle.

• modules/ - The Web UI modules "overlay" directory. DSpace uses Maven to automatically look here
for any customizations you wish to make to DSpace Web interfaces.

• jspui - Contains all customizations for the JSP User Interface.

Installed Directory Layout

177

• src/main/resources/ - The overlay for JSPUI Resources. This is the location to place any cus-
tom Messages.properties files. (Previously this file had been stored at: _[dspace-source]/con-
fig/language-packs/Messages.properties_

• src/main/webapp/ - The overlay for JSPUI Web Application. This is the location to place any
custom JSPs to be used by DSpace.

• lni - Contains all customizations for the Lightweight Network Interface.

• oai - Contains all customizations for the OAI-PMH Interface.

• sword - Contains all customizations for the SWORD (Simple Web-service Offering Repository
Deposit) Interface.

• xmlui - Contains all customizations for the XML User Interface (aka Manakin).

• src/main/webapp/ - The overlay for XMLUI Web Application. This is the location to place
custom Themes or Configurations.

• i18n/ - The location to place a custom version of the XMLUI's messages.xml (You have to
manually create this folder)

• themes/ - The location to place custom Themes for the XMLUI (You have to manually create
this folder).

• src/ - Maven configurations for DSpace System. This directory contains the Maven and Ant build
files for DSpace.

• target/ - (Only exists after building DSpace) This is the location Maven uses to build your DSpace
installation package.

• dspace-[version].dir - The location of the DSpace Installation Package (which can then be in-
stalled by running ant update)

8.3. Installed Directory Layout
Below is the basic layout of a DSpace installation using the default configuration. These paths can be con-
figured if necessary.

• [dspace]

• assetstore/ - asset store files

• bin/ - shell and Perl scripts

• config/ - configuration, with sub-directories as above

• handle-server/ - Handles server files

• history/ - stored history files (generally RDF/XML)

• lib/ - JARs, including dspace.jar, containing the DSpace classes

• log/ - Log files

• reports/ - Reports generated by statistical report generator

• search/ - Lucene search index files

• upload/ - temporary directory used during file uploads etc.

Contents of JSPUI Web Application

178

• webapps/ - location where DSpace installs all Web Applications

8.4. Contents of JSPUI Web Application
DSpace's Ant build file creates a dspace-jspui-webapp/ directory with the following structure:

• (top level dir)

• The JSPs

• WEB-INF/

• web.xml - DSpace JSPUI Web Application configuration and Servlet mappings

• dspace-tags.tld - DSpace custom tag descriptor

• fmt.tld - JSTL message format tag descriptor, for internationalization

• lib/ - All the third-party JARs and pre-compiled DSpace API JARs needed to run JSPUI

• classes/ - Any additional necessary class files

8.5. Contents of XMLUI Web Application (aka Manakin)
DSpace's Ant build file creates a dspace-xmlui-webapp/ directory with the following structure:

• (top level dir)

• aspects/ - Contains overarching Aspect Generator config and Prototype DRI (Digital Repository Inter-
face) document for Manakin.

• i18n/ - Internationalization / Multilingual support. Contains the messages.xml English language pack
by default.

• themes/ - Contains all out-of-the-box Manakin themes

• Classic/ - The classic theme, which makes the XMLUI look like classic DSpace

• dri2xhtml/ - The base theme, which converts XMLUI DRI (Digital Repository Interface) format into
XHTML for display

• Reference/ - The default reference theme for XMLUI

• template/ - A theme template...useful as a starting point for your own custom theme(s)

• dri2xhtml.xsl - The DRI-to-XHTML XSL Stylesheet. Uses the above 'dri2xhtml' theme to generate
XHTML

• themes.xmap - The Theme configuration file. It determines which theme(s) are used by XMLUI

• WEB-INF/

• lib/ - All the third-party JARs and pre-compiled DSpace JARs needed to run XMLUI

• classes/ - Any additional necessary class files

• cocoon.xconf - XMLUI's Apache Cocoon configuration

• logkit.xconf - XMLUI's Apache Cocoon Logging configuration

Log Files

179

• web.xml - XMLUI Web Application configuration and Servlet mappings

8.6. Log Files
The first source of potential confusion is the log files. Since DSpace uses a number of third-party tools,
problems can occur in a variety of places. Below is a table listing the main log files used in a typical DSpace
setup. The locations given are defaults, and might be different for your system depending on where you
installed DSpace and the third-party tools. The ordering of the list is roughly the recommended order for
searching them for the details about a particular problem or error.

Log File What's In It

[dspace]/log/dspace.log Main DSpace log file. This is where the DSpace code
writes a simple log of events and errors that occur
within the DSpace code. You can control the ver-
bosity of this by editing the [dspace-source]/con-
fig/templates/log4j.properties file and then running
"ant init_configs". [dspace]/bin/install-configs in
[dspace-source]/dspace/target/dspace-1.5.2-build/.

[tomcat]/logs/catalina.out This is where Tomcat's standard output is written.
Many errors that occur within the Tomcat code are
logged here. For example, if Tomcat can't find the
DSpace code (dspace.jar), it would be logged in
catalina.out.

[tomcat]/logs/hostname_log.yyyy-mm-dd.txt If you're running Tomcat stand-alone (without
Apache), it logs some information and errors for spe-
cific Web applications to this log file. hostname will
be your host name (e.g. dspace.myu.edu) and yyyy-
mm-dd will be the date.

[tomcat]/logs/apache_log.yyyy-mm-dd.txt If you're using Apache, Tomcat logs information
about Web applications running through Apache
(mod_webapp) in this log file (yyyy-mm-dd being the
date.)

[apache]/error_log Apache logs to this file. If there is a problem with
getting mod_webapp working, this is a good place to
look for clues. Apache also writes to several other
log files, though error_log tends to contain the most
useful information for tracking down problems.

[dspace]/log/handle-plug.log The Handle server runs as a separate process from the
DSpace Web UI (which runs under Tomcat's JVM).
Due to a limitation of log4j's 'rolling file appenders',
the DSpace code running in the Handle server's JVM
must use a separate log file. The DSpace code that
is run as part of a Handle resolution request writes
log information to this file. You can control the ver-
bosity of this by editing [dspace-source]/config/tem-
plates/log4j-handle-plugin.properties.

[dspace]/log/handle-server.log This is the log file for CNRI's Handle server code.
If a problem occurs within the Handle server code,
before DSpace's plug-in is invoked, this is where it
may be logged.

[dspace]/handle-server/error.log On the other hand, a problem with CNRI's Handle
server code might be logged here.

Architecture

180

PostgreSQL log PostgreSQL also writes a log file. This one doesn't
seem to have a default location, you probably had to
specify it yourself at some point during installation.
In general, this log file rarely contains pertinent in-
formation--PostgreSQL is pretty stable, you're more
likely to encounter problems with connecting via JD-
BC, and these problems will be logged in dspace.log.

9. Architecture

9.1. Overview
The DSpace system is organized into three layers, each of which consists of a number of components.

DSpace System Architecture

The storage layer is responsible for physical storage of metadata and content. The business logic layer deals
with managing the content of the archive, users of the archive (e-people), authorization, and workflow. The
application layer contains components that communicate with the world outside of the individual DSpace
installation, for example the Web user interface and the http://www.openarchives.org/ protocol for metadata
harvesting service.

Each layer only invokes the layer below it; the application layer may not used the storage layer directly,
for example. Each component in the storage and business logic layers has a defined public API. The union
of the APIs of those components are referred to as the Storage API (in the case of the storage layer) and
the DSpace Public API (in the case of the business logic layer). These APIs are in-process Java classes,
objects and methods.

Overview

181

It is important to note that each layer is trusted. Although the logic for authorising actions is in the business
logic layer, the system relies on individual applications in the application layer to correctly and securely
authenticate e-people. If a 'hostile' or insecure application were allowed to invoke the Public API directly,
it could very easily perform actions as any e-person in the system.

The reason for this design choice is that authentication methods will vary widely between different applica-
tions, so it makes sense to leave the logic and responsibility for that in these applications.

The source code is organized to cohere very strictly to this three-layer architecture. Also, only methods in
a component's public API are given the public access level. This means that the Java compiler helps ensure
that the source code conforms to the architecture.

Packages within Correspond to components in

org.dspace.app Application layer

org.dspace Business logic layer (except storage and app)

org.dspace.storage Storage layer

The storage and business logic layer APIs are extensively documented with Javadoc-style comments. Gen-
erate the HTML version of these by entering the [dspace-source]/dspace directory and running:

mvn javadoc:javadoc

The resulting documentation will be at [dspace-source]dspace-api/target/site/apidocs/index.html. The pack-
age-level documentation of each package usually contains an overview of the package and some example
usage. This information is not repeated in this architecture document; this and the Javadoc APIs are intended
to be used in parallel.

Each layer is described in a separate section:

• Storage Layer

• RDBMS

• Bitstream Store

• Business Logic Layer

• Core Classes

• Content Management API

• Workflow System

• Administration Toolkit

• E-person/Group Manager

• Authorisation

• Handle Manager/Handle Plugin

• Search

• Browse API

• History Recorder

• Checksum Checker

• Application Layer

Application

182

• Web User Interface

• OAI-PMH Data Provider

• Item Importer and Exporter

• Transferring Items Between DSpace Instances

• Registration

• METS Tools

• Media Filters

• Sub-Community Management
2002-2008 The DSpace Foundation

10. Application

10.1. Web User Interface
The DSpace Web UI is the largest and most-used component in the application layer. Built on Java Servlet
and JavaServer Page technology, it allows end-users to access DSpace over the Web via their Web browsers.
As of Dspace 1.3.2 the UI meets both XHTML 1.0 standards and Web Accessibility Initiative (WAI) level-2
standard.

It also features an administration section, consisting of pages intended for use by central administrators.
Presently, this part of the Web UI is not particularly sophisticated; users of the administration section need
to know what they are doing! Selected parts of this may also be used by collection administrators.

10.1.1. Web UI Files
The Web UI-related files are located in a variety of directories in the DSpace source tree. Note that as of
DSpace version 1.5, the deployment has changed. The build systems has moved to a maven-based system
enabling the various projects (JSPUI, XMLUI, etc.) into separate projects. The system still uses the familar
'Ant' to deploy the webapps in later stages.

Location Description

[dspace-source]/dspace-jspui/dspace-jspui-api/src/
main/java/org/dspace/app/webui

Web UI source files

[dspace-source]/dspace-jspui/dspace-jspui-api/src/
main/java/org/dspace/app/filters

Servlet Filters (Servlet 2.3 spec)

[dspace-source]/dspace-jspui/dspace-jspui-api/src/
main/java/org/dspace/app/jsptag

Custom JSP tag class files

[dspace-source]/dspace-jspui/dspace-jspui-api/src/
main/java/org/dspace/app/servlet

Servlets for main Web UI (controllers)

[dspace-source]/dspace-jspui/dspace-jspui-api/src/
main/java/org/dspace/app/servlet/admin

Servlets that comprise the administration part of the
Web UI

[dspace-source]/dspace-jspui/dspace-jspui-api/src/
main/java/org/dspace/app/webui/util/

Miscellaneous classes used by the servlets and filters

[dspace-source]/dspace-jspui The JSP files

[dspace-source]/dspace/modules/jspui/src/main/
webapp

This is where you place customized versions of JSPs
—see 6. JSPUI Configuration and Customization

Web User Interface

183

[dspace-source]/dspace/modules/xmlui/src/main/
webapp

This is where you place customizations for the Man-
akin interface—see 7. Manakin [XMLUI] Configu-
ration and Customization

[dspace-source/dspace/modules/jspui/src/main/
resources

This is where you can place you customize version
of the Messages.properties file.

[dspace-source]/dspace-jspui/dspace-jspui-
webapp/src/main/webapp/WEB-INF/dspace-
tags.tld

Custom DSpace JSP tag descriptor

.

.

10.1.2. The Build Process
The DSpace build process constructs a Web application archive, which is placed in [dspace-source]/build/
dspace.war. The build_wars Ant target does the work. The process works as follows:

• All the DSpace source code is compiled.

• [dspace-source]/etc/dspace-web.xml is copied to [dspace-source]/build and the @@dspace.dir@@ to-
ken inside it replaced with the DSpace installation directory (dspace.dir property from dspace.cfg

• The JSPs are all copied to [dspace-source]/build/jsp

• Customized JSPs from [dspace-source]/jsp/local are copied on top of these, thus 'overriding' the default
versions

• [dspace-source]/build/dspace.war is built
The contents of dspace.war are:

• (Top level) – the JSPs (customized versions from [dspace-source]/jsp/local will have overwritten the
defaults from the DSpace source distribution)

• WEB-INF/classes – the compiled DSpace classes

• WEB-INF/lib – the third party library JAR files from [dspace-source]/lib, minus servlet.jar which will
be available as part of Tomcat (or other servlet engine)

• WEB-INF/web.xml – web deployment descriptor, copied from [dspace-source]/build/dspace-web.xml

• WEB-INF/dspace-tags.tld – tag descriptor
Note that this does mean there are multiple copies of the compiled DSpace code and third-party libraries
in the system, so care must be taken to ensure that they are all in sync. (The storage overhead is a few
megabytes, totally insignificant these days.) In general, when you change any DSpace code or JSP, it's
best to do a complete update of both the installation ([dspace]), and to rebuild and redeploy the Web UI
and OAI .war files, by running this in [dspace-source]:

ant -D [dspace]/config/dspace.cfg update

and then following the instructions that command writes to the console.

10.1.3. Servlets and JSPs
The Web UI is loosely based around the MVC (model, view, controller) model. The content management
API corresponds to the model, the Java Servlets are the controllers, and the JSPs are the views. Interactions
take the following basic form:

1. An HTTP request is received from a browser

Web User Interface

184

2. The appropriate servlet is invoked, and processes the request by invoking the DSpace business logic layer
public API

3. Depending on the outcome of the processing, the servlet invokes the appropriate JSP

4. The JSP is processed and sent to the browser
The reasons for this approach are:

• All of the processing is done before the JSP is invoked, so any error or problem that occurs does not occur
halfway through HTML rendering

• The JSPs contain as little code as possible, so they can be customized without having to delve into Java
code too much
The org.dspace.app.webui.servlet.LoadDSpaceConfig servlet is always loaded first. This is a very simple
servlet that checks the dspace-config context parameter from the DSpace deployment descriptor, and uses
it to locate dspace.cfg. It also loads up the Log4j configuration. It's important that this servlet is loaded
first, since if another servlet is loaded up, it will cause the system to try and load DSpace and Log4j
configurations, neither of which would be found.

All DSpace servlets are subclasses of the DSpaceServlet class. The DSpaceServlet class handles some basic
operations such as creating a DSpace Context object (opening a database connection etc.), authentication
and error handling. Instead of overriding the doGet and doPost methods as one normally would for a servlet,
DSpace servlets implement doDSGet or doDSPost which have an extra context parameter, and allow the
servlet to throw various exceptions that can be handled in a standard way.

The DSpace servlet processes the contents of the HTTP request. This might involve retrieving the results of
a search with a query term, accessing the current user's eperson record, or updating a submission in progress.
According to the results of this processing, the servlet must decide which JSP should be displayed. The
servlet then fills out the appropriate attributes in the HttpRequest object that represents the HTTP request be-
ing processed. This is done by invoking the setAttribute method of the javax.servlet.http.HttpServletRequest
object that is passed into the servlet from Tomcat. The servlet then forwards control of the request to the
appropriate JSP using the JSPManager.showJSP method.

The JSPManager.showJSP method uses the standard Java servlet forwarding mechanism is then used to
forward the HTTP request to the JSP. The JSP is processed by Tomcat and the results sent back to the user's
browser.

There is an exception to this servlet/JSP style: index.jsp, the 'home page', receives the HTTP request directly
from Tomcat without a servlet being invoked first. This is because in the servlet 2.3 specification, there is
no way to map a servlet to handle only requests made to '/'; such a mapping results in every request being
directed to that servlet. By default, Tomcat forwards requests to '/' to index.jsp. To try and make things as
clean as possible, index.jsp contains some simple code that would normally go in a servlet, and then forwards
to home.jsp using the JSPManager.showJSP method. This means localized versions of the 'home page' can
be created by placing a customized home.jsp in [dspace-source]/jsp/local, in the same manner as other JSPs.

[dspace-source]/jsp/dspace-admin/index.jsp, the administration UI index page, is invoked directly by Tom-
cat and not through a servlet for similar reasons.

At the top of each JSP file, right after the license and copyright header, is documented the appropriate
attributes that a servlet must fill out prior to forwarding to that JSP. No validation is performed; if the servlet
does not fill out the necessary attributes, it is likely that an internal server error will occur.

Many JSPs containing forms will include hidden parameters that tell the servlets which form has been
filled out. The submission UI servlet (SubmissionController is a prime example of a servlet that deals
with the input from many different JSPs. The step and page hidden parameters (written out by the
SubmissionController.getSubmissionParameters() method) are used to inform the servlet which page of
which step has just been filled out (i.e. which page of the submission the user has just completed).

Below is a detailed, scary diagram depicting the flow of control during the whole process of processing and
responding to an HTTP request. More information about the authentication mechanism is mostly described
in the configuration section.

Web User Interface

185

Flow of Control During HTTP Request Processing

10.1.4. Custom JSP Tags
The DSpace JSPs all use some custom tags defined in /dspace/jsp/WEB-INF/dspace-tags.tld, and the corre-
sponding Java classes reside in org.dspace.app.webui.jsptag. The tags are listed below. The dspace-tags.tld
file contains detailed comments about how to use the tags, so that information is not repeated here.

• layout: Just about every JSP uses this tag. It produces the standard HTML header and <BODY>_tag.
Thus the content of each JSP is nested inside a _<dspace:layout> tag. The (XML-style)attributes of this
tag are slightly complicated--see dspace-tags.tld. The JSPs in the source code bundle also provide plenty
of examples.

• sidebar: Can only be used inside a layout tag, and can only be used once per JSP. The content between the
start and end sidebar tags is rendered in a column on the right-hand side of the HTML page. The contents
can contain further JSP tags and Java 'scriptlets'.

• date: Displays the date represented by an org.dspace.content.DCDate object. Just the one representation
of date is rendered currently, but this could use the user's browser preferences to display a localized date
in the future.

• include: Obsolete, simple tag, similar to jsp:include. In versions prior to DSpace 1.2, this tag would use
the locally modified version of a JSP if one was installed in jsp/local. As of 1.2, the build process now
performs this function, however this tag is left in for backwards compatibility.

• item: Displays an item record, including Dublin Core metadata and links to the bitstreams within it. Note
that the displaying of the bitstream links is simplistic, and does not take into account any of the bundling
structure. This is because DSpace does not have a fully-fledged dissemination architectural piece yet. Dis-
playing an item record is done by a tag rather than a JSP for two reasons: Firstly, it happens in several
places (when verifying an item record during submission or workflow review, as well as during standard
item accesses), and secondly, displaying the item turns out to be mostly code-work rather than HTML any-

Web User Interface

186

way. Of course, the disadvantage of doing it this way is that it is slightly harder to customize exactly what is
displayed from an item record; it is necessary to edit the tag code (org.dspace.app.webui.jsptag.ItemTag).
Hopefully a better solution can be found in the future.

• itemlist, collectionlist, communitylist: These tags display ordered sequences of items, collections and
communities, showing minimal information but including a link to the page containing full details. These
need to be used in HTML tables.

• popup: This tag is used to render a link to a pop-up page (typically a help page.) If Javascript is avail-
able, the link will either open or pop to the front any existing DSpace pop-up window. If Javascript is
not available, a standard HTML link is displayed that renders the link destination in a window named
'dspace.popup'. In graphical browsers, this usually opens a new window or re-uses an existing window
of that name, but if a window is re-used it is not 'raised' which might confuse the user. In text browsers,
following this link will simply replace the current page with the destination of the link. This obviously
means that Javascript offers the best functionality, but other browsers are still supported.

• selecteperson: A tag which produces a widget analogous to HTML <SELECT>, that allows a user to
select one or multiple e-people from a pop-up list.

• sfxlink: Using an item's Dublin Core metadata DSpace can display an SFX link, if an SFX server is
available. This tag does so for a particular item if the sfx.server.url property is defined in dspace.cfg.

10.1.5. Internationalization
The http://jakarta.apache.org/taglibs/doc/standard-1.0-doc/intro.html is used to specify messages in the JSPs
like this:

OLD:

<H1>Search Results</H1>

NEW:

<H1><fmt:message key="jsp.search.results.title"/></H1>

This message can now be changed using the config/language-packs/Messages.properties file. (This must be
done at build-time: Messages.properties is placed in the dspace.war Web application file.)

jsp.search.results.title = Search Results

Phrases may have parameters to be passed in, to make the job of translating easier, reduce the number of
'keys' and to allow translators to make the translated text flow more appropriately for the target language.

OLD:

<P>Results <%= r.getFirst() %> to <%= r.getLast() %> of <%=r.getTotal() %></P>

NEW:

<fmt:message key="jsp.search.results.text">
 <fmt:param><%= r.getFirst() %></fmt:param>
 <fmt:param><%= r.getLast() %></fmt:param>
 <fmt:param><%= r.getTotal() %></fmt:param>
</fmt:message>

(Note: JSTL 1.0 does not seem to allow JSP <%= %> expressions to be passed in as values of attribute in
<fmt:param value=""/>)

The above would appear in the Messages_xx.properties file as:

jsp.search.results.text = Results {0}-{1} of {2}

Web User Interface

187

Introducing number parameters that should be formatted according to the locale used makes no difference
in the message key compared to atring parameters:

jsp.submit.show-uploaded-file.size-in-bytes = {0} bytes

In the JSP using this key can be used in the way belov:

<fmt:message key="jsp.submit.show-uploaded-file.size-in-bytes">
 <fmt:param><fmt:formatNumber><%= bitstream.getSize()%></fmt:formatNumber></fmt:param>
</fmt:message>

(Note: JSTL offers a way to include numbers in the message keys as _jsp.foo.key =
Unknown macro: {0,number}

bytes_. Setting the parameter as _<fmt:param value="$
Unknown macro: {variable}

" />_ workes when variable is a single variable name and doesn't work when trying to use a method's return
value instead: bitstream.getSize(). Passing the number as string (or using the <%= %> expression) also does
not work.)

Multiple Messages.properties can be created for different languages.
See http://java.sun.com/j2se/1.4.2/docs/api/java/util/ResourceBundle.html#getBundle(java.lang.String,
%20java.util.Locale,%20java.lang.ClassLoader). e.g. you can add German and Canadian French transla-
tions:

Messages_de.properties
Messages_fr_CA.properties

The end user's browser settings determine which language is used. The English language file
Messages.properties (or the default server locale) will be used as a default if there's no language bundle for
the end user's preferred language. (Note that the English file is not called Messages_en.properties – this is
so it is always available as a default, regardless of server configuration.)

The dspace:layout tag has been updated to allow dictionary keys to be passed in for the titles. It now has
two new parameters: titlekey and parenttitlekey. So where before you'd do:

<dspace:layout title="Here"
 parentlink="/mydspace"
 parenttitle="My DSpace">

You now do:

<dspace:layout titlekey="jsp.page.title"
 parentlink="/mydspace"
 parenttitlekey="jsp.mydspace">

And so the layout tag itself gets the relevant stuff out of the dictionary. title and parenttitle still work as
before for backwards compatibility, and the odd spot where that's preferable.

Message Key Convention

When translating further pages, please follow the convention for naming message keys to avoid clashes.

For text in JSPs use the complete path + filename of the JSP, then a one-word name for the message. e.g.
for the title of jsp/mydspace/main.jsp use:

jsp.mydspace.main.title

Some common words (e.g. "Help") can be brought out into keys starting jsp. for ease of translation, e.g.:

jsp.admin = Administer

Web User Interface

188

Other common words/phrases are brought out into 'general' parameters if they relate to a set (directory) of
JSPs, e.g.

jsp.tools.general.delete = Delete

Phrases that relate strongly to a topic (eg. MyDSpace) but used in many JSPs outside the particular directory
are more convenient to be cross-referenced. For example one could use the key below in jsp/submit/saved.jsp
to provide a link back to the user's MyDSpace:

(Cross-referencing of keys in general is not a good idea as it may make maintenance more difficult. But in
some cases it has more advantages as the meaning is obvious.)

jsp.mydspace.general.goto-mydspace = Go to My DSpace

For text in servlet code, in custom JSP tags or wherever applicable use the fully qualified classname + a
one-word name for the message. e.g.

org.dspace.app.webui.jsptag.ItemListTag.title = Title

Which Languages are currently supported?

To view translations currently being developed, please refer to the http://wiki.dspace.org/I18nSupport of
the DSpace Wiki.

10.1.6. HTML Content in Items

For the most part, the DSpace item display just gives a link that allows an end-user to download a bitstream.
However, if a bundle has a primary bitstream whose format is of MIME type text/html, instead a link to
the HTML servlet is given.

So if we had an HTML document like this:

contents.html
chapter1.html
chapter2.html
chapter3.html
figure1.gif
figure2.jpg
figure3.gif
figure4.jpg
figure5.gif
figure6.gif

The Bundle's primary bitstream field would point to the contents.html Bitstream, which we know is HTML
(check the format MIME type) and so we know which to serve up first.

The HTML servlet employs a trick to serve up HTML documents without actually modifying the HTML or
other files themselves. Say someone is looking at contents.html from the above example, the URL in their
browser will look like this:

https://dspace.mit.edu/html/1721.1/12345/contents.html

If there's an image called figure1.gif in that HTML page, the browser will do HTTP GET on this URL:

https://dspace.mit.edu/html/1721.1/12345/figure1.gif

The HTML document servlet can work out which item the user is looking at, and then which Bitstream in
it is called figure1.gif, and serve up that bitstream. Similar for following links to other HTML pages. Of
course all the links and image references have to be relative and not absolute.

OAI-PMH Data Provider

189

HTML documents must be "self-contained", as explained here. Provided that full path information is known
by DSpace, any depth or complexity of HTML document can be served subject to those contraints. This is
usually possible with some kind of batch import. If, however, the document has been uploaded one file at
a time using the Web UI, the path information has been stripped. The system can cope with relative links
that refer to a deeper path, e.g.

If the item has been uploaded via the Web submit UI, in the Bitstream table in the database we have the
'name' field, which will contain the filename with no path (figure1.gif). We can still work out what im-
ages/figure1.gif is by making the HTML document servlet strip any path that comes in from the URL, e.g.

https://dspace.mit.edu/html/1721.1/12345/images/figure1.gif
 ^^^^^^^
 Strip this

BUT all the filenames (regardless of directory names) must be unique. For example, this wouldn't work:

contents.html
chapter1.html
chapter2.html
chapter1_images/figure.gif
chapter2_images/figure.gif

since the HTML document servlet wouldn't know which bitstream to serve up for:

https://dspace.mit.edu/html/1721.1/12345/chapter1_images/figure.gif
https://dspace.mit.edu/html/1721.1/12345/chapter2_images/figure.gif

since it would just have figure.gif

To prevent "infinite URL spaces" appearing (e.g. if a file foo.html linked to bar/foo.html, which would link
to bar/bar/foo.html...) this behavior can be configured by setting the configuration property webui.html.max-
depth-guess.

For example, if we receive a request for foo/bar/index.html, and we have a bitstream called just
index.html, we will serve up that bitstream for the request if webui.html.max-depth-guess is 2 or greater.
If webui.html.max-depth-guess is 1 or less, we would not serve that bitstream, as the depth of the file is
greater. If webui.html.max-depth-guess is zero, the request filename and path must always exactly match the
bitstream name. The default value (if that property is not present in dspace.cfg) is 3.

10.1.7. Thesis Blocking
The submission UI has an optional feature that came about as a result of MIT Libraries policy. If the
block.theses parameter in dspace.cfg is true, an extra checkbox is included in the first page of the submis-
sion UI. This asks the user if the submission is a thesis. If the user checks this box, the submission is halt-
ed (deleted) and an error message displayed, explaining that DSpace should not be used to submit theses.
This feature can be turned off and on, and the message displayed (/dspace/jsp/submit/no-theses.jsp can be
localized as necessary.

10.2. OAI-PMH Data Provider
The DSpace platform supports the http://www.openarchives.org/ (OAI-PMH) version 2.0 as a data provider.
This is accomplished using the http://www.oclc.org/research/software/oai/cat.shtm.

The DSpace build process builds a Web application archive, [dspace-source]/build/oai.war), in much the
same way as the Web UI build process described above. The only differences are that the JSPs are not
included, and [dspace-source]/etc/oai-web.xml is used as the deployment descriptor. This 'webapp' is de-
ployed to receive and respond to OAI-PMH requests via HTTP. Note that typically it should not be deployed
on SSL (https: protocol). In a typical configuration, this is deployed at oai, for example:

OAI-PMH Data Provider

190

http://dspace.myu.edu/oai/request?verb=Identify

The 'base URL' of this DSpace deployment would be:

http://dspace.myu.edu/oai/request

It is this URL that should be registered with http://www.openarchives.org/. Note that you can easily change
the 'request' portion of the URL by editing [dspace-source]/etc/oai-web.xml and rebuilding and deploying
oai.war.

DSpace provides implementations of the OAICat interfaces AbstractCatalog, RecordFactory and Crosswalk
that interface with the DSpace content management API and harvesting API (in the search subsystem).

Only the basic oai_dc unqualified Dublin Core metadata set export is enabled by default; this is particu-
larly easy since all items have qualified Dublin Core metadata. When this metadata is harvested, the qual-
ifiers are simply stripped; for example, description.abstract is exposed as unqualified description. The
description.provenance field is hidden, as this contains private information about the submitter and work-
flow reviewers of the item, including their e-mail addresses. Additionally, to keep in line with OAI commu-
nity practices, values of contributor.author are exposed as creator values.

Other metadata formats are supported as well, using other Crosswalk implementations; consult the
oaicat.properties file described below. To enable a format, simply uncomment the lines beginning with
Crosswalks.*. Multiple formats are allowed, and the current list includes, in addition to unqualified DC:
MPEG DIDL, METS, MODS. There is also an incomplete, experimental qualified DC.

Note that the current simple DC implementation (org.dspace.app.oai.OAIDCCrosswalk) does not currently
strip out any invalid XML characters that may be lying around in the data. If your database contains a DC
value with, for example, some ASCII control codes (form feed etc.) this may cause OAI harvesters problems.
This should rarely occur, however. XML entities (such as >) are encoded (e.g. to >)

In addition to the implementations of the OAICat interfaces, there are two configuration files relevant to
OAI support:

• oaicat.properties: This resides as a template in [dspace]/config/templates, and the live version is written
to [dspace]/config. You probably won't need to edit this; the install-configs script fills out the relevant
deployment-specific parameters. You might want to change the earliestDatestamp field to accurately
reflect the oldest datestamp in the system. (Note that this is the value of the last_modified column in the
Item database table.)

• oai-web.xml: This standard Java Servlet 'deployment descriptor' is stored in the source as [dspace-
source]/etc/oai-web.xml, and is written to /dspace/oai/WEB-INF/web.xml. Sets

OAI-PMH allows repositories to expose an hierarchy of sets in which records may be placed. A record can
be in zero or more sets.

DSpace exposes collections as sets. The organization of communities is likely to change over time, and is
therefore a less stable basis for selective harvesting.

Each collection has a corresponding OAI set, discoverable by harvesters via the ListSets verb. The setSpec
is the Handle of the collection, with the ':' and '/' converted to underscores so that the Handle is a legal
setSpec, for example:

hdl_1721.1_1234

Naturally enough, the collection name is also the name of the corresponding set.

10.2.1. Unique Identifier
Every item in OAI-PMH data repository must have an unique identifier, which must conform to the URI
syntax. As of DSpace 1.2, Handles are not used; this is because in OAI-PMH, the OAI identifier identifies the

OAI-PMH Data Provider

191

metadata record associated with the resource. The resource is the DSpace item, whose resource identifier
is the Handle. In practical terms, using the Handle for the OAI identifier may cause problems in the future if
DSpace instances share items with the same Handles; the OAI metadata record identifiers should be different
as the different DSpace instances would need to be harvested separately and may have different metadata
for the item.

The OAI identifiers that DSpace uses are of the form:

oai:host name:handle

For example:

oai:dspace.myu.edu:123456789/345

If you wish to use a different scheme, this can easily be changed by editing the value of OAI_ID_PREFIX
at the top of the org.dspace.app.oai.DSpaceOAICatalog class. (You do not need to change the code if the
above scheme works for you; the code picks up the host name and Handles automatically from the DSpace
configuration.)

10.2.2. Access control
OAI provides no authentication/authorisation details, although these could be implemented using standard
HTTP methods. It is assumed that all access will be anonymous for the time being.

A question is, "is all metadata public?" Presently the answer to this is yes; all metadata is exposed via
OAI-PMH, even if the item has restricted access policies. The reasoning behind this is that people who do
actually have permission to read a restricted item should still be able to use OAI-based services to discover
the content.

If in the future, this 'expose all metadata' approach proves unsatisfactory for any reason, it should be possible
to expose only publicly readable metadata. The authorisation system has separate permissions for READing
and item and READing the content (bitstreams) within it. This means the system can differentiate between an
item with public metadata and hidden content, and an item with hidden metadata as well as hidden content.
In this case the OAI data repository should only expose items those with anonymous READ access, so it
can hide the existence of records to the outside world completely. In this scenario, one should be wary of
protected items that are made public after a time. When this happens, the items are "new" from the OAI-
PMH perspective.

10.2.3. Modification Date (OAI Date Stamp)
OAI-PMH harvesters need to know when a record has been created, changed or deleted. DSpace keeps track
of a 'last modified' date for each item in the system, and this date is used for the OAI-PMH date stamp. This
means that any changes to the metadata (e.g. admins correcting a field, or a withdrawal) will be exposed
to harvesters.

10.2.4. 'About' Information
As part of each record given out to a harvester, there is an optional, repeatable "about" section which can be
filled out in any (XML-schema conformant) way. Common uses are for provenance and rights information,
and there are schemas in use by OAI communities for this. Presently DSpace does not provide any of this
information.

10.2.5. Deletions
DSpace keeps track of deletions (withdrawals). These are exposed via OAI, which has a specific mechansim
for dealing with this. Since DSpace keeps a permanent record of withdrawn items, in the OAI-PMH sense
DSpace supports deletions 'persistently'. This is as opposed to 'transient' deletion support, which would mean
that deleted records are forgotten after a time.

DSpace Command Launcher

192

Once an item has been withdrawn, OAI-PMH harvests of the date range in which the withdrawal occurred
will find the 'deleted' record header. Harvests of a date range prior to the withdrawal will not find the record,
despite the fact that the record did exist at that time.

As an example of this, consider an item that was created on 2002-05-02 and withdrawn on 2002-10-06. A
request to harvest the month 2002-10 will yield the 'record deleted' header. However, a harvest of the month
2002-05 will not yield the original record.

Note that presently, the deletion of 'expunged' items is not exposed through OAI.

10.2.6. Flow Control (Resumption Tokens)
An OAI data provider can prevent any performance impact caused by harvesting by forcing a harvester to
receive data in time-separated chunks. If the data provider receives a request for a lot of data, it can send
part of the data with a resumption token. The harvester can then return later with the resumption token and
continue.

DSpace supports resumption tokens for 'ListRecords' OAI-PMH requests. ListIdentifiers and ListSets re-
quests do not produce a particularly high load on the system, so resumption tokens are not used for those
requests.

Each OAI-PMH ListRecords request will return at most 100 records. This limit is set at the top of
org.dspace.app.oai.DSpaceOAICatalog.java (MAX_RECORDS). A potential issue here is that if a harvest
yields an exact multiple of MAX_RECORDS, the last operation will result in a harvest with no records in it.
It is unclear from the OAI-PMH specification if this is acceptable.

When a resumption token is issued, the optional completeListSize and cursor attributes are not included.
OAICat sets the expirationDate of the resumption token to one hour after it was issued, though in fact since
DSpace resumption tokens contain all the information required to continue a request they do not actually
expire.

Resumption tokens contain all the state information required to continue a request. The format is:

from/until/setSpec/offset

from and until are the ISO 8601 dates passed in as part of the original request, and setSpec is also taken from
the original request. offset is the number of records that have already been sent to the harvester. For example:

2003-01-01//hdl_1721_1_1234/300

This means the harvest is 'from'
2003-01-01, has no 'until' date, is for collection hdl:1721.1/1234, and 300 records have already been sent
to the harvester. (Actually, if the original OAI-PMH request doesn't specify a 'from' or 'until, OAICat fills
them out automatically to '0000-00-00T00:00:00Z' and '9999-12-31T23:59:59Z' respectively. This means
DSpace resumption tokens will always have from and until dates in them.)

10.3. DSpace Command Launcher
Introduced in Release 1.6, the DSpace Command Launcher brings together the various command and scripts
into a standard-practice for running CLI runtime programs.

10.3.1. Older Versions
Prior to Release 1.6, there were various scripts written that masked a more manual approach to running
CLI programs. The user had to issue [dspace]/bin/dsrun and then java class that ran that program. With
release 1.5, scripts were written to mask the [dspace]/bin/dsrun command. We have left the java class in
the System Administration section since it does have value for debugging purposes and for those who wish
to learn about DSpace
programming or wish to customize the code at any time.

Business

193

10.3.2. Command Launcher Structure
There are two components to the command launcher: the dspace script and the launcher.xml. The DSpace
command calls a java class which in turn refers to launcher.xml that is stored in the [dspace]/config directory

launcher.xml is made of several components:

• <command> begins the stanza for a comand

• <name>_name of command_</name> the name of the command that you would use.

• <description>_the description of the command_</description>

• <step> </step> User arguments are parsed and tested.

• <class>_<the java class that is being used to run the CLI program>_</class>
Prior to release 1.5 if one wanted to regenerate the browse index, one would have to issue the following
commands manually:

[dspace]/bin/dsrun org.dspace.browse.IndexBrowse -f -r
[dspace]/bin/dsrun org.dspace.browse.ItemCounter
[dspace]/bin/dsrun org.dspace.search.DSIndexer

In release 1.5 a script was written and in release 1.6 the command [dspace]/bin/dspace index-init replaces
the script. The stanza from launcher.xml show us how one can build more commands if needed:

<command>
 <name>index-update</name>
 <description>Update the search and browse indexes</description>
 <step passuserargs="false">
 <class>org.dspace.browse.IndexBrowse</class>
 <argument>-i</argument>
 </step>
 <step passuserargs="false">
 <class>org.dspace.browse.ItemCounter</class>
 </step>
 <step passuserargs="false">
 <class>org.dspace.search.DSIndexer</class>
 </step>
</command>

.

11. Business

11.1. Core Classes
The org.dspace.core package provides some basic classes that are used throughout the DSpace code.

11.1.1. The Configuration Manager (ConfigurationManager)
The configuration manager is responsible for reading the main dspace.cfg properties file, managing the
'template' configuration files for other applications such as Apache, and for obtaining the text for e-mail
messages.

The system is configured by editing the relevant files in /dspace/config, as described in the configuration
section.

When editing configuration files for applications that DSpace uses, such as Apache, remember to edit
the file in /dspace/config/templates and then run /dspace/bin/install-configs rather than editing the
'live' version directly!

Core Classes

194

The ConfigurationManager class can also be invoked as a command line tool, with two possible uses:

• _/dspace/bin/install-configs_This processes and installs configuration files for other applications, as de-
scribed in the configuration section.

• /dspace/bin/dsrun org.dspace.core.ConfigurationManager -property property.name_This writes the val-
ue of _property.name from dspace.cfg to the standard output, so that shell scripts can access the DSpace
configuration. For an example, see /dspace/bin/start-handle-server. If the property has no value, nothing
is written.

11.1.2. Constants
This class contains constants that are used to represent types of object and actions in the database. For ex-
ample, authorization policies can relate to objects of different types, so the resourcepolicy table has columns
resource_id, which is the internal ID of the object, and resource_type_id, which indicates whether the object
is an item, collection, bitstream etc. The value of resource_type_id is taken from the Constants class, for
example Constants.ITEM.

11.1.3. Context
The Context class is central to the DSpace operation. Any code that wishes to use the any API in the business
logic layer must first create itself a Context object. This is akin to opening a connection to a database (which
is in fact one of the things that happens.)

A context object is involved in most method calls and object constructors, so that the method or object has
access to information about the current operation. When the context object is constructed, the following
information is automatically initialized:

• A connection to the database. This is a transaction-safe connection. i.e. the 'auto-commit' flag is set to
false.

• A cache of content management API objects. Each time a content object is created (for example Item or
Bitstream) it is stored in the Context object. If the object is then requested again, the cached copy is used.
Apart from reducing database use, this addresses the problem of having two copies of the same object
in memory in different states.
The following information is also held in a context object, though it is the responsiblity of the application
creating the context object to fill it out correctly:

• The current authenticated user, if any

• Any 'special groups' the user is a member of. For example, a user might automatically be part of a particular
group based on the IP address they are accessing DSpace from, even though they don't have an e-person
record. Such a group is called a 'special group'.

• Any extra information from the application layer that should be added to log messages that are written
within this context. For example, the Web UI adds a session ID, so that when the logs are analysed the
actions of a particular user in a particular session can be tracked.

• A flag indicating whether authorization should be circumvented. This should only be used in rare, specific
circumstances. For example, when first installing the system, there are no authorized administrators who
would be able to create an administrator account! As noted above, the public API is trusted, so it is up to
applications in the application layer to use this flag responsibly.
Typical use of the context object will involve constructing one, and setting the current user if one is
authenticated. Several operations may be performed using the context object. If all goes well, complete is
called to commit the changes and free up any resources used by the context. If anything has gone wrong,
abort is called to roll back any changes and free up the resources.

You should always abort a context if any error happens during its lifespan; otherwise the data in the system
may be left in an inconsistent state. You can also commit a context, which means that any changes are written
to the database, and the context is kept active for further use.

Content Management API

195

11.1.4. Email
Sending e-mails is pretty easy. Just use the configuration manager's getEmail method, set the arguments
and recipients, and send.

The e-mail texts are stored in /dspace/config/emails. They are processed by the standard
java.text.MessageFormat. At the top of each e-mail are listed the appropriate arguments that should be filled
out by the sender. Example usage is shown in the org.dspace.core.Email Javadoc API documentation.

11.1.5. LogManager
The log manager consists of a method that creates a standard log header, and returns it as a string suitable for
logging. Note that this class does not actually write anything to the logs; the log header returned should be
logged directly by the sender using an appropriate Log4J call, so that information about where the logging
is taking place is also stored.

The level of logging can be configured on a per-package or per-class basis by editing /dspace/config/tem-
plates/log4j.properties and then executing /dspace/bin/install-configs. You will need to stop and restart
Tomcat for the changes to take effect.

A typical log entry looks like this:

2002-11-11 08:11:32,903 INFO org.dspace.app.webui.servlet.DSpaceServlet @
anonymous:session_id=BD84E7C194C2CF4BD0EC3A6CAD0142BB:view_item:handle=1721.1/1686

This is breaks down like this:

Date and time, milliseconds 2002-11-11 08:11:32,903

Level (FATAL, WARN, INFO or DEBUG) INFO

Java class org.dspace.app.webui.servlet.DSpaceServlet

@

User email or anonymous anonymous

:

Extra log info from context session_id=BD84E7C194C2CF4BD0EC3A6CAD0142BB

:

Action view_item

:

Extra info handle=1721.1/1686

The above format allows the logs to be easily parsed and analysed. The /dspace/bin/log-reporter script is
a simple tool for analysing logs. Try:

/dspace/bin/log-reporter --help

It's a good idea to 'nice' this log reporter to avoid an impact on server performance.

11.1.6. Utils
Utils comtains miscellaneous utility method that are required in a variety of places throughout the code, and
thus have no particular 'home' in a subsystem.

11.2. Content Management API
The content management API package org.dspace.content contains Java classes for reading and manipu-
lating content stored in the DSpace system. This is the API that components in the application layer will
probably use most.

Content Management API

196

Classes corresponding to the main elements in the DSpace data model (Community, Collection, Item, Bundle
and Bitstream) are sub-classes of the abstract class DSpaceObject. The Item object handles the Dublin Core
metadata record.

Each class generally has one or more static find methods, which are used to instantiate content objects.
Constructors do not have public access and are just used internally. The reasons for this are:

• "Constructing" an object may be misconstrued as the action of creating an object in the DSpace system,
for example one might expect something like:

Context dsContent = new Context();
Item myItem = new Item(context, id)

to construct a brand new item in the system, rather than simply instantiating an in-memory instance of
an object in the system.

• find methods may often be called with invalid IDs, and return null in such a case. A constructor would
have to throw an exception in this case. A null return value from a static method can in general be dealt
with more simply in code.

• If an instantiation representing the same underlying archival entity already exists, the find method can
simply return that same instantiation to avoid multiple copies and any inconsistencies which might result.
Collection, Bundle and Bitstream do not have create methods; rather, one has to create an object using the
relevant method on the container. For example, to create a collection, one must invoke createCollection
on the community that the collection is to appear in:

Context context = new Context();
Community existingCommunity = Community.find(context, 123);
Collection myNewCollection = existingCommunity.createCollection();

The primary reason for this is for determining authorization. In order to know whether an e-person may
create an object, the system must know which container the object is to be added to. It makes no sense to
create a collection outside of a community, and the authorization system does not have a policy for that.

Item_s are first created in the form of an implementation of _InProgressSubmission. An InProgressSubmis-
sion represents an item under construction; once it is complete, it is installed into the main archive and added
to the relevant collection by the InstallItem class. The org.dspace.content package provides an implemen-
tation of InProgressSubmission called WorkspaceItem; this is a simple implementation that contains some
fields used by the Web submission UI. The org.dspace.workflow also contains an implementation called
WorkflowItem which represents a submission undergoing a workflow process.

In the previous chapter there is an overview of the item ingest process which should clarify the previous
paragraph. Also see the section on the workflow system.

Community and BitstreamFormat do have static create methods; one must be a site administrator to have
authorization to invoke these.

11.2.1. Other Classes

Classes whose name begins DC are for manipulating Dublin Core metadata, as explained below.

The FormatIdentifier class attempts to guess the bitstream format of a particular bitstream. Presently, it does
this simply by looking at any file extension in the bitstream name and matching it up with the file extensions
associated with bitstream formats. Hopefully this can be greatly improved in the future!

The ItemIterator class allows items to be retrieved from storage one at a time, and is returned by methods
that may return a large number of items, more than would be desirable to have in memory at once.

The ItemComparator class is an implementation of the standard java.util.Comparator that can be used to
compare and order items based on a particular Dublin Core metadata field.

Content Management API

197

11.2.2. Modifications

When creating, modifying or for whatever reason removing data with the content management API, it is
important to know when changes happen in-memory, and when they occur in the physical DSpace storage.

Primarily, one should note that no change made using a particular org.dspace.core.Context object will ac-
tually be made in the underlying storage unless complete or commit is invoked on that Context. If anything
should go wrong during an operation, the context should always be aborted by invoking abort, to ensure
that no inconsistent state is written to the storage.

Additionally, some changes made to objects only happen in-memory. In these cases, invoking the update
method lines up the in-memory changes to occur in storage when the Context is committed or completed. In
general, methods that change any [meta]data field only make the change in-memory; methods that involve
relationships with other objects in the system line up the changes to be committed with the context. See
individual methods in the API Javadoc.

Some examples to illustrate this are shown below:

Context context = new Context();
Bitstream b = Bitstream.find(context,
 1234);
b.setName("newfile.txt");
b.update();
context.complete();

Will change storage

Context context = new Context();
Bitstream b = Bitstream.find(context,
 1234);
b.setName("newfile.txt");
b.update();
context.abort();

Will not change storage (context aborted)

Context context = new Context();
Bitstream b = Bitstream.find(context,
 1234);
b.setName("newfile.txt");
context.complete();

The new name will not be stored since update was
not invoked

Context context = new Context();
Bitstream bs = Bitstream.find(context,
 1234);
Bundle bnd = Bundle.find(context, 5678);
bnd.add(bs);
context.complete();

The bitstream will be included in the bundle, since
update doesn't need to be called

11.2.3. What's In Memory?

Instantiating some content objects also causes other content objects to be loaded into memory.

Instantiating a Bitstream object causes the appropriate BitstreamFormat object to be instantiated. Of course
the Bitstream object does not load the underlying bits from the bitstream store into memory!

Instantiating a Bundle object causes the appropriate Bitstream objects (and hence _BitstreamFormat_s) to
be instantiated.

Instantiating an Item object causes the appropriate Bundle objects (etc.) and hence _BitstreamFormat_s to
be instantiated. All the Dublin Core metadata associated with that item are also loaded into memory.

The reasoning behind this is that for the vast majority of cases, anyone instantiating an item object is going
to need information about the bundles and bitstreams within it, and this methodology allows that to be done
in the most efficient way and is simple for the caller. For example, in the Web UI, the servlet (controller)
needs to pass information about an item to the viewer (JSP), which needs to have all the information in-
memory to display the item without further accesses to the database which may cause errors mid-display.

Content Management API

198

You do not need to worry about multiple in-memory instantiations of the same object, or any inconsistenties
that may result; the Context object keeps a cache of the instantiated objects. The find methods of classes in
org.dspace.content will use a cached object if one exists.

It may be that in enough cases this automatic instantiation of contained objects reduces performance in
situations where it is important; if this proves to be true the API may be changed in the future to include
a loadContents method or somesuch, or perhaps a Boolean parameter indicating what to do will be added
to the find methods.

When a Context object is completed, aborted or garbage-collected, any objects instantiated using that context
are invalidated and should not be used (in much the same way an AWT button is invalid if the window
containing it is destroyed).

11.2.4. Dublin Core Metadata

The DCValue class is a simple container that represents a single Dublin Core element, optional qualifier,
value and language. Note that since DSpace 1.4 the MetadataValue and associated classes are preferred (see
Support for Other Metadata Schemas). The other classes starting with DC are utility classes for handling
types of data in Dublin Core, such as people's names and dates. As supplied, the DSpace registry of ele-
ments and qualifiers corresponds to the http://www.dublincore.org/documents/2002/09/24/library-applica-
tion-profile/ for Dublin Core. It should be noted that these utility classes assume that the values will be in
a certain syntax, which will be true for all data generated within the DSpace system, but since Dublin Core
does not always define strict syntax, this may not be true for Dublin Core originating outside DSpace.

Below is the specific syntax that DSpace expects various fields to adhere to:

Element Qualifier Syntax Helper Class

date Any or unqualified ISO 8601 in the
UTC time zone, with
either year, month,
day, or second preci-
sion. Examples: _2000
2002-10 2002-08-14
1999-01-01T14:35:23Z _

DCDate

contributor Any or unqualified In general last name,
then a comma, then first
names, then any addi-
tional information like
"Jr.". If the contributor
is an organization, then
simply the name. Exam-
ples: _Doe, John Smith,
John Jr. van Dyke, Dick
Massachusetts Institute of
Technology _

DCPersonName

language iso A two letter code tak-
en ISO 639, followed op-
tionally by a two letter
country code taken from
ISO 3166. Examples: _en
fr en_US _

DCLanguage

relation ispartofseries The series name, follow-
ing by a semicolon fol-
lowed by the number in
that series. Alternatively,
just free text. _MIT-TR;

DCSeriesNumber

Plugin Manager

199

1234 My Report Series;
ABC-1234 NS1234 _

11.2.5. Support for Other Metadata Schemas

To support additional metadata schemas a new set of metadata classes have been added. These are backwards
compatible with the DC classes and should be used rather than the DC specific classes whereever possible.
Note that hierarchical metadata schemas are not currently supported, only flat schemas (such as DC) are
able to be defined.

The MetadataField class describes a metadata field by schema, element and optional qualifier. The value of
a MetadataField is described by a MetadataValue which is roughly equivalent to the older DCValue class.
Finally the MetadataSchema class is used to describe supported schemas. The DC schema is supported by
default. Refer to the javadoc for method details.

11.2.6. Packager Plugins

The Packager plugins let you ingest a package to create a new DSpace Object, and disseminate a content
Object as a package. A package is simply a data stream; its contents are defined by the packager plugin's
implementation.

To ingest an object, which is currently only implemented for Items, the sequence of operations is:

1. Get an instance of the chosen PackageIngester plugin.

2. Locate a Collection in which to create the new Item.

3. Call its ingest method, and get back a WorkspaceItem.
The packager also takes a PackageParameters object, which is a property list of parameters specific to
that packager which might be passed in from the user interface.

Here is an example package ingestion code fragment:

Collection collection = find target collection
 InputStream source = ...;
 PackageParameters params = ...;
 String license = null;

 PackageIngester sip = (PackageIngester) PluginManager
 .getNamedPlugin(PackageIngester.class, packageType);

 WorkspaceItem wi = sip.ingest(context, collection, source, params, license);

Here is an example of a package dissemination:

OutputStream destination = ...;
 PackageParameters params = ...;
 DSpaceObject dso = ...;

 PackageIngester dip = (PackageDisseminator) PluginManager
 .getNamedPlugin(PackageDisseminator.class, packageType);

 dip.disseminate(context, dso, params, destination);

11.3. Plugin Manager
The PluginManager is a very simple component container. It creates and organizes components (plugins),
and helps select a plugin in the cases where there are many possible choices. It also gives some limited
control over the lifecycle of a plugin.

Plugin Manager

200

11.3.1. Concepts
The following terms are important in understanding the rest of this section:

• Plugin Interface A Java interface, the defining characteristic of a plugin. The consumer of a plugin asks
for its plugin by interface.

• Plugin a.k.a. Component, this is an instance of a class that implements a certain interface. It is inter-
changeable with other implementations, so that any of them may be "plugged in", hence the name. A
Plugin is an instance of any class that implements the plugin interface.

• Implementation class The actual class of a plugin. It may implement several plugin interfaces, but must
implement at least one.

• Name Plugin implementations can be distinguished from each other by name, a short String meant to
symbolically represent the implementation class. They are called "named plugins". Plugins only need to
be named when the caller has to make an active choice between them.

• SelfNamedPlugin class Plugins that extend the SelfNamedPlugin class can take advantage of additional
features of the Plugin Manager. Any class can be managed as a plugin, so it is not necessary, just possible.

• Reusable Reusable plugins are only instantiated once, and the Plugin Manager returns the same (cached)
instance whenever that same plugin is requested again. This behavior can be turned off if desired.

11.3.2. Using the Plugin Manager

Types of Plugin

The Plugin Manager supports three different patterns of usage:

1. Singleton Plugins There is only one implementation class for the plugin. It is indicated in the configu-
ration. This type of plugin chooses an implementation of a service, for the entire system, at configuration
time. Your application just fetches the plugin for that interface and gets the configured-in choice. See
the getSinglePlugin() method.

2. Sequence Plugins You need a sequence or series of plugins, to implement a mechanism like Stackable
Authentication or a pipeline, where each plugin is called in order to contribute its implementation of a
process to the whole. The Plugin Manager supports this by letting you configure a sequence of plugins
for a given interface. See the getPluginSequence() method.

3. Named Plugins Use a named plugin when the application has to choose one plugin implementation out
of many available ones. Each implementation is bound to one or more names (symbolic identifiers) in the
configuration.The name is just a string to be associated with the combination of implementation class and
interface. It may contain any characters except for comma (,) and equals (=). It may contain embedded
spaces. Comma is a special character used to separate names in the configuration entry. Names must
be unique within an interface: No plugin classes implementing the same interface may have the same
name. Think of plugin names as a controlled vocabulary – for a given plugin interface, there is a set
of names for which plugins can be found. The designer of a Named Plugin interface is responsible for
deciding what the name means and how to derive it; for example, names of metadata crosswalk plugins
may describe the target metadata format. See the getNamedPlugin() method and the getPluginNames()
methods.

Self-Named Plugins

Named plugins can get their names either from the configuration or, for a variant called self-named plugins,
from within the plugin itself.

Self-named plugins are necessary because one plugin implementation can be configured itself to take on
many "personalities", each of which deserves its own plugin name. It is already managing its own config-

Plugin Manager

201

uration for each of these personalities, so it makes sense to allow it to export them to the Plugin Manager
rather than expecting the plugin configuration to be kept in sync with it own configuration.

An example helps clarify the point: There is a named plugin that does crosswalks, call it CrosswalkPlugin.
It has several implementations that crosswalk some kind of metadata. Now we add a new plugin which uses
XSL stylesheet transformation (XSLT) to crosswalk many types of metadata – so the single plugin can act
like many different plugins, depending on which stylesheet it employs.

This XSLT-crosswalk plugin has its own configuration that maps a Plugin Name to a stylesheet – it has
to, since of course the Plugin Manager doesn't know anything about stylesheets. It becomes a self-named
plugin, so that it reads its configuration data, gets the list of names to which it can respond, and passes those
on to the Plugin Manager.

When the Plugin Manager creates an instance of the XSLT-crosswalk, it records the Plugin Name that was
responsible for that instance. The plugin can look at that Name later in order to configure itself correctly
for the Name that created it. This mechanism is all part of the SelfNamedPlugin class which is part of any
self-named plugin.

Obtaining a Plugin Instance

The most common thing you will do with the Plugin Manager is obtain an instance of a plugin. To request
a plugin, you must always specify the plugin interface you want. You will also supply a name when asking
for a named plugin.

A sequence plugin is returned as an array of _Object_s since it is actually an ordered list of plugins.

See the getSinglePlugin(), getPluginSequence(), getNamedPlugin() methods.

Lifecycle Management

When PluginManager fulfills a request for a plugin, it checks whether the implementation class is reusable;
if so, it creates one instance of that class and returns it for every subsequent request for that interface and
name. If it is not reusable, a new instance is always created.

For reasons that will become clear later, the manager actually caches a separate instance of an implementa-
tion class for each name under which it can be requested.

You can ask the PluginManager to forget about (decache) a plugin instance, by releasing it. See the
PluginManager.releasePlugin() method. The manager will drop its reference to the plugin so the garbage
collector can reclaim it. The next time that plugin/name combination is requested, it will create a new in-
stance.

Getting Meta-Information

The PluginManager can list all the names of the Named Plugins which implement an interface. You may
need this, for example, to implement a menu in a user interface that presents a choice among all possible
plugins. See the getPluginNames() method.

Note that it only returns the plugin name, so if you need a more sophisticated or meaningful "label" (i.e. a
key into the I18N message catalog) then you should add a method to the plugin itself to return that.

11.3.3. Implementation

Note: The PluginManager refers to interfaces and classes internally only by their names whenever possible,
to avoid loading classes until absolutely necessary (i.e. to create an instance). As you'll see below, self-
named classes still have to be loaded to query them for names, but for the most part it can avoid loading
classes. This saves a lot of time at start-up and keeps the JVM memory footprint down, too. As the Plugin
Manager gets used for more classes, this will become a greater concern.

Plugin Manager

202

The only downside of "on-demand" loading is that errors in the configuration don't get discovered right
away. The solution is to call the checkConfiguration() method after making any changes to the configuration.

PluginManager Class

The PluginManager class is your main interface to the Plugin Manager. It behaves like a factory class that
never gets instantiated, so its public methods are static.

Here are the public methods, followed by explanations:

• static Object getSinglePlugin(Class intface)
 throws PluginConfigurationError;

Returns an instance of the singleton (single) plugin implementing the given interface. There must be exact-
ly one single plugin configured for this interface, otherwise the PluginConfigurationError is thrown.Note
that this is the only "get plugin" method which throws an exception. It is typically used at initialization
time to set up a permanent part of the system so any failure is fatal. See the plugin.single configuration
key for configuration details.

• static Object[] getPluginSequence(Class intface); Returns instances of all plugins that implement the
interface intface, in an Array. Returns an empty array if no there are no matching plugins.The order
of the plugins in the array is the same as their class names in the configuration's value field. See the
plugin.sequence configuration key for configuration details.

• static Object getNamedPlugin(Class intface, String name); Returns an instance of a plugin that imple-
ments the interface intface and is bound to a name matching name. If there is no matching plugin, it returns
null. The names are matched by String.equals().See the plugin.named and plugin.selfnamed configuration
keys for configuration details.

• static void releasePlugin(Object plugin); Tells the Plugin Manager to let go of any references to a reusable
plugin, to prevent it from being given out again and to allow the object to be garbage-collected. Call this
when a plugin instance must be taken out of circulation.

• static String[] getAllPluginNames(Class intface); Returns all of the names under which a named plugin
implementing the interface intface can be requested (with getNamedPlugin()). The array is empty if there
are no matches. Use this to populate a menu of plugins for interactive selection, or to document what the
possible choices are.The names are NOT returned in any predictable order, so you may wish to sort them
first. Note: Since a plugin may be bound to more than one name, the list of names this returns does not
represent the list of plugins. To get the list of unique implementation classes corresponding to the names,
you might have to eliminate duplicates (i.e. create a Set of classes).

• static void checkConfiguration(); Validates the keys in the DSpace ConfigurationManager pertaining to
the Plugin Manager and reports any errors by logging them. This is intended to be used interactively by a
DSpace administrator, to check the configuration file after modifying it. See the section about validating
configuration for details.

SelfNamedPlugin Class

A named plugin implementation must extend this class if it wants to supply its own Plugin Name(s). See
Self-Named Plugins for why this is sometimes necessary.

abstract class SelfNamedPlugin
{
 // Your class must override this:
 // Return all names by which this plugin should be known.
 public static String[] getPluginNames();

 // Returns the name under which this instance was created.
 // This is implemented by SelfNamedPlugin and should NOT be
 overridden.

Plugin Manager

203

 public String getPluginInstanceName();
}

Errors and Exceptions

public class PluginConfigurationError extends Error
{
 public PluginConfigurationError(String message);
}

An error of this type means the caller asked for a single plugin, but either there was no single plugin con-
figured matching that interface, or there was more than one. Either case causes a fatal configuration error.

public class PluginInstantiationException extends RuntimeException
{
 public PluginInstantiationException(String msg, Throwable cause)
}

This exception indicates a fatal error when instantiating a plugin class. It should only be thrown when some-
thing unexpected happens in the course of instantiating a plugin, e.g. an access error, class not found, etc.
Simply not finding a class in the configuration is not an exception.

This is a RuntimeException so it doesn't have to be declared, and can be passed all the way up to a generalized
fatal exception handler.

11.3.4. Configuring Plugins

All of the Plugin Manager's configuration comes from the DSpace Configuration Manager, which is a Java
Properties map. You can configure these characteristics of each plugin:

1. Interface: Classname of the Java interface which defines the plugin, including package name. e.g.
org.dspace.app.mediafilter.FormatFilter

2. Implementation Class: Classname of the implementation class, including package. e.g.
org.dspace.app.mediafilter.PDFFilter

3. Names: (Named plugins only) There are two ways to bind names to plugins: listing them in the value
of a plugin.named.interface key, or configuring a class in plugin.selfnamed.interface which extends the
SelfNamedPlugin class.

4. Reusable option: (Optional) This is declared in a plugin.reusable configuration line. Plugins are reusable
by default, so you only need to configure the non-reusable ones. Configuring Singleton (Single) Plugins

This entry configures a Single Plugin for use with getSinglePlugin():

plugin.single.interface = classname

For example, this configures the class org.dspace.checker.SimpleDispatcher as the plugin for interface
org.dspace.checker.BitstreamDispatcher:

plugin.single.org.dspace.checker.BitstreamDispatcher=org.dspace.checker.SimpleDispatcher

Configuring Sequence of Plugins

This kind of configuration entry defines a Sequence Plugin, which is bound to a sequence of implementation
classes. The key identifies the interface, and the value is a comma-separated list of classnames:
plugin.sequence.interface = classname, ...
The plugins are returned by getPluginSequence() in the same order as their classes are listed in the config-
uration value.

Plugin Manager

204

For example, this entry configures Stackable Authentication with three implementation classes:

plugin.sequence.org.dspace.eperson.AuthenticationMethod = \
 org.dspace.eperson.X509Authentication, \
 org.dspace.eperson.PasswordAuthentication, \
 edu.mit.dspace.MITSpecialGroup

Configuring Named Plugins

There are two ways of configuring named plugins:

1. Plugins Named in the Configuration A named plugin which gets its name(s) from the configuration
is listed in this kind of entry:_plugin.named.interface = classname = name [, name..] [classname =
name..]_The syntax of the configuration value is: classname, followed by an equal-sign and then at least
one plugin name. Bind more names to the same implementation class by by adding them here, separated
by commas. Names may include any character other than comma (,) and equal-sign (=). For example,
this entry creates one plugin with the names GIF, JPEG, and image/png, and another with the name TeX:

plugin.named.org.dspace.app.mediafilter.MediaFilter = \
 org.dspace.app.mediafilter.JPEGFilter = GIF, JPEG, image/png \
 org.dspace.app.mediafilter.TeXFilter = TeX

This example shows a plugin name with an embedded whitespace character. Since comma (,) is the
separator character between plugin names, spaces are legal (between words of a name; leading and trailing
spaces are ignored). This plugin is bound to the names "Adobe PDF", "PDF", and "Portable Document
Format".

plugin.named.org.dspace.app.mediafilter.MediaFilter = \
 org.dspace.app.mediafilter.TeXFilter = TeX \
 org.dspace.app.mediafilter.PDFFilter = Adobe PDF, PDF, Portable Document Format

NOTE: Since there can only be one key with plugin.named. followed by the interface name in the con-
figuration, all of the plugin implementations must be configured in that entry.

2. Self-Named Plugins Since a self-named plugin supplies its own names through a static method call, the
configuration only has to include its interface and classname:plugin.selfnamed.interface = classname [,
classname..]_The following example first demonstrates how the plugin class, _XsltDisseminationCross-
walk is configured to implement its own names "MODS" and "DublinCore". These come from the keys
starting with crosswalk.dissemination.stylesheet.. The value is a stylesheet file.The class is then config-
ured as a self-named plugin:

crosswalk.dissemination.stylesheet.DublinCore = xwalk/TESTDIM-2-DC_copy.xsl
crosswalk.dissemination.stylesheet.MODS = xwalk/mods.xsl

plugin.selfnamed.crosswalk.org.dspace.content.metadata.DisseminationCrosswalk = \
 org.dspace.content.metadata.MODSDisseminationCrosswalk, \
 org.dspace.content.metadata.XsltDisseminationCrosswalk

NOTE: Since there can only be one key with plugin.selfnamed. followed by the interface name in the
configuration, all of the plugin implementations must be configured in that entry. The MODSDissemina-
tionCrosswalk class is only shown to illustrate this point.

Configuring the Reusable Status of a Plugin

Plugins are assumed to be reusable by default, so you only need to configure the ones which you would
prefer not to be reusable. The format is as follows:

plugin.reusable.classname = (true | false)

For example, this marks the PDF plugin from the example above as non-reusable:

Plugin Manager

205

plugin.reusable.org.dspace.app.mediafilter.PDFFilter = false

11.3.5. Validating the Configuration
The Plugin Manager is very sensitive to mistakes in the DSpace configuration. Subtle errors can have un-
expected consequnces that are hard to detect: for example, if there are two "plugin.single" entries for the
same interface, one of them will be silently ignored.

To validate the Plugin Manager configuration, call the PluginManager.checkConfiguration() method. It
looks for the following mistakes:

• Any duplicate keys starting with "plugin.".

• Keys starting plugin.single, plugin.sequence, plugin.named, and plugin.selfnamed that don't include a
valid interface.

• Classnames in the configuration values that don't exist, or don't implement the plugin interface in the key.

• Classes declared in plugin.selfnamed lines that don't extend the SelfNamedPlugin class.

• Any name collisions among named plugins for a given interface.

• Named plugin configuration entries without any names.

• Classnames mentioned in plugin.reusable keys must exist and have been configured as a plugin imple-
mentation class.
The PluginManager class also has a main() method which simply runs checkConfiguration(), so you can
invoke it from the command line to test the validity of plugin configuration changes.

Eventually, someone should develop a general configuration-file sanity checker for DSpace, which would
just call PluginManager.checkConfiguration().

11.3.6. Use Cases
Here are some usage examples to illustrate how the Plugin Manager works.

Managing the MediaFilter plugins transparently

The existing DSpace 1.3 MediaFilterManager implementation has been largely replaced by the Plugin Man-
ager. The MediaFilter classes become plugins named in the configuration. Refer to the configuration guide
for further details.

A Singleton Plugin

This shows how to configure and access a single anonymous plugin, such as the BitstreamDispatcher plugin:

Configuration:

plugin.single.org.dspace.checker.BitstreamDispatcher=org.dspace.checker.SimpleDispatcher

The following code fragment shows how dispatcher, the service object, is initialized and used:

BitstreamDispatcher dispatcher =

 (BitstreamDispatcher)PluginManager.getSinglePlugin(BitstreamDispatcher
.class);

int id = dispatcher.next();

while (id != BitstreamDispatcher.SENTINEL)
{
 /*

Plugin Manager

206

 do some processing here
 */

 id = dispatcher.next();
}

Plugin that Names Itself

This crosswalk plugin acts like many different plugins since it is configured with different XSL translation
stylesheets. Since it already gets each of its stylesheets out of the DSpace configuration, it makes sense to
have the plugin give PluginManager the names to which it answers instead of forcing someone to configure
those names in two places (and try to keep them synchronized).

NOTE: Remember how getPlugin() caches a separate instance of an implementation class for every name
bound to it? This is why: the instance can look at the name under which it was invoked and configure itself
specifically for that name. Since the instance for each name might be different, the Plugin Manager has to
cache a separate instance for each name.

Here is the configuration file listing both the plugin's own configuration and the PluginManager config line:

crosswalk.dissemination.stylesheet.DublinCore = xwalk/TESTDIM-2-DC_copy.xsl
crosswalk.dissemination.stylesheet.MODS = xwalk/mods.xsl

plugin.selfnamed.org.dspace.content.metadata.DisseminationCrosswalk = \
 org.dspace.content.metadata.XsltDisseminationCrosswalk

This look into the implementation shows how it finds configuration entries to populate the array of plugin
names returned by the getPluginNames() method. Also note, in the getStylesheet() method, how it uses the
plugin name that created the current instance (returned by getPluginInstanceName()) to find the correct
stylesheet.

public class XsltDisseminationCrosswalk extends SelfNamedPlugin
{

 private final String prefix =
 "crosswalk.dissemination.stylesheet.";

 public static String[] getPluginNames()
 {
 List aliasList = new ArrayList();
 Enumeration pe = ConfigurationManager.propertyNames();

 while (pe.hasMoreElements())
 {
 String key = (String)pe.nextElement();
 if (key.startsWith(prefix))
 aliasList.add(key.substring(prefix.length()));
 }
 return (String[])aliasList.toArray(new
 String[aliasList.size()]);
 }

 // get the crosswalk stylesheet for an instance of the plugin:
 private String getStylesheet()
 {
 return ConfigurationManager.getProperty(prefix +
 getPluginInstanceName());
 }
}

Stackable Authentication

The Stackable Authentication mechanism needs to know all of the plugins configured for the interface, in
the order of configuration, since order is significant. It gets a Sequence Plugin from the Plugin Manager.
Refer to the Configuration Section on Stackable Authentication for further details.

Workflow System

207

11.4. Workflow System
The primary classes are:

org.dspace.content.WorkspaceItem contains an Item before it enters a workflow

org.dspace.workflow.WorkflowItem contains an Item while in a workflow

org.dspace.workflow.WorkflowManager responds to events, manages the WorkflowItem
states

org.dspace.content.Collection contains List of defined workflow steps

org.dspace.eperson.Group people who can perform workflow tasks are defined
in EPerson Groups

org.dspace.core.Email used to email messages to Group members and sub-
mitters

The workflow system models the states of an Item in a state machine with 5 states (SUBMIT, STEP_1,
STEP_2, STEP_3, ARCHIVE.) These are the three optional steps where the item can be viewed and cor-
rected by different groups of people. Actually, it's more like 8 states, with STEP_1_POOL, STEP_2_POOL,
and STEP_3_POOL. These pooled states are when items are waiting to enter the primary states.

The WorkflowManager is invoked by events. While an Item is being submitted, it is held by a WorkspaceIt-
em. Calling the start() method in the WorkflowManager converts a WorkspaceItem to a WorkflowItem, and
begins processing the WorkflowItem's state. Since all three steps of the workflow are optional, if no steps
are defined, then the Item is simply archived.

Workflows are set per Collection, and steps are defined by creating corresponding entries in the List named
workflowGroup. If you wish the workflow to have a step 1, use the administration tools for Collections to
create a workflow Group with members who you want to be able to view and approve the Item, and the
workflowGroup[0] becomes set with the ID of that Group.

If a step is defined in a Collection's workflow, then the WorkflowItem's state is set to that step_POOL.
This pooled state is the WorkflowItem waiting for an EPerson in that group to claim the step's task for that
WorkflowItem. The WorkflowManager emails the members of that Group notifying them that there is a task
to be performed (the text is defined in config/emails,) and when an EPerson goes to their 'My DSpace' page to
claim the task, the WorkflowManager is invoked with a claim event, and the WorkflowItem's state advances
from STEP_x_POOL to STEP_x (where x is the corresponding step.) The EPerson can also generate an
'unclaim' event, returning the WorkflowItem to the STEP_x_POOL.

Other events the WorkflowManager handles are advance(), which advances the WorkflowItem to the next
state. If there are no further states, then the WorkflowItem is removed, and the Item is then archived. An
EPerson performing one of the tasks can reject the Item, which stops the workflow, rebuilds the WorkspaceIt-
em for it and sends a rejection note to the submitter. More drastically, an abort() event is generated by the
admin tools to cancel a workflow outright.

11.5. Administration Toolkit
The org.dspace.administer package contains some classes for administering a DSpace system that are not
generally needed by most applications.

The CreateAdministrator class is a simple command-line tool, executed via /dspace/bin/create-administra-
tor, that creates an administrator e-person with information entered from standard input. This is generally
used only once when a DSpace system is initially installed, to create an initial administrator who can then
use the Web administration UI to further set up the system. This script does not check for authorization, since
it is typically run before there are any e-people to authorize! Since it must be run as a command-line tool on
the server machine, generally this shouldn't cause a problem. A possibility is to have the script only operate
when there are no e-people in the system already, though in general, someone with access to command-line
scripts on your server is probably in a position to do what they want anyway!

E-person/Group Manager

208

The DCType class is similar to the org.dspace.content.BitstreamFormat class. It represents an entry in the
Dublin Core type registry, that is, a particular element and qualifier, or unqualified element. It is in the
administer package because it is only generally required when manipulating the registry itself. Elements and
qualifiers are specified as literals in org.dspace.content.Item methods and the org.dspace.content.DCValue
class. Only administrators may modify the Dublin Core type registry.

The org.dspace.administer.RegistryLoader class contains methods for initialising the Dublin Core type reg-
istry and bitstream format registry with entries in an XML file. Typically this is executed via the command
line during the build process (see build.xml in the source.) To see examples of the XML formats, see the
files in config/registries in the source directory. There is no XML schema, they aren't validated strictly when
loaded in.

11.6. E-person/Group Manager
DSpace keeps track of registered users with the org.dspace.eperson.EPerson class. The class has methods to
create and manipulate an EPerson such as get and set methods for first and last names, email, and password.
(Actually, there is no getPassword() method--an MD5 hash of the password is stored, and can only be
verified with the checkPassword() method.) There are find methods to find an EPerson by email (which is
assumed to be unique,) or to find all EPeople in the system.

The EPerson object should probably be reworked to allow for easy expansion; the current EPerson object
tracks pretty much only what MIT was interested in tracking - first and last names, email, phone. The access
methods are hardcoded and should probably be replaced with methods to access arbitrary name/value pairs
for institutions that wish to customize what EPerson information is stored.

Groups are simply lists of EPerson objects. Other than membership, Group objects have only one other
attribute: a name. Group names must be unique, so we have adopted naming conventions where the role
of the group is its name, such as COLLECTION_100_ADD. Groups add and remove EPerson objects with
addMember() and removeMember() methods. One important thing to know about groups is that they store
their membership in memory until the update() method is called - so when modifying a group's membership
don't forget to invoke update() or your changes will be lost! Since group membership is used heavily by the
authorization system a fast isMember() method is also provided.

Another kind of Group is also implemented in DSpace-special Groups. The Context object for each session
carries around a List of Group IDs that the user is also a member of-currently the MITUser Group ID is
added to the list of a user's special groups if certain IP address or certificate criteria are met.

11.7. Authorization
The primary classes are:

org.dspace.authorize.AuthorizeManager does all authorization, checking policies against
Groups

org.dspace.authorize.ResourcePolicy defines all allowable actions for an object

org.dspace.eperson.Group all policies are defined in terms of EPerson Groups

The authorization system is based on the classic 'police state' model of security; no action is allowed un-
less it is expressed in a policy. The policies are attached to resources (hence the name ResourcePolicy,)
and detail who can perform that action. The resource can be any of the DSpace object types, listed in
org.dspace.core.Constants (BITSTREAM, ITEM, COLLECTION, etc.) The 'who' is made up of EPerson
groups. The actions are also in Constants.java (READ, WRITE, ADD, etc.) The only non-obvious actions
are ADD and REMOVE, which are authorizations for container objects. To be able to create an Item, you
must have ADD permission in a Collection, which contains Items. (Communities, Collections, Items, and
Bundles are all container objects.)

Currently most of the read policy checking is done with items--communities and collections are assumed to
be openly readable, but items and their bitstreams are checked. Separate policy checks for items and their

Handle Manager/Handle Plugin

209

bitstreams enables policies that allow publicly readable items, but parts of their content may be restricted
to certain groups.

The AuthorizeManager class'
authorizeAction(Context, object, action) is the primary source of all authorization in the system. It gets a
list of all of the ResourcePolicies in the system that match the object and action. It then iterates through
the policies, extracting the EPerson Group from each policy, and checks to see if the EPersonID from the
Context is a member of any of those groups. If all of the policies are queried and no permission is found,
then an AuthorizeException is thrown. An authorizeAction() method is also supplied that returns a boolean
for applications that require higher performance.

ResourcePolicies are very simple, and there are quite a lot of them. Each can only list a single group, a single
action, and a single object. So each object will likely have several policies, and if multiple groups share
permissions for actions on an object, each group will get its own policy. (It's a good thing they're small.)

11.7.1. Special Groups
All users are assumed to be part of the public group (ID=0.) DSpace admins (ID=1) are automatically part
of all groups, much like super-users in the Unix OS. The Context object also carries around a List of special
groups, which are also first checked for membership. These special groups are used at MIT to indicate
membership in the MIT community, something that is very difficult to enumerate in the database! When a
user logs in with an MIT certificate or with an MIT IP address, the login code adds this MIT user group
to the user's Context.

11.7.2. Miscellaneous Authorization Notes
Where do items get their read policies? From the their collection's read policy. There once was a separate
item read default policy in each collection, and perhaps there will be again since it appears that administrators
are notoriously bad at defining collection's read policies. There is also code in place to enable policies that
are timed--have a start and end date. However, the admin tools to enable these sorts of policies have not
been written.

11.8. Handle Manager/Handle Plugin
The org.dspace.handle package contains two classes; HandleManager is used to create and look up Handles,
and HandlePlugin is used to expose and resolve DSpace Handles for the outside world via the CNRI Handle
Server code.

Handles are stored internally in the handle database table in the form:

1721.123/4567

Typically when they are used outside of the system they are displayed in either URI or "URL proxy" forms:

hdl:1721.123/4567
http://hdl.handle.net/1721.123/4567

It is the responsibility of the caller to extract the basic form from whichever displayed form is used.

The handle table maps these Handles to resource type/resource ID pairs, where resource type is a value from
org.dspace.core.Constants and resource ID is the internal identifier (database primary key) of the object.
This allows Handles to be assigned to any type of object in the system, though as explained in the functional
overview, only communities, collections and items are presently assigned Handles.

HandleManager contains static methods for:

• Creating a Handle

• Finding the Handle for a DSpaceObject, though this is usually only invoked by the object itself, since
DSpaceObject has a getHandle method

Search

210

• Retrieving the DSpaceObject identified by a particular Handle

• Obtaining displayable forms of the Handle (URI or "proxy URL").
HandlePlugin is a simple implementation of the Handle Server's net.handle.hdllib.HandleStorage in-
terface. It only implements the basic Handle retrieval methods, which get information from the handle
database table. The CNRI Handle Server is configured to use this plug-in via its config.dct file.

Note that since the Handle server runs as a separate JVM to the DSpace Web applications, it uses a separate
'Log4J' configuration, since Log4J does not support multiple JVMs using the same daily rolling logs. This
alternative configuration is held as a template in /dspace/config/templates/log4j-handle-plugin.properties,
written to /dspace/config/log4j-handle-plugin.properties by the install-configs script. The /dspace/bin/start-
handle-server script passes in the appropriate command line parameters so that the Handle server uses this
configuration.

11.9. Search
DSpace's search code is a simple API which currently wraps the Lucene search engine. The first half of
the search task is indexing, and org.dspace.search.DSIndexer is the indexing class, which contains index-
Content() which if passed an Item, Community, or Collection, will add that content's fields to the index.
The methods unIndexContent() and reIndexContent() remove and update content's index information. The
DSIndexer class also has a main() method which will rebuild the index completely. This can be invoked by
the dspace/bin/index-init (complete rebuild) or dspace/bin/index-update (update) script. The intent was for
the main() method to be invoked on a regular basis to avoid index corruption, but we have had no problem
with that so far.

Which fields are indexed by DSIndexer? These fields are defined in dspace.cfg in the section "Fields to
index for search" as name-value-pairs. The name must be unique in the form search.index.i (i is an arbitrary
positive number). The value on the right side has a unique value again, which can be referenced in search-
form (e.g. title, author). Then comes the metadata element which is indexed. '*' is a wildcard which includes
all subelements. For example:

search.index.4 = keyword:dc.subject.*

tells the indexer to create a keyword index containing all dc.subject element values. Since the wildcard ('*')
character was used in place of a qualifier, all subject metadata fields will be indexed (e.g. dc.subject.other,
dc.subject.lcsh, etc)

By default, the fields shown in the Indexed Fields section below are indexed. These are hardcoded in the
DSIndexer class. If any search.index.i items are specified in dspace.cfg these are used rather than these
hardcoded fields.

The query class DSQuery contains the three flavors of doQuery() methods--one searches the DSpace site,
and the other two restrict searches to Collections and Communities. The results from a query are returned
as three lists of handles; each list represents a type of result. One list is a list of Items with matches, and the
other two are Collections and Communities that match. This separation allows the UI to handle the types of
results gracefully without resolving all of the handles first to see what kind of content the handle points to.
The DSQuery class also has a main() method for debugging via command-line searches.

11.9.1. Current Lucene Implementation

Currently we have our own Analyzer and Tokenizer classes (DSAnalyzer and DSTokenizer) to customize
our indexing. They invoke the stemming and stop word features within Lucene. We create an IndexReader
for each query, which we now realize isn't the most efficient use of resources - we seem to run out of
filehandles on really heavy loads. (A wildcard query can open many filehandles!) Since Lucene is thread-
safe, a better future implementation would be to have a single Lucene IndexReader shared by all queries,
and then is invalidated and re-opened when the index changes. Future API growth could include relevance
scores (Lucene generates them, but we ignore them,) and abstractions for more advanced search concepts
such as booleans.

Browse API

211

11.9.2. Indexed Fields
The DSIndexer class shipped with DSpace indexes the Dublin Core metadata in the following way:

Search Field Taken from Dublin Core Fields

Authors contributor.creator.description.statementofresponsibility

Titles title.*

Keywords subject.*

Abstracts description.abstractdescription.tableofcontents

Series relation.ispartofseries

MIME types format.mimetype

Sponsors description.sponsorship

Identifiers identifier.*

11.9.3. Harvesting API
The org.dspace.search package also provides a 'harvesting' API. This allows callers to extract information
about items modified within a particular timeframe, and within a particular scope (all of DSpace, or a com-
munity or collection.) Currently this is used by the Open Archives Initiative metadata harvesting protocol
application, and the e-mail subscription code.

The Harvest.harvest is invoked with the required scope and start and end dates. Either date can be omitted.
The dates should be in the ISO8601, UTC time zone format used elsewhere in the DSpace system.

HarvestedItemInfo objects are returned. These objects are simple containers with basic information about
the items falling within the given scope and date range. Depending on parameters passed to the harvest
method, the containers and item fields may have been filled out with the IDs of communities and collections
containing an item, and the corresponding Item object respectively. Electing not to have these fields filled
out means the harvest operation executes considerable faster.

In case it is required, Harvest also offers a method for creating a single HarvestedItemInfo object, which
might make things easier for the caller.

11.10. Browse API
The browse API maintains indices of dates, authors, titles and subjects, and allows callers to extract parts
of these:

• *Title: Values of the Dublin Core element *title (unqualified) are indexed. These are sorted in a case-
insensitive fashion, with any leading article removed. For example:_The DSpace System_Appears under
'D' rather than 'T'.

• *Author: Values of the *contributor (any qualifier or unqualified) element are indexed. Since contrib-
utor values typically are in the form 'last name, first name', a simple case-insensitive alphanumeric sort
is used which orders authors in last name order.Note that this is an index of authors, and not items by
author. If four items have the same author, that author will appear in the index only once. Hence, the
index of authors may be greater or smaller than the index of titles; items often have more than one author,
though the same author may have authored several items.The author indexing in the browse API does
have limitations:

• Ideally, a name that appears as an author for more than one item would appear in the author index only
once. For example, 'Doe, John' may be the author of tens of items. However, in practice, author's names
often appear in slightly differently forms, for example:

Doe, John

Browse API

212

Doe, John Stewart
Doe, John S.

Currently, the above three names would all appear as separate entries in the author index even though
they may refer to the same author. In order for an author of several papers to be correctly appear once
in the index, each item must specify exactly the same form of their name, which doesn't always happen
in practice.

• Another issue is that two authors may have the same name, even within a single institution. If this is
the case they may appear as one author in the index. These issues are typically resolved in libraries
with authority control records, in which are kept a 'preferred' form of the author's name, with extra
information (such as date of birth/death) in order to distinguish between authors of the same name.
Maintaining such records is a huge task with many issues, particularly when metadata is received from
faculty directly rather than trained library cataloguers. For these reasons, DSpace does not yet feature
'authority control' functionality.

• *Date of Issue: Items are indexed by date of issue. This may be different from the date that an item
appeared in DSpace; many items may have been originally published elsewhere beforehand. The
Dublin Core field used is *date.issued. The ordering of this index may be reversed so 'earliest first' and
'most recent first' orderings are possible.Note that the index is of items by date, as opposed to an index of
dates. If 30 items have the same issue date (say 2002), then those 30 items all appear in the index adjacent
to each other, as opposed to a single 2002 entry.Since dates in DSpace Dublin Core are in ISO8601, all
in the UTC time zone, a simple alphanumeric sort is sufficient to sort by date, including dealing with
varying granularities of date reasonably. For example:

2001-12-10
2002
2002-04
2002-04-05
2002-04-09T15:34:12Z
2002-04-09T19:21:12Z
2002-04-10

• *Date Accessioned: In order to determine which items most recently appeared, rather than using
the date of issue, an item's accession date is used. This is the Dublin Core field *date.accessioned.
In other aspects this index is identical to the date of issue index.

• *Items by a Particular Author*: The browse API can perform is to extract items by a particular author.
They do not have to be primary author of an item for that item to be extracted. You can specify a scope,
too; that is, you can ask for items by author X in collection Y, for example. This particular flavour of
browse is slightly simpler than the others. You cannot presently specify a particular subset of results to be
returned. The API call will simply return all of the items by a particular author within a certain scope. Note
that the author of the item must exactly match the author passed in to the API; see the explanation about
the caveats of the author index browsing to see why this is the case.

• *Subject: Values of the Dublin Core element *subject (both unqualified and with any qualifier) are
indexed. These are sorted in a case-insensitive fashion. Using the API

The API is generally invoked by creating a BrowseScope object, and setting the parameters for which par-
ticular part of an index you want to extract. This is then passed to the relevent Browse method call, which
returns a BrowseInfo object which contains the results of the operation. The parameters set in the Brows-
eScope object are:

• How many entries from the index you want

• Whether you only want entries from a particular community or collection, or from the whole of DSpace

• Which part of the index to start from (called the focus of the browse). If you don't specify this, the start
of the index is used

• How many entries to include before the focus entry

Browse API

213

To illustrate, here is an example:

• We want 7 entries in total

• We want entries from collection x

• We want the focus to be 'Really'

• We want 2 entries included before the focus.
The results of invoking Browse.getItemsByTitle with the above parameters might look like this:

Rabble-Rousing Rabbis From Sardinia
 Reality TV: Love It or Hate It?
FOCUS> The Really Exciting Research Video
 Recreational Housework Addicts: Please Visit My House
 Regional Television Variation Studies
 Revenue Streams
 Ridiculous Example Titles: I'm Out of Ideas

Note that in the case of title and date browses, Item objects are returned as opposed to actual titles. In
these cases, you can specify the 'focus' to be a specific item, or a partial or full literal value. In the case
of a literal value, if no entry in the index matches exactly, the closest match is used as the focus. It's quite
reasonable to specify a focus of a single letter, for example.

Being able to specify a specific item to start at is particularly important with dates, since many items may
have the save issue date. Say 30 items in a collection have the issue date 2002. To be able to page through
the index 20 items at a time, you need to be able to specify exactly which item's 2002 is the focus of the
browse, otherwise each time you invoked the browse code, the results would start at the first item with the
issue date 2002.

Author browses return String objects with the actual author names. You can only specify the focus as a full
or partial literal String.

Another important point to note is that presently, the browse indices contain metadata for all items in the
main archive, regardless of authorization policies. This means that all items in the archive will appear to all
users when browsing. Of course, should the user attempt to access a non-public item, the usual authorization
mechanism will apply. Whether this approach is ideal is under review; implementing the browse API such
that the results retrieved reflect a user's level of authorization may be possible, but rather tricky.

11.10.1. Index Maintenance
The browse API contains calls to add and remove items from the index, and to regenerate the indices from
scratch. In general the content management API invokes the necessary browse API calls to keep the browse
indices in sync with what is in the archive, so most applications will not need to invoke those methods.

If the browse index becomes inconsistent for some reason, the InitializeBrowse class is a command line
tool (generally invoked using the /dspace/bin/dspace index-init command) that causes the indexes to be
regenerated from scratch.

11.10.2. Caveats
Presently, the browse API is not tremendously efficient. 'Indexing' takes the form of simply extracting the
relevant Dublin Core value, normalising it (lower-casing and removing any leading article in the case of
titles), and inserting that normalized value with the corresponding item ID in the appropriate browse database
table. Database views of this table include collection and community IDs for browse operations with a limited
scope. When a browse operation is performed, a simple SELECT query is performed, along the lines of:

SELECT item_id FROM ItemsByTitle ORDER BY sort_title OFFSET 40 LIMIT 20

There are two main drawbacks to this: Firstly, LIMIT and OFFSET are PostgreSQL-specific keywords.
Secondly, the database is still actually performing dynamic sorting of the titles, so the browse code as it

Checksum checker

214

stands will not scale particularly well. The code does cache BrowseInfo objects, so that common browse
operations are performed quickly, but this is not an ideal solution.

11.11. Checksum checker
Checksum checker is used to verify every item within DSpace. While DSpace calculates and records the
checksum of every file submitted to it, the checker can determine whterh the file has been changed. The
idea being that the earlier you can identify a file has changed, the more likely you would be able to record
it (assuming it was not a wanted change).

org.dspace.checker.CheckerCommand class, is the class for the checksum checker tool, which calculates
checksums for each bitstream whose ID is in the most_recent_checksum table, and compares it against the
last calculated checksum for that bitstream.

11.12. OpenSearch Support
DSpace is able to support OpenSearch. For those not aquainted with the standard, a very brief introduction,
with emphasis on what possibilities it holds for current use and future development.

OpenSearch is a small set of conventions and documents for describing and using 'search engines', meaning
any service that returns a set of results for a query. It is nearly ubiquitous—but also nearly invisible—in
modern web sites with search capability. If you look at the page source of Wikipedia, Facebook, CNN, etc
you will find buried a link element declaring OpenSearch support. It is very much a lowest-common-de-
nominator abstraction (think Google box), but does provide a means to extend its expressive power. This
first implementation for DSpace supports none of these extensions—many of which are of potential value—
so it should be regarded as a foundation, not a finished solution. So the short answer is that DSpace appears
as a 'search-engine' to OpenSearch-aware software.

Another way to look at OpenSearch is as a RESTful web service for search, very much like SRW/U, but
considerably simpler. This comparative loss of power is offset by the fact that it is widely supported by web
tools and players: browsers understand it, as do large metasearch tools.

How Can It Be Used

• Browser Integration Many recent browsers (IE7+, FF2+) can detect, or 'autodiscover', links to the docu-
ment describing the search engine. Thus you can easily add your or other DSpace instances to the drop-
down list of search engines in your browser. This list typically appears in the upper right corner of the
browser, with a search box. In Firefox, for example, when you visit a site supporting OpenSearch, the
color of the drop-down list widget changes color, and if you open it to show the list of search engines, you
are offered an opportunity to add the site to the list. IE works nearly the same way but instead labels the
web sites 'search providers'. When you select a DSpace instance as the search engine and enter a search,
you are simply sent to the regular search results page of the instance.

• Flexible, interesting RSS Feeds Because one of the formats that OpenSearch specifies for its results is RSS
(or Atom), you can turn any search query into an RSS feed. So if there are keywords highly discriminative
of content in a collection or repository, these can be turned into a URL that a feed reader can subscribe
to. Taken to the extreme, one could take any search a user makes, and dynamically compose an RSS feed
URL for it in the page of returned results. To see an example, if you have a DSpace with OpenSearch
enabled, try: http://dspace.mysite.edu/open-search/?query-<your query> The default format returned is
Atom 1.0, so you should see an Atom document containing your search results.

• You can extend the syntax witha few other parameters, as follows: |Parameter |Values |

format atom, rss, html

scope <handle>—search is restricted to a collection or
communith with the indicated handle.

http://dspace.mysite.edu/open-search/?query-

Embargo

215

rpp number indicating the number of results per page
(i.e. per request)

start number of page to start with (if paginating results)

sort_by number indicating sorting criteria (same as DSpace
advanced search values

• Cheap metasearch Search aggregators like A9 (Amazon) recognize OpenSearch-compliant providers, and
so can be added to metasearch sets using their UIs. Then you site can be used to aggregate search results
with others.
Configuration is throught the _dspace.cfg file._See OpenSearch Support

11.13. Embargo
The architecture of Embarge is documentated in the package javadocs. Run cd /[dspace-source]/dspace;mvn
javadoc:javadoc and look in [dspace-source]/dspace-api/target/site/apidocs/index.html.

12. Submission

12.1. Understanding the Submission Configuration File
The [dspace]/config/item-submission.xml contains the submission configurations for both the DSpace JSP
user interface (JSPUI) or the DSpace XML user interface (XMLUI or Manakin). This configuration file
contains detailed documentation within the file itself, which should help you better understand how to best
utilize it.

12.1.1. The Structure of item-submission.xml

<item-submission>
 <!-- Where submission processes are mapped to specific Collections -->
 <submission-map>
 <name-map collection-handle="default" submission-name="traditional" /> ...
 </submission-map>
 <!-- Where "steps" which are used across many submission processes can be defined in a
 single place. They can then be referred to by ID later. -->
 <step-definitions>
 <step id="collection">
 <processing-class>org.dspace.submit.step.SelectCollectionStep</process;/processing-
class>
 <workflow-editable>false</workflow-editable>
 </step>
 ...
 </step-definitions>
 <!-- Where actual submission processes are defined and given names. Each <submission-
process> has
 many <step> nodes which are in the order that the steps should be in.-->
 <submission-definitions> <submission-process name="traditional">
 ...
 <!-- Step definitions appear here! -->
 </submission-process>
 ...
 </submission-definitions>
 </item-submission>

Because this file is in XML format, you should be familiar with XML before editing this file. By default,
this file contains the "traditional" Item Submission Process for DSpace, which consists of the following
Steps (in this order):

Select Collection -> Initial Questions -> Describe -> Upload -> Verify -> License -> Complete

Understanding the Submission Configuration File

216

If you would like to customize the steps used or the ordering of the steps, you can do so within the <sub-
mission-definition> section of the item-submission.xml .

In addition, you may also specify different Submission Processes for different DSpace Collections. This
can be done in the <submission-map> section. The item-submission.xml file itself documents the syntax
required to perform these configuration changes.

12.1.2. Defining Steps (<step>) within the item-submission.xml
This section describes how Steps of the Submission Process are defined within the item-submission.xml.

Where to place your <step> definitions

<step> definitions can appear in one of two places within the item-submission.xml configuration file.

1. Within the <step-definitions> section

• This is for globally defined <step> definitions (i.e. steps which are used in multiple <submission-pro-
cess> definitions). Steps defined in this section must define a unique id which can be used to reference
this step.

• For example:

<step-definitions>
 <step id="custom-step">
 ...
 </step>
 ...
</step-definitions>

• The above step definition could then be referenced from within a <submission-process> as simply
<step id="custom-step"/>

2. Within a specific <submission-process> definition

• This is for steps which are specific to a single <submission-process> definition.

• For example:

<submission-process>
 <step>
 ...
 </step>
</submission-process>

The ordering of <step> definitions matters !

The ordering of the <step> tags within a <submission-process> definition directly corresponds to the order
in which those steps will appear!

For example, the following defines a Submission Process where the License step directly precedes the Initial
Questions step (more information about the structure of the information under each <step> tag can be found
in the section on Structure of the <step> Definition below):

<submission-process>
 <!--Step 1 will be to Sign off on the License-->
 <step>
 <heading>submit.progressbar.license</heading>
 <processing-class>org.dspace.submit.step.LicenseStep</processing-classing-class>
 <jspui-binding>org.dspace.app.webui.submit.step.JSPLicenseStep</jspui-binding>
 <xmlui-binding>org.dspace.app.xmlui.aspect.submission.submit.LicenseStenseStep</
xmlui-binding>

Understanding the Submission Configuration File

217

 <workflow-editable>false</workflow-editable>
 </step>
 <!--Step 2 will be to Ask Initial Questions-->
 <step>
 <heading>submit.progressbar.initial-questions</heading>
 <processing-class>org.dspace.submit.step.InitialQuestionsStep</process;/
processing-class>
 <jspui-binding>org.dspace.app.webui.submit.step.JSPInitialQuestionsSteonsStep</
jspui-binding>
 <xmlui-
binding>org.dspace.app.xmlui.aspect.submission.submit.InitialQutialQuestionsStep</xmlui-
binding>
 <workflow-editable>true</workflow-editable>
 </step>
 ...[other steps]...
</submission-process>

Structure of the <step> Definition

The same <step> definition is used by both the DSpace JSP user interface (JSPUI) an the DSpace XML
user interface (XMLUI or Manakin). Therefore, you will notice each <step> definition contains information
specific to each of these two interfaces.

The structure of the <step> Definition is as follows:

<step>
 <heading>submit.progressbar.describe</heading>
 <processing-class>org.dspace.submit.step.DescribeStep</processing-classing-class>
 <jspui-binding>org.dspace.app.webui.submit.step.JSPDescribeStep</jspuilt;/jspui-binding>
 <xmlui-binding>org.dspace.app.xmlui.aspect.submission.submit.DescribeScribeStep</xmlui-
binding>
 <workflow-editable>true</workflow-editable>
</step>

Each step contains the following elements. The required elements are so marked:

• *heading*: Partial I18N key (defined in Messages.properties for JSPUI or messages.xml for XMLUI)
which corresponds to the text that should be displayed in the submission Progress Bar for this step. This
partial I18N key is prefixed within either the Messages.properties or messages.xml file, depending on
the interface you are using. Therefore, to find the actual key, you will need to search for the partial key
with the following prefix:

• XMLUI: prefix is xmlui.Submission. (e.g. "xmlui.Submission.submit.progressbar.describe" for 'De-
scribe' step)

• JSPUI: prefix is jsp. (e.g. "jsp.submit.progressbar.describe" for 'Describe' step)The 'heading' need not
be defined if the step should not appear in the progress bar (e.g. steps which perform automated pro-
cessing, i.e. non-interactive, should not appear in the progress bar).

• *processing-class(Required): Full Java path to the Processing Class for this Step. This Pro-
cessing Class must perform the primary processing of any information gathered in this step,
for both the XMLUI and JSPUI. All valid step processing classes must extend the abstract
`org.dspace.submit.AbstractProcessingStep` class (or alternatively, extend one of the pre-existing
step processing classes in org.dspace.submit.step.)

• *jspui-binding*: Full Java path of the JSPUI "binding" class for this Step. This "binding" class should
initialize and call the appropriate JSPs to display the step's user interface. A valid JSPUI "binding" class
must extend the abstract `org.dspace.app.webui.submit.JSPStep` class. This property need not be defined
if you are using the XMLUI interface, or for steps which only perform automated processing, i.e. non-
interactive steps.

• *xmlui-binding*: Full Java path of the XMLUI "binding" class for this Step. This "binding" class should
generate the Manakin XML (DRI document) necessary to generate the step's user interface. A valid XM-
LUI "binding" class must extend the abstract ̀ org.dspace.app.xmlui.submission.AbstractSubmissionStep`

Reordering/Removing Submission Steps

218

class. This property need not be defined if you are using the JSPUI interface, or for steps which only
perform automated processing, i.e. non-interactive steps.

• *workflow-editable*: Defines whether or not this step can be edited during the Edit Metadata process
with the DSpace approval/rejection workflow process. Possible values include true and false. If undefined,
defaults to true (which means that workflow reviewers would be allowed to edit information gathered
during that step).

12.2. Reordering/Removing Submission Steps
The removal of existing steps and reordering of existing steps is a relatively easy process!

Reordering steps

1. Locate the <submission-process> tag which defines the Submission Process that you are using. If you
are unsure which Submission Process you are using, it's likely the one with name="traditional", since
this is the traditional DSpace submission process.

2. Reorder the <step> tags within that <submission-process> tag. Be sure to move the entire<step> tag
(i.e. everything between and including the opening <step> and closing </step> tags).

• Hint #1: The <step> defining the Review/Verify step only allows the user to review information from
steps which appear before it. So, it's likely you'd want this to appear as one of your last few steps

• Hint #2: If you are using it, the <step> defining the Initial Questions step should always appear before
the Upload or Describe steps since it asks questions which help to set up those later steps.
Removing one or more steps

1. Locate the <submission-process> tag which defines the Submission Process that you are using. If you
are unsure which Submission Process you are using, it's likely the one with name="traditional", since
this is the traditional DSpace submission process.

2. Comment out (i.e. surround with <!-- and -->) the <step> tags which you want to remove from that
<submission-process> tag. Be sure to comment out the entire<step> tag (i.e. everything between and
including the opening <step> and closing </step> tags).

• Hint #1: You cannot remove the Select a Collection step, as an DSpace Item cannot exist without
belonging to a Collection.

• Hint #2: If you decide to remove the <step> defining the Initial Questions step, you should be aware
that this may affect your Describe and Upload steps! The Initial Questions step asks questions which
help to initialize these later steps. If you decide to remove the Initial Questions step you may wish to
create a custom, automated step which will provide default answers for the questions asked!

12.3. Assigning a custom Submission Process to a
Collection

Assigning a custom submission process to a Collection in DSpace involves working with the submission-map
section of the item-submission.xml. For a review of the structure of the item-submission.xml see the section
above on Understanding the Submission Configuration File.

Each name-map element within submission-map associates a collection with the name of a submission def-
inition. Its collection-handle attribute is the Handle of the collection. Its submission-name attribute is the
submission definition name, which must match the name attribute of a submission-process element (in the
submission-definitions section of item-submission.xml.

For example, the following fragment shows how the collection with handle "12345.6789/42" is assigned
the "custom" submission process:

Custom Metadata-entry Pages for Submission

219

<submission-map>
 <name-map collection-handle=" 12345.6789/42" submission-name="
 custom" />
 ...
 </submission-map>

 <submission-definitions>
 <submission-process name="
 custom">
 ...
 </submission-definitions>

It's a good idea to keep the definition of the default name-map from the example input-forms.xml so there
is always a default for collections which do not have a custom form set.

12.3.1. Getting A Collection's Handle
You will need the handle of a collection in order to assign it a custom form set. To discover the handle, go to
the "Communities & Collections" page under "Browse" in the left-hand menu on your DSpace home page.
Then, find the link to your collection. It should look something like:

http://myhost.my.edu/dspace/handle/
 12345.6789/42

The underlined part of the URL is the handle. It should look familiar to any DSpace administrator. That is
what goes in the collection-handle attribute of your name-map element.

12.4. Custom Metadata-entry Pages for Submission

12.4.1. Introduction
This section explains how to customize the Web forms used by submitters and editors to enter and modify the
metadata for a new item. These metadata web forms are controlled by the Describe step within the Submis-
sion Process. However, they are also configurable via their own XML configuration file (input-forms.xml).

You can customize the "default" metadata forms used by all collections, and also create alternate sets of
metadata forms and assign them to specific collections. In creating custom metadata forms, you can choose:

• The number of metadata-entry pages.

• Which fields appear on each page, and their sequence.

• Labels, prompts, and other text associated with each field.

• List of available choices for each menu-driven field.
*N.B.*The cosmetic and ergonomic details of metadata entry fields remain the same as the fixed metadata
pages in previous DSpace releases, and can only be altered by modifying the appropriate stylesheet and
JSP pages.

All of the custom metadata-entry forms for a DSpace instance are controlled by a single XML file, in-
put-forms.xml, in the config subdirectory under the DSpace home. DSpace comes with a sample configura-
tion that implements the traditional metadata-entry forms, which also serves as a well-documented example.
The rest of this section explains how to create your own sets of custom forms.

12.4.2. Describing Custom Metadata Forms
The description of a set of pages through which submitters enter their metadata is called a form (although it
is actually a set of forms, in the HTML sense of the term). A form is identified by a unique symbolic name.

Custom Metadata-entry Pages for Submission

220

In the XML structure, the form is broken down into a series of pages: each of these represents a separate
Web page for collecting metadata elements.

To set up one of your DSpace collections with customized submission forms, first you make an entry in the
form-map. This is effectively a table that relates a collection to a form set, by connecting the collection's
Handle to the form name. Collections are identified by handle because their names are mutable and not
necessarily unique, while handles are unique and persistent.

A special map entry, for the collection handle "default", defines the default form set. It applies to all collec-
tions which are not explicitly mentioned in the map. In the example XML this form set is named traditional
(for the "traditional" DSpace user interface) but it could be named anything.

12.4.3. The Structure of input-forms.xml
The XML configuration file has a single top-level element, input-forms, which contains three elements in
a specific order. The outline is as follows:

<input-forms>

 <-- Map of Collections to Form Sets -->
 <form-map>
 <name-map collection-handle="default" form-name="traditional"
 />
 ...
 </form-map>

 <-- Form Set Definitions -->
 <form-definitions>
 <form name="traditional">
 ...
 </form-definitions>

 <-- Name/Value Pairs used within Multiple Choice Widgets
 -->
 <form-value-pairs>
 <value-pairs value-pairs-name="common_iso_languages"
 dc-term="language_iso">
 ...
 </form-value-pairs>
</input-forms>

Adding a Collection Map

Each name-map element within form-map associates a collection with the name of a form set. Its collec-
tion-handle attribute is the Handle of the collection, and its form-name attribute is the form set name, which
must match the name attribute of a form element.

For example, the following fragment shows how the collection with handle "12345.6789/42" is attached to
the "TechRpt" form set:

<form-map>
 <name-map collection-handle=" 12345.6789/42" form-name=" TechRpt"
 />
 ...
 </form-map>

 <form-definitions>
 <form name="
 TechRept">
 ...
 </form-definitions>

It's a good idea to keep the definition of the default name-map from the example input-forms.xml so there
is always a default for collections which do not have a custom form set.

Custom Metadata-entry Pages for Submission

221

Getting A Collection's Handle

You will need the handle of a collection in order to assign it a custom form set. To discover the handle, go to
the "Communities & Collections" page under "Browse" in the left-hand menu on your DSpace home page.
Then, find the link to your collection. It should look something like:

http://myhost.my.edu/dspace/handle/
 12345.6789/42

The underlined part of the URL is the handle. It should look familiar to any DSpace administrator. That is
what goes in the collection-handle attribute of your name-map element.

Adding a Form Set

You can add a new form set by creating a new form element within the form-definitions element. It has
one attribute, name, which as seen above must match the value of the name-map for the collections it is
to be used for.

Forms and Pages

The content of the form is a sequence of page elements. Each of these corresponds to a Web page of forms
for entering metadata elements, presented in sequence between the initial "Describe" page and the final
"Verify" page (which presents a summary of all the metadata collected).

A form must contain at least one and at most six pages. They are presented in the order they appear in the
XML. Each page element must include a number attribute, that should be its sequence number, e.g.

<page number="1">

The page element, in turn, contains a sequence of field elements. Each field defines an interactive dialog
where the submitter enters one of the Dublin Core metadata items.

Composition of a Field

Each field contains the following elements, in the order indicated. The required sub-elements are so marked:

• *dc-schema(Required)*: Name of metadata schema employed, e.g. dc for Dublin Core. This value must
match the value of the schema element defined in dublin-core-types.xml

• *dc-element(Required)*: Name of the Dublin Core element entered in this field, e.g. contributor.

• *dc-qualifier*: Qualifier of the Dublin Core element entered in this field, e.g. when the field is
contributor.advisor the value of this element would be advisor. Leaving this out means the input is for
an unqualified DC element.

• *repeatable*: Value is true when multiple values of this field are allowed, false otherwise. When you
mark a field repeatable, the UI servlet will add a control to let the user ask for more fields to enter additional
values. Intended to be used for arbitrarily-repeating fields such as subject keywords, when it is impossible
to know in advance how many input boxes to provide.

• *label(Required)*: Text to display as the label of this field, describing what to enter, e.g. "Your Advisor's
Name".

• *input-type(Required)*: Defines the kind of interactive widget to put in the form to collect the Dublin
Core value. Content must be one of the following keywords:

• onebox – A single text-entry box.

Custom Metadata-entry Pages for Submission

222

• twobox – A pair of simple text-entry boxes, used for repeatable values such as the DC subject item.
Note: The 'twobox' input type is rendered the same as a 'onebox' in the XML-UI, but both allow for
ease of adding multiple values.

• textarea – Large block of text that can be entered on multiple lines, e.g. for an abstract.

• name – Personal name, with separate fields for family name and first name. When saved they are
appended in the format 'LastName, FirstName'

• date – Calendar date. When required, demands that at least the year be entered.

• series – Series/Report name and number. Separate fields are provided for series name and series num-
ber, but they are appended (with a semicolon between) when saved.

• dropdown – Choose value(s) from a "drop-down" menu list. Note: You must also include a value for
the value-pairs-name attribute to specify a list of menu entries from which to choose. Use this to make
a choice from a restricted set of options, such as for the language item.

• qualdrop_value – Enter a "qualified value", which includes both a qualifier from a drop-down menu
and a free-text value. Used to enter items like alternate identifiers and codes for a submitted item,
e.g. the DC identifier field. Note: As for the dropdown type, you must include the value-pairs-name
attribute to specify a menu choice list.

• list – Choose value(s) from a checkbox or radio button list. If the repeatable attribute is set to true,
a list of checkboxes is displayed. If the repeatable attribute is set to false, a list of radio buttons is
displayed. Note: You must also include a value for the value-pairs-name attribute to specify a list of
values from which to choose.

• *hint(Required)*: Content is the text that will appear as a "hint", or instructions, next to the input fields.
Can be left empty, but it must be present.

• *required*: When this element is included with any content, it marks the field as a required input. If
the user tries to leave the page without entering a value for this field, that text is displayed as a warning
message. For example, <required>You must enter a title.</required> Note that leaving the required
element empty will not mark a field as required, e.g.:<required></required>

• *visibility*: When this optional element is included with a value, it restricts the visibility of the field
to the scope defined by that value. If the element is missing or empty, the field is visible in all scopes.
Currently supported scopes are:

• workflow : the field will only be visible in the workflow stages of submission. This is good for hiding
difficult fields for users, such as subject classifications, thereby easing the use of the submission system.

• submit : the field will only be visible in the initial submission, and not in the workflow stages.
In addition, you can decide which type of restriction apply: read-only or full hidden the field (de-
fault behaviour) using the otherwise attribute of the visibility XML element. For example:<visibility
otherwise="readonly">workflow</visibility> Note that it is considered a configuration error to limit a
field's scope while also requiring it - an exception will be generated when this combination is detected.
Look at the example input-forms.xml and experiment with a a trial custom form to learn this specifica-
tion language thoroughly. It is a very simple way to express the layout of data-entry forms, but the only
way to learn all its subtleties is to use it.

For the use of controlled vocabularies see the Configuring Controlled Vocabularies section.

Automatically Elided Fields

You may notice that some fields are automatically skipped when a custom form page is displayed, depending
on the kind of item being submitted. This is because the DSpace user-interface engine skips Dublin Core
fields which are not needed, according to the initial description of the item. For example, if the user indicates

Custom Metadata-entry Pages for Submission

223

there are no alternate titles on the first "Describe" page (the one with a few checkboxes), the input for the
title.alternative DC element is automatically elided, even on custom submission pages.

When a user initiates a submission, DSpace first displays what we'll call the "initial-questions page". By
default, it contains three questions with check-boxes:

1. The item has more than one title, e.g. a translated title Controls title.alternative field.

2. The item has been published or publicly distributed before Controls DC fields:

• date.issued

• publisher

• identifier.citation

3. The item consists of more than one fileDoes not affect any metadata input fields. The answers to the
first two questions control whether inputs for certain of the DC metadata fields will displayed, even if
they are defined as fields in a custom page. Conversely, if the metadata fields controlled by a checkbox
are not mentioned in the custom form, the checkbox is elided from the initial page to avoid confusing
or misleading the user.

The two relevant checkbox entries are "The item has more than one title, e.g. a translated title", and "The item
has been published or publicly distributed before". The checkbox for multiple titles trigger the display of the
field with dc-element equal to 'title' and dc-qualifier equal to 'alternative'. If the controlling collection's form
set does not contain this field, then the multiple titles question will not appear on the initial questions page.

Adding Value-Pairs

Finally, your custom form description needs to define the "value pairs" for any fields with input types that
refer to them. Do this by adding a value-pairs element to the contents of form-value-pairs. It has the following
required attributes:

• value-pairs-name – Name by which an input-type refers to this list.

• dc-term – Qualified Dublin Core field for which this choice list is selecting a value. Each value-pairs
element contains a sequence of pair sub-elements, each of which in turn contains two elements:

• displayed-value – Name shown (on the web page) for the menu entry.

• stored-value – Value stored in the DC element when this entry is chosen. Unlike the HTML select tag,
there is no way to indicate one of the entries should be the default, so the first entry is always the default
choice.

Example

Here is a menu of types of common identifiers:

<value-pairs value-pairs-name="common_identifiers"
 dc-term="identifier">
 <pair>
 <displayed-value>Gov't Doc
 #</displayed-value>
 <stored-value>govdoc</stored-value>
 </pair>
 <pair>
 <displayed-value>URI</displayed-value>
 <stored-value>uri</stored-value>
 </pair>
 <pair>
 <displayed-value>ISBN</displayed-value>
 <stored-value>isbn</stored-value>
 </pair>
 </value-pairs>

Configuring the File Upload step

224

It generates the following HTML, which results in the menu widget below. (Note that there is no way to
indicate a default choice in the custom input XML, so it cannot generate the HTML SELECTED attribute
to mark one of the options as a pre-selected default.)

<select name="identifier_qualifier_0">
<option VALUE="govdoc">Gov't Doc
 #</option>
<option VALUE="uri">URI</option>
<option VALUE="isbn">ISBN</option>
</select>

*Identifiers:*Gov't Doc #URIISBN

12.4.4. Deploying Your Custom Forms
The DSpace web application only reads your custom form definitions when it starts up, so it is important
to remember:
You must always restart Tomcat (or whatever servlet container you are using) for changes made to the
input-forms.xml file take effect.
Any mistake in the syntax or semantics of the form definitions, such as poorly formed XML or a reference
to a nonexistent field name, will cause a fatal error in the DSpace UI. The exception message (at the top
of the stack trace in the dspace.log file) usually has a concise and helpful explanation of what went wrong.
Don't forget to stop and restart the servlet container before testing your fix to a bug.

12.5. Configuring the File Upload step
The Upload step in the DSpace submission process has two configuration options which can be set with
your [dspace]/config/dspace.cfg configuration file. They are as follows:

• upload.max - The maximum size of a file (in bytes) that can be uploaded from the JSPUI (not applicable
for the XMLUI). It defaults to 536870912 bytes (512MB). You may set this to -1 to disable any file size
limitation.

• Note: Increasing this value or setting to -1 does not guarantee that DSpace will be able to successfully
upload larger files via the web, as large uploads depend on many other factors including bandwidth,
web server settings, internet connection speed, etc.

• webui.submit.upload.required - Whether or not all users are required to upload a file when they submit
an item to DSpace. It defaults to 'true'. When set to 'false' users will see an option to skip the upload step
when they submit a new item.

12.6. Creating new Submission Steps
First, a brief warning: Creating a new Submission Step requires some Java knowledge, and is therefore
recommended to be undertaken by a Java programmer whenever possible

That being said, at a higher level, creating a new Submission Step requires the following (in this relative
order):

1. (Required) Create a new Step Processing class

• This class must extend the abstract org.dspace.submit.AbstractProcessingStep class and implement
all methods defined by that abstract class.

• This class should be built in such a way that it can process the input gathered from either the XMLUI
or JSPUI interface.

2. (For steps using JSPUI) Create the JSPs to display the user interface. Create a new JSPUI "binding" class
to initialize and call these JSPs.

Appendices

225

3. • Your JSPUI "binding" class must extend the abstract class org.dspace.app.webui.submit.JSPStep
and implement all methods defined there. It's recommended to use one of the classes in
org.dspace.app.webui.submit.step.* as a reference.

• Any JSPs created should be loaded by calling the showJSP() method of the
org.dspace.app.webui.submit.JSPStepManager class

• If this step gathers information to be reviewed, you must also create a Review JSP which will display
a read-only view of all data gathered during this step. The path to this JSP must be returned by your
getReviewJSP() method. You will find examples of Review JSPs (named similar to review-[step].jsp)
in the JSP submit/ directory.

4. (For steps using XMLUI) Create an XMLUI "binding" Step Transformer which will generate the DRI
XML which Manakin requires.

• The Step Transformer must extend and implement all necessary methods within the abstract class
org.dspace.app.xmlui.submission.AbstractSubmissionStep

• It is useful to use the existing classes in org.dspace.app.xmlui.submission.submit.* as references

5. (Required) Add a valid Step Definition to the item-submission.xml configuration file.

• This may also require that you add an I18N (Internationalization) key for this step's heading. See
the sections on Configuring Multilingual Support for JSPUI or Configuring Multilingual Support for
XMLUI for more details.

• For more information on <step> definitions within the item-submission.xml, see the section above on
Defining Steps (<step>) within the item-submission.xml. Creating a Non-Interactive Step

Non-interactive steps are ones that have no user interface and only perform backend processing. You may
find a need to create non-interactive steps which perform further processing of previously entered informa-
tion.

To create a non-interactive step, do the following:

1. Create the required Step Processing class, which extends the abstract
org.dspace.submit.AbstractProcessingStep class. In this class add any processing which this step will
perform.

2. Add your non-interactive step to your item-submission.xml at the place where you wish this step to be
called during the submission process. For example, if you want it to be called immediately after the ex-
isting 'Upload File' step, then place its configuration immediately after the configuration for that 'Upload
File' step. The configuration should look similar to the following:

<step>
 <processing-class>org.dspace.submit.step.MyNonInteractveStep</processi
/processing-class> <workflow-editable>false</workflow-editable>
 </step>

Note: Non-interactive steps will not appear in the Progress Bar! Therefore, your submitters will not even
know they are there. However, because they are not visible to your users, you should make sure that your
non-interactive step does not take a large amount of time to finish its processing and return control to the
next step (otherwise there will be a visible time delay in the user interface).

13. Appendices

13.1. Appendix
DSpace System Documentation: Appendix A

Appendix

226

13.1.1. Default Dublin Core Metadata Registry

contributor A person, organization, or service
responsible for the content of the
resource. Catch-all for unspecified
contributors.

contributor advisor Use primarily for thesis advisor.

contributor¹ author

contributor editor

contributor illustrator

contributor other

coverage spatial Spatial characteristics of content.

coverage temporal Temporal characteristics of con-
tent.

creator Do not use; only for harvested
metadata.

date Use qualified form if possible.

date¹ accessioned Date DSpace takes possession of
item.

date¹ available Date or date range item became
available to the public.

date copyright Date of copyright.

date created Date of creation or manufacture
of intellectual content if different
from date.issued.

date¹ issued Date of publication or distribution.

date submitted Recommend for theses/disserta-
tions.

identifier Catch-all for unambiguous iden-
tifiers not defined by qualified
form; use identifier.other for a
known identifier common to a lo-
cal collection instead of unquali-
fied form.

identifier¹ citation Human-readable, standard bibli-
ographic citation of non-DSpace
format of this item

identifier¹ govdoc A government document number

identifier¹ isbn International Standard Book Num-
ber

identifier¹ issn International Standard Serial
Number

identifier sici Serial Item and Contribution Iden-
tifier

identifier¹ ismn International Standard Music
Number

identifier¹ other A known identifier type common
to a local collection.

Appendix

227

identifier¹ uri Uniform Resource Identifier

description¹ Catch-all for any description not
defined by qualifiers.

description¹ abstract Abstract or summary.

description¹ provenance The history of custody of the
item since its creation, including
any changes successive custodians
made to it.

description¹ sponsorship Information about sponsoring
agencies, individuals, or contractu-
al arrangements for the item.

description statementofresponsibility To preserve statement of responsi-
bility from MARC records.

description tableofcontents A table of contents for a given
item.

description uri Uniform Resource Identifier point-
ing to description of this item.

format¹ Catch-all for any format informa-
tion not defined by qualifiers.

format¹ extent Size or duration.

format medium Physical medium.

format¹ mimetype Registered MIME type identifiers.

language Catch-all for non-ISO forms of the
language of the item, accommo-
dating harvested values.

language¹ iso Current ISO standard for language
of intellectual content, including
country codes (e.g. "en_US").

publisher¹ Entity responsible for publication,
distribution, or imprint.

relation Catch-all for references to other re-
lated items.

relation isformatof References additional physical
form.

relation ispartof References physically or logically
containing item.

relation¹ ispartofseries Series name and number within
that series, if available.

relation haspart References physically or logically
contained item.

relation isversionof References earlier version.

relation hasversion References later version.

relation isbasedon References source.

relation isreferencedby Pointed to by referenced resource.

relation requires Referenced resource is required to
support function, delivery, or co-
herence of item.

relation replaces References preceeding item.

Appendix

228

relation isreplacedby References succeeding item.

relation uri References Uniform Resource
Identifier for related item

rights Terms governing use and repro-
duction.

rights uri References terms governing use
and reproduction.

source Do not use; only for harvested
metadata.

source uri Do not use; only for harvested
metadata.

subject¹ Uncontrolled index term.

subject classification Catch-all for value from local clas-
sification system. Global classifi-
cation systems will receive specif-
ic qualifier

subject ddc Dewey Decimal Classification
Number

subject lcc Library of Congress Classification
Number

subject lcsh Library of Congress Subject Head-
ings

subject mesh MEdical Subject Headings

subject other Local controlled vocabulary; glob-
al vocabularies will receive specif-
ic qualifier.

title¹ Title statement/title proper.

title¹ alternative Varying (or substitute) form of title
proper appearing in item, e.g. ab-
breviation or translation

type¹ Nature or genre of content.

¹Used by system. DO NOT REMOVE

13.1.2. Default Bitstream Format Registry

Mimetype Short Descrip-
tion

Description Support Level Internal Extensions

applica-
tion/octet-
stream¹

Unknown Unknown data
format

Unknown false

text/plain¹ License Item-specific li-
cense agreed up-
on to submis-
sion

Known true

applica-
tion/marc

MARC Machine-Read-
able Cataloging
records

Known false

Appendix

229

applica-
tion/mathemati-
ca

Mathematica Mathematica
Notebook

Known false ma

applica-
tion/msword

Microsoft Word Microsoft Word Known false doc

application/pdf Adobe PDF Adobe Portable
Document For-
mat

Known false pdf

applica-
tion/postscript

Postscript Postscript Files Known false ai, eps, ps

applica-
tion/sgml

SGML SGML applica-
tion (RFC 1874)

Known false sgm, sgml

applica-
tion/vnd.ms-
excel

Microsoft Excel Microsoft Excel Known false xls

applica-
tion/vnd.ms-
powerpoint

Microsoft Pow-
erpoint

Microsoft Pow-
erpoint

Known false ppt

applica-
tion/vnd.ms-
project

Microsoft
Project

Microsoft
Project

Known false mpd, mpp, mpx

applica-
tion/vnd.visio

Microsoft Visio Microsoft Visio Known false vsd

applica-
tion/wordper-
fect5.1

WordPerfect WordPerfect 5.1
document

Known false wpd

application/x-
dvi

TeX dvi TeX dvi format Known false dvi

application/x-
filemaker

FMP3 Filemaker Pro Known false fm

application/x-
latex

LateX LaTeX docu-
ment

Known false latex

application/x-
photoshop

Photoshop Photoshop Known false pdd, psd

application/x-
tex

TeX Tex/LateX doc-
ument

Known false tex

audio/basic audio/basic Basic Audio Known false au, snd

audio/x-aiff AIFF Audio Inter-
change File For-
mat

Known false aif, aifc, aiff

audio/x-mpeg MPEG Audio MPEG Audio Known false abs, mpa, mpe-
ga

audio/x-pn-
realaudio

RealAudio RealAudio file Known false ra, ram

audio/x-wav WAV Broadcase Wave
Format

Known false wav

image/gif GIF Graphics Inter-
change Format

Known false gif

DRI Schema Reference

230

image/jpeg JPEG Joint Photo-
graphic Ex-
perts Group/
JPEG File Inter-
change Format
(JFIF)

Known false jpeg, jpg

image/png image/png Portable Net-
work Graphics

Known false png

image/tiff TIFF Tag Image File
Format

Known false tif, tiff

image/x-ms-
bmp

BMP Microsoft Win-
dows bitmap

Known false bmp

image/x-
photo-cd

Photo CD Kodak Photo
CD image

Known false pcd

text/css CSS Cascading Style
Sheets

Known false css

text/html HTML Hypertext
Markup Lan-
guage

Known false htm, html

text/plain Text Plain Text Known false asc, txt

text/richtext RTF Rich Text For-
mat

Known false rtf

text/xml XML Extensible
Markup Lan-
guage

Known false xml

video/mpeg MPEG Moving Picture
Experts Group

Known false mpe, mpeg,
mpg

video/quicktime Video Quick-
time

Video Quick-
time

Known false mov, qt

¹ Used by system: do not remove

13.2. DRI Schema Reference

13.2.1. Introduction
This manual describes the Digital Repository Interface (DRI) as it applies to the DSpace digital repository
and XMLUI Manakin based interface. DSpace XML UI is a comprehensive user interface system. It is
centralized and generic, allowing it to be applied to all DSpace pages, effectively replacing the JSP-based
interface system. Its ability to apply specific styles to arbitrarily large sets of DSpace pages significantly
eases the task of adapting the DSpace look and feel to that of the adopting institution. This also allows for
several levels of branding, lending institutional credibility to the repository and collections.

Manakin, the second version of DSpace XML UI, consists of several components, written using Java, XML,
and XSL, and is implemented in http://cocoon.apache.org/. Central to the interface is the XML Document,
which is a semantic representation of a DSpace page. In Manakin, the XML Document adheres to a schema
called the Digital Repository Interface (DRI) Schema, which was developed in conjunction with Manakin
and is the subject of this guide. For the remainder of this guide, the terms XML Document, DRI Document,
and Document will be used interchangeably.

This reference document explains the purpose of DRI, provides a broad architectural overview, and explains
common design patterns. The appendix includes a complete reference for elements used in the DRI Schema,
a graphical representation of the element hierarchy, and a quick reference table of elements and attributes.

DRI Schema Reference

231

The Purpose of DRI

DRI is a schema that governs the structure of the XML Document. It determines the elements that can be
present in the Document and the relationship of those elements to each other. Since all Manakin components
produce XML Documents that adhere to the DRI schema, The XML Document serves as the abstraction
layer. Two such components, Themes and Aspects, are essential to the workings of Manakin and are de-
scribed briefly in this manual.

The Development of DRI

The DRI schema was developed for use in Manakin. The choice to develop our own schema rather than
adapt an existing one came after a careful analysis of the schema's purpose as well as the lessons learned
from earlier attempts at customizing the DSpace interface. Since every DSpace page in Manakin exists as
an XML Document at some point in the process, the schema describing that Document had to be able to
structurally represent all content, metadata and relationships between different parts of a DSpace page. It
had to be precise enough to avoid losing any structural information, and yet generic enough to allow Themes
a certain degree of freedom in expressing that information in a readable format.

Popular schemas such as XHTML suffer from the problem of not relating elements together explicitly. For
example, if a heading precedes a paragraph, the heading is related to the paragraph not because it is encoded
as such but because it happens to precede it. When these structures are attempted to be translated into formats
where these types of relationships are explicit, the translation becomes tedious, and potentially problematic.
More structured schemas, like TEI or Docbook, are domain specific (much like DRI itself) and therefore
not suitable for our purposes.

We also decided that the schema should natively support a metadata standard for encoding artifacts. Rather
than encoding artifact metadata in structural elements, like tables or lists, the schema would include artifacts
as objects encoded in a particular standard. The inclusion of metadata in native format would enable the
Theme to choose the best method to render the artifact for display without being tied to a particular structure.

Ultimately, we chose to develop our own schema. We have constructed the DRI schema by incorporating
other standards when appropriate, such as http://cocoon.apache.org/2.1/userdocs/i18nTransformer.html for
internationalization, http://dublincore.org/, and the http://www.loc.gov/standards/mets/. The design of struc-
tural elements was derived primarily from http://www.tei-c.org/index.xml, with some of the design patterns
borrowed from other existing standards such as DocBook and XHTML. While the structural elements were
designed to be easily translated into XHTML, they preserve the semantic relationships for use in more ex-
pressive languages.

13.2.2. DRI in Manakin
The general process for handling a request in DSpace XML UI consists of two parts. The first part builds
the XML Document, and the second part stylizes that Document for output. In Manakin, the two parts are
not discrete and instead wrapped within two processes: Content Generation, which builds an XML repre-
sentation of the page, and Style Application, which stylizes the resulting Document. Content Generation is
performed by Aspect chaining, while Style Application is performed by a Theme.

Themes

A Theme is a collection of XSL stylesheets and supporting files like images, CSS styles, translations, and
help documents. The XSL stylesheets are applied to the DRI Document to covert it into a readable format
and give it structure and basic visual formatting in that format. The supporting files are used to provide the
page with a specific look and feel, insert images and other media, translate the content, and perform other
tasks. The currently used output format is XHTML and the supporting files are generally limited to CSS,
images, and JavaScript. More output formats, like PDF or SVG, may be added in the future.

A DSpace installation running Manakin may have several Themes associated with it. When applied to a
page, a Theme determines most of the pageís look and feel. Different themes can be applied to different
sets of DSpace pages allowing for both variety of styles between sets of pages and consistency within those
sets. The xmlui.xconf configuration file determines which Themes are applied to which DSpace pages (see

DRI Schema Reference

232

the Configuration and Customization chapter for more information on installing and configuring themes).
Themes may be configured to apply to all pages of specific type, like browse-by-title, to all pages of a one
particular community or collection or sets of communities and collections, and to any mix of the two. They
can also be configured to apply to a singe arbitrary page or handle.

Aspect Chains

Manakin Aspects are arrangements of Cocoon components (transformers, actions, matchers, etc) that im-
plement a new set of coupled features for the system. These Aspects are chained together to form all the
features of Manakin. Five Aspects exist in the default installation of Manakin, each handling a particular set
of features of DSpace, and more can be added to implement extra features. All Aspects take a DRI Document
as input and generate one as output. This allows Aspects to be linked together to form an Aspect chain. Each
Aspect in the chain takes a DRI Document as input, adds its own functionality, and passes the modified
Document to the next Aspect in the chain.

13.2.3. Common Design Patterns
There are several design patterns used consistently within the DRI schema. This section identifies the need
for and describes the implementation of these patterns. Three patterns are discussed: language and interna-
tionalization issues, standard attribute triplet (id, n, and rend), and the use of structure-oriented markup.

Localization and Internationalization

Internationalization is a very important component of the DRI system. It allows content to be offered in other
languages based on user's locale and conditioned upon availability of translations, as well as present dates
and currency in a localized manner. There are two types of translated content: content stored and displayed
by DSpace itself, and content introduced by the DRI styling process in the XSL transformations. Both types
are handled by Cocoon's i18n transformer without regard to their origin.

When the Content Generation process produces a DRI Document, some of the textual content may be marked
up with i18n elements to signify that translations are available for that content. During the Style Application
process, the Theme can also introduce new textual content, marking it up with i18n tags. As a result, after
the Theme's XSL templates are applied to the DRI Document, the final output consists of a DSpace page
marked up in the chosen display format (like XHTML) with i18n elements from both DSpace and XSL
content. This final document is sent through Cocoon's i18n transformer that translates the marked up text.

Standard attribute triplet

Many elements in the DRI system (all top-level containers, character classes, and many others) contain
one or several of the three standard attributes: id, n, and rend. The id and n attributes can be required or
optional based on the elementís purpose, while the rend attribute is always optional. The first two are used
for identification purposes, while the third is used as a display hint issued to the styling step.

Identification is important because it allows elements to be separated from their peers for sorting, special
case rendering, and other tasks. The first attribute, id, is the global identifier and it is unique to the entire
document. Any element that contains an id attribute can thus be uniquely referenced by it. The id attribute of
an element can be either assigned explicitly, or generated from the Java Class Path of the originating object
if no name is given. While all elements that can be uniquely identified can carry the id attribute, only those
that are independent on their context are required to do so. For example, tables are required to have an id
since they retain meaning regardless of their location in the document, while table rows and cells can omit
the attribute since their meaning depends on the parent element.

The name attribute n is simply the name assigned to the element, and it is used to distinguish an element
from its immediate peers. In the example of a particular list, all items in that list will have different names
to distinguish them from each other. Other lists in the document, however, can also contain items whose
names will be different from each other, but identical to those in the first list. The n attribute of an element
is therefore unique only in the scope of that elementís parent and is used mostly for sorting purposes and
special rendering of a certain class of elements, like, for example, all first items in lists, or all items named

DRI Schema Reference

233

"browse". The n attribute follows the same rules as id when determining whether or not it is required for
a given element.

The last attribute in the standard triplet is rend. Unlike id and n, the rend attribute can consist of several space
delimited values and is optional for all elements that can contain it. Its purpose is to provide a rendering
hint from the middle layer component to the styling theme. How that hint is interpreted and whether it is
used at all when provided, is completely up the theme. There are several cases, however, where the content
of the rend attribute is outlined in detail and its use is encouraged. Those cases are the emphasis element
hi, the division element div, and the list element. Please refer to the Element Reference for more detail on
these elements.

Structure-oriented markup

The final design pattern is the use of structure-oriented markup for content carried by the XML Document.
Once generated by Cocoon, the Document contains two major types of information: metadata about the
repository and its contents, and the actual content of the page to be displayed. A complete overview of
metadata and content markup and their relationship to each other is given in the next section. An important
thing to note here, however, is that the markup of the content is oriented towards explicitly stating structural
relationships between the elements rather than focusing on the presentational aspects. This makes the markup
used by the Document more similar to TEI or Docbook rather than HTML. For this reason, XSL templates
are used by the themes to convert structural DRI markup to XHTML. Even then, an attempt is made to create
XHTML as structural as possible, leaving presentation entirely to CSS. This allows the XML Document to
be generic enough to represent any DSpace page without dictating how it should be rendered.

13.2.4. Schema Overview
The DRI XML Document consists of the root element document and three top-level elements that contain
two major types of elements. The three top-level containers are meta, body, and options. The two types of
elements they contain are metadata and content, carrying metadata about the page and the contents of the
page, respectively. Figure 1 depicts the relationship between these six components.

Figure 1: The two content types across three major divisions of a DRI page. The document element is the
root for all DRI pages and contains all other elements. It bears only one attribute, version, that contains the
version number of the DRI system and the schema used to validate the produced document. At the time of
writing the working version number is "1.1".

The meta element is a the top-level element under document and contains all metadata information about
the page, the user that requested it, and the repository it is used with. It contains no structural elements,
instead being the only container of metadata elements in a DRI Document. The metadata stored by the meta
element is broken up into three major groups: userMeta, pageMeta, and objectMeta, each storing metadata
information about their respective component. Please refer to the reference entries for more information
about these elements.

The options element is another top-level element that contains all navigation and action options available
to the user. The options are stored as items in list elements, broken up by the type of action they perform.
The five types of actions are: browsing, search, language selection, actions that are always available, and
actions that are context dependent. The two action types also contain sub-lists that contain actions available
to users of varying degrees of access to the system. The options element contains no metadata elements and
can only make use of a small set of structural elements, namely the list element and its children.

The last major top-level element is the body element. It contains all structural elements in a DRI Document,
including the lists used by the options element. Structural elements are used to build a generic representation
of a DSpace page. Any DSpace page can be represented with a combination of the structural elements, which
will in turn be transformed by the XSL templates into another format. This is the core mechanism that allows
DSpace XML UI to apply uniform templates and styling rules to all DSpace pages and is the fundamental
difference from the JSP approach currently used by DSpace.

The body element directly contains only one type of element: div. The div element serves as a major division
of content and any number of them can be contained by the body. Additionally, divisions are recursive,
allowing divs to contain other divs. It is within these elements that all other structural elements are contained.

DRI Schema Reference

234

Those elements include tables, paragraph elements p, and lists, as well as their various children elements. At
the lower levels of this hierarchy lie the character container elements. These elements, namely paragraphs p,
table cells, lists items, and the emphasis element hi, contain the textual content of a DSpace page, optionally
modified with links, figures, and emphasis. If the division within which the character class is contained is
tagged as interactive (via the interactive attribute), those elements can also contain interactive form fields.
Divisions tagged as interactive must also provide method and action attributes for its fields to use.

Figure 2: All the elements in the DRI schema. Note: This image is out-of-date, it does not reflect the changes
between 1.0 and 1.1 such as reference and referenceSet.

13.2.5. Merging of DRI Documents
Having described the structure of the DRI Document, as well as its function in Manakin's Aspect chains,
we now turn our attention to the one last detail of their use: merging two Documents into one. There are
several situations where the need to merge two documents arises. In Manakin, for example, every Aspect
is responsible for adding different functionality to a DSpace page. Since every instance of a page has to
be a complete DRI Document, each Aspect is faced with the task of merging the Document it generated
with the ones generated (and merged into one Document) by previously executed Aspects. For this reason
rules exist that describe which elements can be merged together and what happens to their data and child
elements in the process.

When merging two DRI Documents, one is considered to be the main document, and the other a feeder
document that is added in. The three top level containers (meta, body and options) of both documents are
then individually analyzed and merged. In the case of the options and meta elements, the children tags are
taken individually as well and treated differently from their siblings.

The body elements are the easiest to merge: their respective div children are preserved along with their
ordering and are grouped together under one element. Thus, the new body tag will contain all the divs of
the main document followed by all the divs of the feeder. However, if two divs have the same n and rend
attributes (and in case of an interactive div the same action and method attributes as well), those divs will
be merged into one. The resulting div will bear the id, n, and rend attributes of the main document's div
and contain all the divs of the main document followed by all the divs of the feeder. This process continues
recursively until all the divs have been merged. It should be noted that two divisions with separate pagination
rules cannot be merged together.

Merging the options elements is somewhat different. First, list elements under options of both documents
are compared with each other. Those unique to either document are simply added under the new options
element, just like divs under body. In case of duplicates, that is list elements that belong to both documents
and have the same n attribute, the two lists will be merged into one. The new list element will consist of
the main documentís head element, followed label-item pairs from the main document, and then finally the
label-item pairs of the feeder, provided they are different from those of the main.

Finally, the meta elements are merged much like the elements under body. The three children of meta -
userMeta, pageMeta, and objectMeta - are individually merged, adding the contents of the feeder after the
contents of the main.

13.2.6. Version Changes
The DRI schema will continue to evolve overtime as the needs of interface design require. The version
attribute on the document will indicate which version of the schema the document conforms to. At the time
Manakin was incorporated into the standard distribution of DSpac the current version was "1.1", however
earlier versions of the Manakin interface may use "1.0".

Changes from 1.0 to 1.1

There were major structural changes between these two version numbers. Several elements were removed
from the schema:includeSet, include, objectMeta, and object. Originally all metadata for objects were in-
cluded in-line with the DRI document, this proved to have several problems and has been removed in version
1.1 of the DRI schema. Instead of including metadata in-line, external references to the metadata is included.

DRI Schema Reference

235

Thus, a reference element has been added along with referenceSet. These new elements operate like their
counterparts in the previous version except refrencing metadata contained on the objectMeta element they
reference metadata in external files. The repository and repositoryMeta elements were alse modified in a
similar mannor removing in-line metadata and refrencing external metadata documents.

13.2.7. Element Reference

Element Attributes (if required,
noted)

Required

BODY

cell cols

id

n

rend

role

rows

div action required for interactive
behavior

behaviorSensitivFields

currentPage

firstItemIndex

id required

interactive

itemsTotal

lastItemIndex

method required for interactive

n required

nextPage

pagesTotal

pageURLMask

pagination

previousPage

rend

DOCUMENT version required

field disabled

id required

n required

rend

required

type required

figure rend

source

target

head id

DRI Schema Reference

236

n

rend

help

hi rend required

instance

item id

n

rend

label id

n

rend

list id required

n required

rend

type

META

metadata element required

language

qualifier

OPTIONS

p id

n

rend

pageMeta

params cols

maxlength

multiple

operations

rows

size

reference url required

repositoryID required

type

referenceSet id required

n required

orderBy

rend

type required

repository repositoryID required

url required

repositoryMeta

row id

DRI Schema Reference

237

n

rend

role required

table cols required

id required

n required

rend

rows required

trail rend

target

userMeta authenticated required

value optionSelected

optionValue

type required

xref target required

BODY

Top-Level Container

The body element is the main container for all content displayed to the user. It contains any number of div
elements that group content into interactive and display blocks.

Parent

document

Children

div

(any)

Attributes

None

<document version=1.0>
 <meta> ... </meta>
 <body>
 <div n="division-example1"
 id="XMLExample.div.division-example1">
 ...
 </div>
 <div n="division-example2" id="XMLExample.div.division-example2"
 interactive="yes" action="www.DRItest.com"
 method="post">
 ...
 </div>
 ...
 </body>
 <options> ... </options>
</document>

cell

Rich Text Container

DRI Schema Reference

238

Structural Element

The cell element contained in a row of a table carries content for that table. It is a character container, just
like p, item, and hi, and its primary purpose is to display textual data, possibly enhanced with hyperlinks,
emphasized blocks of text, images and form fields. Every cell can be annotated with a role (the most common
being ìheaderî and ìdataî) and can stretch across any number of rows and columns. Since cells cannot exist
outside their container, row, their id attribute is optional.

Parent

row

Children

hi

(any)

xref

(any)

figure

(any)

field

(any)

Attributes

• cols: optional The number of columns the cell spans.

• id: optional A unique identifier of the element.

• n: optional A local identifier used to differentiate the element from its siblings.

• rend: optional A rendering hint used to override the default display of the element.

• role: optional An optional attribute to override the containing rowís role settings.

• rows: optional The number of rows the cell spans.

<table n="table-example" id="XMLExample.table.table-example" rows="2"
 cols="3">
 <row role="head">
 <cell cols="2">Data Label One and Two</cell> <cell>Data Label
 Three</cell>
 ...
 </row>
 <row>
 <cell> Value One </cell> <cell> Value Two </cell> <cell> Value
 Three </cell>
 ...
 </row>
 ...
</table>

div

Structural Element

The div element represents a major section of content and can contain a wide variety of structural elements
to present that content to the user. It can contain paragraphs, tables, and lists, as well as references to artifact
information stored in artifactMeta, repositoryMeta, collections, and communities. The div element is also

DRI Schema Reference

239

recursive, allowing it to be further divided into other divs. Divs can be of two types: interactive and static.
The two types are set by the use of the interactive attribute and differ in their ability to contain interactive
content. Children elements of divs tagged as interactive can contain form fields, with the action and method
attributes of the div serving to resolve those fields.

Parent

body

div

Children

head

(zero or one)

pagination

(zero or one)

table

(any)

p

(any)

referenceSet

(any)

list

(any)

div

(any)

Attributes

• action: required for interactive The form action attribute determines where the form information should
be sent for processing.

• behavior: optional for interactive The acceptable behavior options that may be used on this form. The
only possible value defined at this time is ìajaxî which means that the form may be submitted multiple
times for each individual field in this form. Note that if the form is submitted multiple times it is best for
the behaviorSensitiveFields to be updated as well.

• behaviorSensitiveFields: optional for interactive A space separated list of field names that are sensitive
to behavior. These fields must be updated each time a form is submitted with out a complete refresh of
the page (i.e. ajax).

• currentPage: optional For paginated divs, the currentPage attribute indicates the index of the page cur-
rently displayed for this div.

• firstItemIndex: optional For paginated divs, the firstItemIndex attribute indicates the index of the first
item included in this div.

• id: required A unique identifier of the element.

• interactive: optional Accepted values are ìyesî, ìnoî. This attribute determines whether the div is interac-
tive or static. Interactive divs must provide action and method and can contain field elements.

DRI Schema Reference

240

• itemsTotal: optional For paginated divs, the itemsTotal attribute indicates how many items exit across
all paginated divs.

• lastItemIndex: optional For paginated divs, the lastItemIndex attribute indicates the index of the last item
included in this div.

• method: required for interactive Accepted values are ìgetî, ìpostî, and ìmultipartî. Determines the method
used to pass gathered field values to the handler specified by the action attribute. The multipart method
should be used for uploading files.

• n: required A local identifier used to differentiate the element from its siblings.

• nextPage: optional For paginated divs the nextPage attribute points to the URL of the next page of the
div, if it exists.

• pagesTotal: optional For paginated divs, the pagesTotal attribute indicates how many pages the paginated
divs spans.

• pageURLMask: optional For paginated divs, the pageURLMask attribute contains the mask of a url to
a particular page within the paginated set. The destination pageís number should replace the Unknown
macro: {pagenum}

string in the URL mask to generate a full URL to that page.

• pagination: optional Accepted values are ìsimpleî, ìmaskedî. This attribute determines whether the div
is spread over several pages. Simple paginated divs must provide previousPage, nextPage, itemsTotal,
firstItemIndex, lastItemIndex attributes. Masked paginated divs must provide currentPage, pagesTotal,
pageURLMask, itemsTotal, firstItemIndex, lastItemIndex attributes.

• previousPage: optional For paginated divs the previousPage attribute points to the URL of the previous
page of the div, if it exists.

• rend: optional A rendering hint used to override the default display of the element. In the case of the div
tag, it is also encouraged to label it as either ìprimaryî or ìsecondaryî. Divs marked as primary contain
content, while secondary divs contain auxiliary information or supporting fields.

<body>
 <div n="division-example"
 id="XMLExample.div.division-example">
 <head> Example Division </head>
 <p> This example shows the use of divisions. </p>
 <table ...>
 ...
 </table>
 <referenceSet ...>
 ...
 </referenceSet>
 <list ...>
 ...
 </list>
 <div n="sub-division-example"
 id="XMLExample.div.sub-division-example">
 <p> Divisions may be nested </p>
 ...
 </div>
 ...
 </div>
 ...
</body>

DOCUMENT

Document Root

DRI Schema Reference

241

The document element is the root container of an XML UI document. All other elements are contained within
it either directly or indirectly. The only attribute it carries is the version of the Schema to which it conforms.

Parent

none

Children

meta

(one)

body

(one)

options

(one)

Attributes

• version: required Version number of the schema this document adheres to. At the time of writing the only
valid version number is ì1.0î. Future iterations of this schema may increment the version number.

<document
 version="1.0">
 <meta>
 ...
 </meta>
 <body>
 ...
 </body>
 <options>
 ...
 </options>
 </document>

field

Text Container

Structural Element

The field element is a container for all information necessary to create a form field. The required type attribute
determines the type of the field, while the children tags carry the information on how to build it. Fields can
only occur in divisions tagged as "interactive".

Parent

cell

p

hi

item

Children

params

(one)

help

DRI Schema Reference

242

(zero or one)

error

(any)

option

(any - only with the select type)

value

(any - only available on fields of type: select, checkbox, or radio)

field

(one or more - only with the composite type)

valueSet

(any)

Attributes

• disabled: optional Accepted values are ìyesî, ìnoî. Determines whether the field allows user input. Ren-
dering of disabled fields may vary with implementation and display media.

• id: required A unique identifier for a field element.

• n: required A non-unique local identifier used to differentiate the element from its siblings within an
interactive division. This is the name of the field use when data is submitted back to the server.

• rend: optional A rendering hint used to override the default display of the element.

• required: optional Accepted values are ìyesî, ìnoî. Determines whether the field is a required component
of the form and thus cannot be left blank.

• type: required A required attribute to specify the type of value. Accepted types are:

• button: A button input control that when activated by the user will submit the form, including all the
fields, back to the server for processing.

• checkbox: A boolean input control which may be toggled by the user. A checkbox may have several
fields which share the same name and each of those fields may be toggled independently. This is distinct
from a radio button where only one field may be toggled.

• file: An input control that allows the user to select files to be submitted with the form. Note that a form
which uses a file field must use the multipart method.

• hidden: An input control that is not rendered on the screen and hidden from the user.

• password: A single-line text input control where the input text is rendered in such a way as to hide
the characters from the user.

• radio: A boolean input control which may be toggled by the user. Multiple radio button fields may
share the same name. When this occurs only one field may be selected to be true. This is distinct from
a checkbox where multiple fields may be toggled.

• select: A menu input control which allows the user to select from a list of available options.

• text: A single-line text input control.

• textarea: A multi-line text input control.

DRI Schema Reference

243

• composite: A composite input control combines several input controls into a single field. The only
fields that may be combined together are: checkbox, password, select, text, and textarea. When fields
are combined together they can posses multiple combined values.

<p>
 <hi> ... </hi>
 <xref> ... </xref>
 <figure> ... </figure>
 ...
 <field id="XMLExample.field.name" n="name" type="text"
 required="yes">
 <params size="16" maxlength="32"/>
 <help>Some help text with <i18n>localized
 content</i18n>.</help>
 <value type="raw">Default value goes
 here</value>
 </field>
</p>

figure

Text Container

Structural Element

The figure element is used to embed a reference to an image or a graphic element. It can be mixed freely
with text, and any text within the tag itself will be used as an alternative descriptor or a caption.

Parent

cell

p

hi

item

Children

none

Attributes

• rend: optional A rendering hint used to override the default display of the element.

• source: optional The source for the image, using either a URL or a pre-defined XML entity.

• target: optional A target for an image used as a link, using either a URL or an id of an existing element
as a destination.

<p>
 <hi> ... </hi>
 ...
 <xref> ... </xref>
 ...
 <field> ... </field>
 ...
 <figure source="www.example.com/fig1"> This is a static image.
 </figure> <figure source="www.example.com/fig1"
 target="www.example.net">
 This image is also a link.
 </figure>
 ...
</p>

DRI Schema Reference

244

head

Text Container

Structural Element

The head element is primarily used as a label associated with its parent element. The rendering is determined
by its parent tag, but can be overridden by the rend attribute. Since there can only be one head element
associated with a particular tag, the n attribute is not needed, and the id attribute is optional.

Parent

div

table

list

referenceSet

Children

none

Attributes

• id: optional A unique identifier of the element

• n: optional A local identifier used to differentiate the element from its siblings

• rend: optional A rendering hint used to override the default display of the element.

<div ...>
 <head> This is a simple header associated with its div element.
 </head>
 <div ...>
 <head rend="green"> This header will be green.
 </head>
 <p>
 <head> A header with <i18n>localized content</i18n>.
 </head>
 ...
 </p>
 </div>
 <table ...>
 <head> ...
 </head>
 ...
 </table>
 <list ...>
 <head> ...
 </head>
 ...
 </list>
 ...
</body>

help

Text Container

Structural Element

The optional help element is used to supply help instructions in plain text and is normally contained by the
field element. The method used to render the help text in the target markup is up to the theme.

Parent

DRI Schema Reference

245

field

Children

none

Attributes

None

<p>
 <hi> ... </hi>
 ...
 <xref> ... </xref>
 ...
 <figure> ... </figure>
 ...
 <field id="XMLExample.field.name" n="name" type="text"
 required="yes">
 <params size="16" maxlength="32" />
 <help>Some help text with <i18n>localized
 content</i18n>.</help>
 </field>
 ...
</p>

hi

Rich Text Container

Structural Element

The hi element is used for emphasis of text and occurs inside character containers like p and list item. It can
be mixed freely with text, and any text within the tag itself will be emphasized in a manner specified by
the required rend attribute. Additionally, hi element is the only text container component that is a rich text
container itself, meaning it can contain other tags in addition to plain text. This allows it to contain other
text containers, including other hi tags.

Parent

cell

p

item

hi

Children

hi

(any)

xref

(any)

figure

(any)

field

(any)

Attributes

DRI Schema Reference

246

• rend: required A required attribute used to specify the exact type of emphasis to apply to the contained
text. Common values include but are not limited to "bold", "italic", "underline", and "emph".

<p>
 This text is normal, while <hi rend="bold">this text is bold and
 this text is <hi rend="italic">bold and
 italic.</hi></hi>
</p>

instance

Structural Element

The instance element contains the value associated with a form fieldís multiple instances. Fields encoded
as an instance should also include the values of each instance as a hidden field. The hidden field should be
appended with the index number for the instance. Thus if the field is "firstName" each instance would be
named "firstName_1", "firstName_2", "firstName_3", etc...

Parent

field

Children

value

Attributes

None listed yet.

Example needed.

item

Rich Text Container

Structural Element

The item element is a rich text container used to display textual data in a list. As a rich text container it can
contain hyperlinks, emphasized blocks of text, images and form fields in addition to plain text.

The item element can be associated with a label that directly precedes it. The Schema requires that if one item
in a list has an associated label, then all other items must have one as well. This mitigates the problem of loose
connections between elements that is commonly encountered in XHTML, since every item in particular list
has the same structure.

Parent

list

Children

hi

(any)

xref

(any)

figure

(any)

field

DRI Schema Reference

247

(any)

list

(any)

Attributes

• id: optional A unique identifier of the element

• n: optional A non-unique local identifier used to differentiate the element from its siblings

• rend: optional A rendering hint used to override the default display of the element.

<list n="list-example"
 id="XMLExample.list.list-example">
 <head> Example List </head>
 <item> This is the first item
 </item> <item> This is the second item with <hi ...>highlighted text</hi>,
 <xref ...> a link</xref> and an <figure
 ...>image</figure>.</item>
 ...
 <list n="list-example2"
 id="XMLExample.list.list-example2">
 <head> Example List </head>
 <label>ITEM ONE:</label>
 <item> This is the first item
 </item>
 <label>ITEM TWO:</label>
 <item> This is the second item with <hi ...>highlighted
 text</hi>, <xref ...> a link</xref> and an <figure
 ...>image</figure>.</item>
 <label>ITEM THREE:</label>
 <item> This is the third item with a <field ...> ... </field>
 </item>
 ...
 </list>
 <item> This is the third item in the list
 </item>
 ...
</list>

label

Text Container

Structural Element

The label element is associated with an item and annotates that item with a number, a textual description
of some sort, or a simple bullet.

Parent

item

Children

none

Attributes

• id: optional A unique identifier of the element

• n: optional A local identifier used to differentiate the element from its siblings

• rend: optional An optional rend attribute provides a hint on how the label should be rendered, independent
of its type.

DRI Schema Reference

248

<list n="list-example"
 id="XMLExample.list.list-example">
 <head>Example List</head>
 <label>1</label>
 <item> This is the first item </item>
 <label>2</label>
 <item> This is the second item with <hi ...>highlighted text</hi>,
 <xref ...> a link</xref> and an <figure
 ...>image</figure>.</item>
 ...
 <list n="list-example2"
 id="XMLExample.list.list-example2">
 <head>Example Sublist</head>
 <label>ITEM
 ONE:</label>
 <item> This is the first item </item>
 <label>ITEM
 TWO:</label>
 <item> This is the second item with <hi ...>highlighted
 text</hi>, <xref ...> a link</xref> and an <figure
 ...>image</figure>.</item>
 <label>ITEM
 THREE:</label>
 <item> This is the third item with a <field ...> ... </field>
 </item>
 ...
 </list>
 <item> This is the third item in the list </item>
 ...
</list>

list

Structural Element

The list element is used to display sets of sequential data. It contains an optional head element, as well as
any number of item and list elements. Items contain textual information, while sublists contain other item
or list elements. An item can also be associated with a label element that annotates an item with a number,
a textual description of some sort, or a simple bullet. The list type (ordered, bulleted, gloss, etc.) is then
determined either by the content of labels on items or by an explicit value of the type attribute. Note that if
labels are used in conjunction with any items in a list, all of the items in that list must have a label. It is also
recommended to avoid mixing label styles unless an explicit type is specified.

Parent

div

list

Children

head

(zero or one)

label

(any)

item

(any)

list

(any)

DRI Schema Reference

249

Attributes

• id: required A unique identifier of the element

• n: required A local identifier used to differentiate the element from its siblings

• rend: optional An optional rend attribute provides a hint on how the list should be rendered, independent
of its type. Common values are but not limited to:

• alphabet: The list should be rendered as an alphabetical index

• columns: The list should be rendered in equal length columns as determined by the theme.

• columns2: The list should be rendered in two equal columns.

• columns3: The list should be rendered in three equal columns.

• horizontal: The list should be rendered horizontally.

• numeric: The list should be rendered as a numeric index.

• vertical: The list should be rendered vertically.

• type: optional An optional attribute to explicitly specify the type of list. In the absence of this attribute,
the type of a list will be inferred from the presence and content of labels on its items. Accepted values are:

• form: Used for form lists that consist of a series of fields.

• bulleted: Used for lists with bullet-marked items.

• gloss: Used for lists consisting of a set of technical terms, each marked with a label element and ac-
companied by the definition marked as an item element.

• ordered: Used for lists with numbered or lettered items.

• progress: Used for lists consisting of a set of steps currently being performed to accomplish a task.
For this type to apply, each item in the list should represent a step and be accompanied by a label that
contains the displayable name for the step. The item contains an xref that references the step. Also
the rend attribute on the item element should be: ìavailableî (meaning the user may jump to the step
using the provided xref), ìunavailableî (the user has not meet the requirements to jump to the step), or
ìcurrentî (the user is currently on the step)

• simple: Used for lists with items not marked with numbers or bullets.

<div ...>
 ...
 <list n="list-example"
 id="XMLExample.list.list-example">
 <head>Example List</head>
 <item> ... </item>
 <item> ... </item>
 ...
 <list n="list-example2"
 id="XMLExample.list.list-example2">
 <head>Example Sublist</head>
 <label> ... </label>
 <item> ... </item>
 <label> ... </label>
 <item> ... </item>
 <label> ... </label>
 <item> ... </item>
 ...
 </list>
 <label> ... </label>
 <item> ... </item>

DRI Schema Reference

250

 ...
 </list>
</div>

META

Top-Level Container

The meta element is a top level element and exists directly inside the document element. It serves as a
container element for all metadata associated with a document broken up into categories according to the
type of metadata they carry.

Parent

document

Children

userMeta

(one)

pageMeta

(one)

repositoryMeta

(one)

Attributes

None

<document version=1.0>
 <meta>
 <userMeta> ... </userMeta>
 <pageMeta> ... </pageMeta>
 <repositoryMeta> ... </repositoryMeta>
 </meta>
 <body> ... </body>
 <options> ... </options>
</document>

metadata

Text Container

Structural Element

The metadata element carries generic metadata information in the form on an attribute-value pair. The type of
information it contains is determined by two attributes: element, which specifies the general type of metadata
stored, and an optional qualifier attribute that narrows the type down. The standard representation for this
pairing is element.qualifier. The actual metadata is contained in the text of the tag itself. Additionally, a
language attribute can be used to specify the language used for the metadata entry.

Parent

userMeta

pageMeta

Children

none

DRI Schema Reference

251

Attributes

• element: required The name of a metadata field.

• language: optional An optional attribute to specify the language used in the metadata tag.

• qualifier: optional An optional postfix to the field name used to further differentiate the names.

<meta>
 <userMeta>
 <metadata element="identifier" qualifier="firstName"> Bob
 </metadata> <metadata element="identifier" qualifier="lastName"> Jones
 </metadata> <metadata ...> ...
 </metadata>
 ...
 </userMeta>
 <pageMeta>
 <metadata element="rights"
 qualifier="accessRights">user</metadata> <metadata ...> ...
 </metadata>
 ...
 </pageMeta>
</meta>

OPTIONS

Top-Level Container

The options element is the main container for all actions and navigation options available to the user. It
consists of any number of list elements whose items contain navigation information and actions. While any
list of navigational options may be contained in this element, it is suggested that at least the following 5
lists be included.

Parent

document

Children

list

(any)

Attributes

None

<document version=1.0>

 <meta> Ö </meta>

 <body> Ö </body>

 <options>

 <list n="navigation-example1"
 id="XMLExample.list.navigation-example1">

 <head>Example Navigation List 1</head>

 <item><xref target="/link/to/option">Option
 One</xref></item>

 <item><xref target="/link/to/option">Option
 two</xref></item>

 ...

DRI Schema Reference

252

 </list>

 <list n="navigation-example2"
 id="XMLExample.list.navigation-example2">

 <head>Example Navigation List 2</head>

 <item><xref target="/link/to/option">Option
 One</xref></item>

 <item><xref target="/link/to/option">Option
 two</xref></item>

 ...

 </list>

 ...

 </options>

</document>

p

Rich Text Container

Structural Element

The p element is a rich text container used by divs to display textual data in a paragraph format. As a rich
text container it can contain hyperlinks, emphasized blocks of text, images and form fields in addition to
plain text.

Parent

div

Children

hi

(any)

xref

(any)

figure

(any)

field

(any)

Attributes

• id: optional A unique identifier of the element.

• n: optional A local identifier used to differentiate the element from its siblings.

• rend: optional A rendering hint used to override the default display of the element.

<div n="division-example"
 id="XMLExample.div.division-example">

 <p> This is a regular paragraph.
 </p> <p> This text is normal, while <hi rend="bold">this text is bold

DRI Schema Reference

253

 and this text is <hi rend="italic">bold and italic.</hi></hi>
 </p> <p> This paragraph contains a <xref
 target="/link/target">link</xref>, a static <figure
 source="/image.jpg">image</figure>, and a <figure target=
 "/link/target" source="/image.jpg">image link.</figure>
 </p>

</div>

pageMeta

Metadata Element

The pageMeta element contains metadata associated with the document itself. It contains generic metadata
elements to carry the content, and any number of trail elements to provide information on the userís current
location in the system. Required and suggested values for metadata elements contained in pageMeta include
but are not limited to:

• browser (suggested): The userís browsing agent as reported to server in the HTTP request.

• browser.type (suggested): The general browser family as derived form the browser metadata field. Possi-
ble values may include "MSIE" (for Microsoft Internet Explorer), "Opera" (for the Opera browser), "Ap-
ple" (for Apple web kit based browsers), "Gecko" (for Netscape, Mozilla, and Firefox based browsers),
or "Lynx" (for text based browsers).

• browser.version (suggested): The browser version as reported by HTTP Request.

• contextPath (required): The base URL of the Digital Repository system.

• redirect.time (suggested): The time that must elapse before the page is redirected to an address specified
by the redirect.url metadata element.

• redirect.url (suggested): The URL destination of a redirect page

• title (required): The title of the document/page that the user currently browsing.
See the metadata and trail tag entries for more information on their structure.

ParentmetaChildrenmetadata (any)trail
(any)AttributesNone

<meta>

 <userMeta> ... </userMeta>

 <pageMeta>

 <metadata element="title">Examlpe DRI
 page</metadata>

 <metadata
 element="contextPath">/xmlui/</metadata>

 <metadata ...> ... </metadata>

 ...

 <trail source="123456789/6"> A bread crumb item
 </trail>

 <trail ...> ... </trail>

 ...

 </pageMeta>

</meta>

DRI Schema Reference

254

params

Structural Component

The params element identifies extra parameters used to build a form field. There are several attributes that
may be available for this element depending on the field type.

Parent

field

Children

none

Attributes

• cols: optional The default number of columns that the text area should span. This applies only to textarea
field types.

• maxlength: optional The maximum length that the theme should accept for form input. This applies to
text and password field types.

• multiple: optional yes/no value. Determine if the field can accept multiple values for the field. This applies
only to select lists.

• operations: optional The possible operations that may be preformed on this field. The possible values are
"add" and/or "delete". If both operations are possible then they should be provided as a space separated
list. The "add" operations indicates that there may be multiple values for this field and the user may add
to the set one at a time. The front-end should render a button that enables the user to add more fields
to the set. The button must be named the field name appended with the string "_add", thus if the fieldís
name is "firstName" the button must be called "firstName_add". The "delete" operation indicates that
there may be multiple values for this field each of which may be removed from the set. The front-end
should render a checkbox by each field value, except for the first, The checkbox must be named the field
name appended with the string "_selected", thus if the fieldís name is "firstName" the checkbox must be
called "firstName_selected" and the value of each successive checkbox should be the field name. The
front-end must also render a delete button. The delete button name must be the fieldís name appended
with the string "_delete".

• rows: optional The default number of rows that the text area should span. This applies only to textarea
field types.

• size: optional The default size for a field. This applies to text, password, and select field types.

<p>

 <field id="XMLExample.field.name" n="name" type="text"
 required="yes">

 <params size="16"
 maxlength="32"/>

 <help>Some help text with <i18n>localized
 content</i18n>.</help>

 <default>Default value goes here</default>

 </field>

</p>

reference

Metadata Reference Element

DRI Schema Reference

255

reference is a reference element used to access information stored in an extarnal metadata file. The url
attribute is used to locate the external metadata file. The type attribute provides a short limited description
of the referenced object's type.

reference elements can be both contained by includeSet elements and contain includeSets themselves, mak-
ing the structure recursive.

Parent

referenceSet

Children

referenceSet

(zero or more)

Attributes

• url: required A url to the external metadata file.

• repositoryIdentifier: required A reference to the repositoryIdentifier of the repository.

• type: optional Description of the reference object's type.

<includeSet n="browse-list"
 id="XMLTest.includeSet.browse-list">
 <reference url="/metadata/handle/123/4/mets.xml"
 repositoryID="123" type="DSpace
 Item"/> <reference url="/metadata/handle/123/5/mets.xml"
 repositoryID="123" />
 ...
 </includeSet>

referenceSet

Metadata Reference Element

The referenceSet element is a container of artifact or repository references.

Parent

div

reference

Children

head

(zero or one)

reference

(any)

Attributes

• id: required A unique identifier of the element

• n: required Local identifier used to differentiate the element from its siblings

• orderBy: optional A reference to the metadata field that determines the ordering of artifacts or reposi-
tory objects within the set. When the Dublin Core metadata scheme is used this attribute should be the
element.qualifier value that the set is sorted by. As an example, for a browse by title list, the value should
be sortedBy=title, while for browse by date list it should be sortedBy=date.created

DRI Schema Reference

256

• rend: optional A rendering hint used to override the default display of the element.

• type: required Determines the level of detail for the given metadata. Accepted values are:

• summaryList: Indicates that the metadata from referenced artifacts or repository objects should be
used to build a list representation that is suitable for quick scanning.

• summaryView: Indicates that the metadata from referenced artifacts or repository objects should be
used to build a partial view of the referenced object or objects.

• detailList: Indicates that the metadata from referenced artifacts or repository objects should be used to
build a list representation that provides a complete, or near complete, view of the referenced objects.
Whether such a view is possible or different from summaryView depends largely on the repository at
hand and the implementing theme.

• detailView: Indicates that the metadata from referenced artifacts or repository objects should be used
to display complete information about the referenced object. Rendering of several references included
under this type is up to the theme.

<div ...>
 <head> Example Division </head>
 <p> ... </p>
 <table> ... </table>
 <list>
 ...
 </list>
 <referenceSet n="browse-list"
 id="XMLTest.referenceSet.browse-list" type="summaryView"
 informationModel="DSpace">
 <head>A header for the includeset</head>
 <reference
 url="/metadata/handle/123/34/mets.xml"/>
 <reference
 url=""metadata/handle/123/34/mets.xml/>
 </referenceSet>
 ...
 </p>

repository

Metadata Element

The repository element is used to describe the repository. Its principal component is a set of structural meta-
data that carrier information on how the repositoryís objects under objectMeta are related to each other. The
principal method of encoding these relationships at the time of this writing is a METS document, although
other formats, like RDF, may be employed in the future.

Parent

repositoryMeta

Children

none

Attributes

• repositoryID: required A unique identifier assigned to a repository. It is referenced by the object element
to signify the repository that assigned its identifier.

• url: required A url to the external METS metadata file for the repository.

<repositoryMeta>

DRI Schema Reference

257

 <repository repositoryID="123456789"
 url="/metadata/handle/1234/4/mets.xml" />

</repositoryMeta>

repositoryMeta

Metadata Element

The repositoryMeta element contains metadata refernces about the repositories used in the used or referenced
in the document. It can contain any number of repository elements.

See the repository tag entry for more information on the structure of repository elements.

Parent

Meta

Children

repository

(any)

Attributes

None

<meta>

 <userMeta> ... </usermeta>

 <pageMeta> ... </pageMeta>

 <repositoryMeta>

 <repository repositoryIID="..." url="..."
 />

 </repositoryMeta>

</meta>

row

Structural Element

The row element is contained inside a table and serves as a container of cell elements. A required role
attribute determines how the row and its cells are rendered.

Parent

table

Children

cell

(any)

Attributes

• id: optional A unique identifier of the element

• n: optional A local identifier used to differentiate the element from its siblings

• rend: optional A rendering hint used to override the default display of the element.

DRI Schema Reference

258

• role: required Indicates what kind of information the row carries. Possible values include "header" and
"data".

<table n="table-example" id="XMLExample.table.table-example" rows="2"
 cols="3">

 <row
 role="head">

 <cell cols="2">Data Label One and
 Two</cell>

 <cell>Data Label Three</cell>

 ...

 </row> <row>

 <cell> Value One </cell>

 <cell> Value Two </cell>

 <cell> Value Three </cell>

 ...

 </row>

 ...

</table>

table

Structural Element

The table element is a container for information presented in tabular format. It consists of a set of row
elements and an optional header.

Parent

div

Children

head

(zero or one)

row

(any)

Attributes

• cols: required The number of columns in the table.

• id: required A unique identifier of the element

• n: required A local identifier used to differentiate the element from its siblings

• rend: optional A rendering hint used to override the default display of the element.

• rows: required The number of rows in the table.

<div n="division-example"
 id="XMLExample.div.division-example">

DRI Schema Reference

259

 <table n="table1" id="XMLExample.table.table1" rows="2"
 cols="3">

 <row role="head">

 <cell cols="2">Data Label One and
 Two</cell>

 <cell>Data Label Three</cell>

 ...

 </row>

 <row>

 <cell> Value One </cell>

 <cell> Value Two </cell>

 <cell> Value Three </cell>

 ...

 </row>

 ...

 </table>
 ...
</div>

trail

Text Container

Metadata Element

The trail element carries information about the userís current location in the system relative of the
repositoryís root page. Each instance of the element serves as one link in the path from the root to the current
page.

Parent

pageMeta

Children

none

Attributes

• rend: optional A rendering hint used to override the default display of the element.

• target: optional An optional attribute to specify a target URL for a trail element serving as a hyperlink.
The text inside the element will be used as the text of the link.

<pageMeta>

 <metadata element="title">Examlpe DRI
 page</metadata>

 <metadata
 element="contextPath">/xmlui/</metadata>

 <metadata ...> ... </metadata>

DRI Schema Reference

260

 ...

 <trail target="/myDSpace"> A bread crumb item pointing to a
 page. </trail> <trail ...> ... </trail>

 ...

</pageMeta>

userMeta

Metadata Element

The userMeta element contains metadata associated with the user that requested the document. It contains
generic metadata elements, which in turn carry the information. Required and suggested values for metadata
elements contained in userMeta include but not limited to:

• identifier (suggested): A unique identifier associated with the user.

• identifier.email (suggested): The requesting userís email address.

• identifier.firstName (suggested): The requesting userís first name.

• identifier.lastName (suggested): The requesting userís last name.

• identifier.logoutURL (suggested): The URL that a user will be taken to when logging out.

• identifier.url (suggested): A url reference to the userís page within the repository.

• language.RFC3066 (suggested): The requesting userís preferred language selection code as describe by
RFC3066

• rights.accessRights (required): Determines the scope of actions that a user can perform in the system.
Accepted values are:

• none: The user is either not authenticated or does not have a valid account on the system

• user: The user is authenticated and has a valid account on the system

• admin: The user is authenticated and belongs to the systemís administrative group
See the metadata tag entry for more information on the structure of metadata elements.

ParentmetaChildrenmetadata (any)Attributes

• authenticated: required Accepted values are "yes", "no". Determines whether the user has been authen-
ticated by the system.

<meta>

 <userMeta>

 <metadata element="identifier" qualifier="email">

 bobJones@tamu.edu

 </metadata>

 <metadata element="identifier" qualifier="firstName"> Bob
 </metadata>

 <metadata element="identifier" qualifier="lastName"> Jones
 </metadata>

 <metadata element="rights"

DRI Schema Reference

261

 qualifier="accessRights">user</metadata>

 <metadata ...> ... </metadata>

 ...

 <trail source="123456789/6"> A bread crumb item
 </trail>

 <trail ...> ... </trail>

 ...

 </userMeta>

 <pageMeta> ... </pageMeta>

</meta>

value

Rich Text Container

Structural Element

The value element contains the value associated with a form field and can serve a different purpose for
various field types. The value element is comprised of two subelements: the raw element which stores the
unprocessed value directly from the user of other source, and the interpreted element which stores the value
in a format appropriate for display to the user, possibly including rich text markup.

Parent

field

Children

hi

(any)

xref

(any)

figure

(any)

Attributes

• optionSelected: optional An optional attribute for select, checkbox, and radio fields to determine if the
value is to be selected or not.

• optionValue: optional An optional attribute for select, checkbox, and radio fields to determine the value
that should be returned when this value is selected.

• type: required A required attribute to specify the type of value. Accepted types are:

• raw: The raw type stores the unprocessed value directly from the user of other source.

• interpreted: The interpreted type stores the value in a format appropriate for display to the user, pos-
sibly including rich text markup.

• default: The default type stores a value supplied by the system, used when no other values are provided.

<p>

History

262

 <hi> ... </hi>
 <xref> ... </xref>
 <figure> ... </figure>
 <field id="XMLExample.field.name" n="name" type="text"
 required="yes">
 <params size="16" maxlength="32"/>
 <help>Some help text with <i18n>localized
 content</i18n>.</help>
 <value type="default">Author,
 John</value>
 </field>
</p>

xref

Text Container

Structural Element

The xref element is a reference to an external document. It can be mixed freely with text, and any text within
the tag itself will be used as part of the linkís visual body.

Parent

cell

p

item

hi

Children

none

Attributes

• target: required A target for the reference, using either a URL or an id of an existing element as a des-
tination for the xref.

<p>

 <xref target="/url/link/target">This text is shown as a
 link.</xref>

</p>

13.3. History

13.3.1. Changes in DSpace 1.6.0

New Features

• DS-161 - Bulk Metadata Editing (Batch Metadata Editing)

• DS-194 - Give METS ingester configuration option to make use of collection templates

• DS-195 - Allow the primary bitstream to be set in the item importer / exporter

• DS-204 - New -zip option for item exporter and importer

History

263

• DS-205 - Creative Commons - option to set legal jurisdiction

• DS-228 - Community Admin XMLUI: Delegated Admins Patch

• DS-288 - Hide metadata from full item view

• DS-317 - Embargo feature

• DS-323 - ItemUpdate - new feature to batch update metadata and bitstreams

• DS-324 - Add support for OpenSearch syndicated search conventions

• DS-330 - Create new session on login / invalidate sessions on logout

• DS-359 - Add alternate file appender for log4j

• DS-377 - Add META tags identifying DSpace source version to Web UIs

• DS-388 - Item importer - new option to enable workflow notification emails

General Improvments

• DS-196 - METS exposed via OAI-PMH includes descritpion.provenance information

• DS-201- handle.jar 6.2 needs adding to DSpace Maven repository

• DS-213 - IPAuthentication extended to allow negative matching

• DS-219 - Internal Server error - include login details of user

• DS-221 - XMLUI 'current activity' recognises Google Chrome as Safari

• DS-234 - Configurable passing of Javamail parameter settings

• DS-238 - Move item function in xmlui

• DS-252 - Interpolate variables in the Subject: line of email templates as well

• DS-261 - Community Admin JSPUI: porting of the DS-228 patch

• DS-270 - Make delegate admin permissions configurable

• DS-271 - Make the OAI DC crosswalk configurable

• DS-291 - README update for top level of dspace 1.6.0 package directory

• DS-297 - Refactor SQL source and Ant script to avoid copying Oracle versions over PostgreSQL

• DS-299 - Allow long values to be specified for the max upload request (for uploading files greater than
2Gb)

• DS-306 - Option to disable mailserver

• DS-307 - Offer access in AbstractSearch to QueryResults for subclasses

• DS-315 - Enhance readability of embedded metadata in html head

• DS-316 - Make SWORD app:accepts configurable

• DS-319 - Replace /dspace/bin/dsrun org.dspace.browse.ItemCounter with /dspace/bin/itemcounter

• DS-333 - Adjust SWORD ingest crosswalk to store bibliographic citation

History

264

• DS-356 - Antispam for suggest item feature

• DS-372 - New verbose option for [dspace]/bin/dspace cleanup script

• DS-382 - Add 'dc.creator' to Author browse index by default

• DS-386 - Allow user to specify which <dmdSec> is used by the METS Ingester when importing METS
from Packager script

• DS-389 - Misleading label: "Submit to This Collection" is corrected

• DS-52 - Factor out common webapp installation - ID: 2042160

Bug fixes

• DS-44 - Monthly statistics skip first and last of month - ID: 2541435

• DS-114 - Links not working due to trailing white space in dspace.url

• DS-118 - File preview link during submission leeds to page not found

• DS-128 - Anchor in submission doesn't work

• DS-156 - File description not available in XMLUI

• DS-191 - metadataschemaregistry_seq is not initialized correctly under Oracle

• DS-193 - OAI RDF crosswalk fails when DC value is null

• DS-197 - Deleting a primary bitstream does not clear the primary_bitstream_id on the bundle table

• DS-198 - File descriptions can not be removed/cleared in XMLUI

• DS-199 - SWORD module doesn't accept X-No-Op header (dry run)

• DS-200 - SWORD module requires the X-Packaging header

• DS-206 - Input form visibility restriction doesn't work properly

• DS-209 - Context.java turnOffAuthorisationSystem() can throw a NPE

• DS-212 - NPE thrown during Harvest of non-items when visibility restriction is enabled

• DS-216 - Migrating items that use additional metadata schemas causes an NPE

• DS-218 - Cannot add/remove email subscriptions from Profile page in XMLUI

• DS-222 - Email alerts due to internal errors are not sent, if context is missing

• DS-223 - Submission process show previous button in JSPUI also if the step is the first "visible" step

• DS-225 - dc.description.provenance - public display

• DS-226 - confirmation page of edit profile has an invalid link

• DS-227 - Values with double apos doesn't work in dropdown and list input type

• DS-231 - Missig file for index-init

• DS-232 - DCPersonName parses name incorrectly (fix included)

• DS-240 - Item validityKey not complete

History

265

• DS-242 - Special groups shown for logged in user rather than for user being examined

• DS-246 - Fix configurable browse parameter encoding (XMLUI)

• DS-248 - Missing admin column in community table in database-schema.sql - community admin patch

• DS-249 - sub-daily utility script does not pass arguments to Java (fix included)

• DS-250 - Invalid identifers are not escaped

• DS-254 - Bitstream (and item-export) download service does not correctly sense authenticated user

• DS-255 - CompleteStep in submission LOSES SUBMISSION if an exception is thrown

• DS-256 - Item Export ignores metadata language qualifier

• DS-258 - Item View Thumbnails not displaying in XMLUI

• DS-260 - Template item some times has owningCollection filled and some times not

• DS-262 - Bug in DS-118, new patch included

• DS-265 - IndexBrowse dies fatally when confronting badly-formatted date

• DS-269 - Oracle JDBC connection string wrong in dspace.cfg - ID: 2722093

• DS-274 - Typo in XSL breaks rendering of dri:xref with class

• DS-275 - License files not listed on Item Summary page; XSL bug with patch

• DS-276 - Patch to fix spelling error in Exception page

• DS-280 - build.xml fails for ant versions below 1.7 (patch included)

• DS-281 - Invalid Link to "Go to DSpace Home" on Page Not Found

• DS-285 - Item and Bitstream pages do not provide Last-Modified HTTP header, nor recognize If-Mod-
ified-Since

• DS-290 - [dspace]/exports is not created during fresh install

• DS-303 - Export migrate option incorrectly removes non-handle identifier.uris

• DS-309 - Shiboleth default roles are applied also to anonymous user and user logged-in with other meth-
ods

• DS-310 - UTF-8 encoding in community and collection text

• DS-318 - JSPUI: Left over text in edit item about format

• DS-320 - java.util.NoSuchElementException: Timeout waiting for idle object

• DS-327 - SWORD temp upload directory missing trailing slash

• DS-328 - SWORD service documents do not include atom:generator element

• DS-337 - A bug related with adding new -EPersons

• DS-338 - Bitstream download allows caching of content that requires authorization to read

• DS-344 - Apostrophe in email address prevents EPerson from being selected

• DS-349 - Edit Item in admin UI does not allow setting Bitstream to an Internal BitstreamFormat

History

266

• DS-353 - Missing commits in XMLUI server-side javascript code.

• DS-354 - Make-handle-server configuration fails. New command created using dspace launcher.

• DS-370 - E Mail Sent On Item Export Error Message

• DS-373 - "Letter" links have broken URLs in 2nd-stage Browse

• DS-378 - XMLUI Submission Interface messes up in IE7 after an empty <hint> in input_forms.xml

• DS-379 - open-search in jspui won't return description.xml

• DS-381 - community and collection homepage

• DS-385 - Packager script is unable to import the same METS + DIM package that was exported

• DS-392 - Error messages in the submission do not disappear if e.g. one of the two errors are solved

• DS-393 - The issue date in the submission lowers each time the describe page is being displayed

13.3.2. Changes in DSpace 1.5.2

General Improvements

• The History System has been removed since DSpace 1.5. The [dspace]/history directory and it's contents
can be completely removed if you so choose as it is non functional.

Bug fixes and smaller patches

• TBD

13.3.3. Changes in DSpace 1.5.1

General Improvements

• TBD

Bug fixes and smaller patches

• TBD

13.3.4. Changes in DSpace 1.5

General Improvements

• Highly configurable and theme-able new user interface (Manakin).

• Apache Maven-based modular build system.

• LNI (Lightweight Network Interface) service. Allows programmatic ingest of content via WebDAV or
SOAP.

• SWORD (Simple Web-service Offering Repository Deposit): repository-standard ingest service using
Atom Publishing Protocol.

History

267

• Highly configurable item web submission system. All submission steps are configurable not just metadata
pages.

• Browse functionality allowing customisation of the available indexes via dspace.cfg and pluggable nor-
malisation of the sort strings. Integration with both JSP-UI and XML-UI included.

• Extensible content event notification service.

• Generation of Google and HTML sitemaps

Bug fixes and smaller patches

• New options for ItemImporter to support bitstream permissions and descriptions.

• 1824710 Fix - Change in Creative Commons RDF.

• 1794700 Fix - Stat-monthly and stat-report-monthly

• 1566820 Patch - Authentication code moved to new org.dspace.authenticate package, add IP AUth

• 1670093 Patch - More stable metadata and schema registry import Option to generate community and
collection "strength" as a batch job

• 1659868 Patch - Improved database level debugging

• 1620700 Patch - Add Community and Sub-Community to OAI Sets

• 1679972 Fix - OAIDCCrosswalk NPE and invalid character fix, also invalid output prevented

• 1549290 Fix - Suggest Features uses hard coded strings

• 1727034 Fix - Method MetadataField.unique() is incorrect for null values

• 1614546 Fix - Get rid of unused mets_bitstream_id column

• 1450491 Patch - i18n configurable multilingualism support

• 1764069 Patch - Replace "String" with "Integer" in PreparedStatement where needed

• 1743188 Patch - for Request #1145499 - Move Items

• 179196 Patch - Oracle SQL in Bitstream Checker

• 1751638 Patch - Set http disposition header to force download of large bitstreams

• 1799575 Patch - New EPersonConsumer event consumer

• 1566572 Patch - Item metadata in XHTML head elements

• 1589429 Patch - "Self-Named" Media Filters (i.e. MediaFilter Plugins) (updated version of this patch)

• 1888652 Patch - Statistics Rewritten In Java

• 1444364 Request - Metadata registry exporter

• 1221957 Request - Admin browser for withdrawn items

• 1740454 Fix - Concurrency

• 1552760 Fix - Submit interface looks bad in Safari

• 1642563 Patch - bin/update-handle-prefix rewritten in Java

History

268

• 1724330 Fix - Removes "null" being displayed in community-home.jsp

• 1763535 Patch - Alert DSpace administrator of new user registration

• 1759438 Patch - Multilingualism Language Switch - DSpace Header

13.3.5. Changes in DSpace 1.4.1

General Improvements

• Error pages now return appropriate HTTP status codes (e.g. 404 not found)

• Bad filenames in /bitstream/ URLs now result in 404 error – prevents infinite URL spaces confusing
crawlers and bad "persistent" bitstream IDs circulating

• Prevent infinite URL spaces in HTMLServlet

• InstallItem no longer sets dc.format.extent, dc.format.mimetype; no longer sets default value for
dc.language.iso if one is not present

• Empty values in drop-down submit fields are not added as empty metadata values

• API methods for searching epeople and groups

• Support stats from both 1.3 and 1.4

• [dspace]/bin/update-handle-prefix now runs index-all

• Remove cases of System.out from code executed in webapp

• Change "View Licence" to "View License" in Messages.properties

• dspace.cfg comments changed to indicate what default.language actually means

• HandleServlet and BitstreamServlet support If-Modified-Since requests

• Improved sanity-checking of XSL-based ingest crosswalks

• Remove thumbnail filename from alt-text

• Include item title in HTML title element

• Improvements to help prevent spammers and sploggers

• Make cleanup() commit outstanding work every 100 iterations

• Better handling where email send failed due to wrong address for new user

• Include robots.txt to limit bots navigating author, date and browse by subject pages

• Add css styles for print media

• RSS made more configurable and provide system-wide RSS feed, also moves text to Messages.properties

• Jar file updates (includes required code changes for DSIndexer and DSQuery and new jars fontbox.jar
and serializer.jar)

• Various documentation additions and cleanups

• XHTML compliance improvements

History

269

• Move w3c valid xhtml boiler image into local repository

• Remove uncessary Log4j Configuration in CheckerCommand

• Include Windows CLASSPATH in dsrun.bat

Bug fixes

• 1604037 - UIUtil.encodeBitstream() now correctly encodes URLs (no longer incorrectly substitutes '+'
for spaces in non-query segment

• 1592984 - Date comparisons strip time in org.dspace.harvest.Harvest

• 1589902 - Duplicate [field] checking error [on input-forms.xml]

• 1596952 - Collection Wizard create Template missing schema

• 1596978 - View unfinished submissions - collection empty

• 1588625 - Incorrect text on item mapper screen

• 1597805 - DIDL Crosswalk: wrong resource management

• 1605635 - NPE in Utils.java

• 1597504 - Search result page shows shortened query string

• 1532389 - Item Templates do not work for non-dc fields

• 1066771 - Metadata edit form dropping DC qualifier

• 1548738 - Multiple Metadata Schema, schema not shown on edit item page

• 1589895 - Not possible to add unqualified Metadata Field

• 1543853 - Statistics do not work in 1.4

• 1541381 - Browse-by-date and browse-by-title not working

• 1556947 - NullPointerException when no user selected to del/edit

• 1554064 - Fix exception handling for ClassCastException in BitstreamServlet

• 1548865 - Browse errors on withdrawn item

• 1554056 - Community/collection handle URL with / redirects to homepage

• 1571490 - UTF-8 encoded characters in licence

• 1571519 - UTF-8 in statistics

• 1544807 - Browse-by-Subject/Author paging mechanism broken

• 1543966 - "Special" groups inside groups bug

• 1480496 - Cannot turn off "ignore authorization" flag!

• 1515148 - Community policies not deleting correctly

• 1556829 - Docs mention old SiteAuthenticator class

• 1606435 - Workflow text out of context

History

270

• Fix for bitstream authorization timeout

• Fix to make sure cleanup() doesn't fail with NullPointerException

• Fix for removeBitstream() failing to update primary bitstream

• Fix for Advanced Search ignoring conjunctions for arbitrary number of queries

• Fix minor bug in Harvest.java for Oracle users

• Fix missing title for news editor page

• Small Messages.properties modification (change of DSpace copyright text)

• fix PDFBox tmp file issue

• Fix HttpServletRequest encoding issues

• Fix bug in TableRow toString() method where NPE is thrown if tablename not set

• Update DIDL license and change coding style to DSpace standard

13.3.6. Changes in DSpace 1.4

General Improvements

• Content verification through periodic checksum checking

• Support for branded preview image

• Add/replace Creative Commons in 'edit item' tool

• Customisable item listing columns and browse indices

• Script for updating handle prefixes (e.g. for moving from development to production)

• Configurable boolean search operator

• Controlled vocabulary patch to provide search on classification terms, and addition of terms during sub-
mission.

• Add 'visibility' element to input-forms.xml

• Browse by subject feature

• Log4J enhancement to use XML configuration

• QueryArgs class can support any number of fields in advanced search.

• Community names no longer have to be unique

• Enhanced Windows support

• Support for multiple (flat) metadata schemas

• Suggest an item page

• RSS Feeds

• Performance enhancements

History

271

• Stackable authentication methods

• Plug-in manager

• Pluggable SIP/DIP support and metadata crosswalks

• Nested groups of e-people

• Expose METS and MPEG-21 DIDL DIPs via OAI-PMH

• Configurable Lucene search analyzer (e.g. for Chinese metadata)

• Support for SMTP servers requiring authentication

Bug fixes

• 1358197 - Edit Item, empty DC fields not removable

• 1363633 - Submission step 1 fails when there are no collections

• 1255264 - Resource policy eperson value was set to wrong column

• 1380494 - Error deleting an item with multiple metadata schema support

• 1443649 - Cannot configure unqualified elements for advanced search index

• 1333687 - Browse-(title|date) fails on withdrawn item

• 1066713 - Two (sub)communities cannot have one name

• 1284055 - Two Communities of same name throws error

• 1035366 - Bitstream size column should be bigint

• 1352257 - Selecting a Group for GroupToGroup while Creating Collection

• 1352226 - Navigation and Sorting in Group List (Select Groups) fails

• 1348276 - Null in collection name causes OAI ListSets to fail

• 1160898 - dspace_migrate removes Date.Issued from prev published items

• 1261191 - Malformed METS metadata exported

13.3.7. Changes in DSpace 1.3.2

General Improvements

• DSpace UI XHTML/WAI compliant

• Configure metadata fields shown on simple item display

• Supervisor/workspace help documentation

Bug fixes

• Oracle compatibility fixes

• Item exporter now correctly exports metadata in UTF-8

History

272

• fixed to handle 'null' values passed in

13.3.8. Changes in DSpace 1.3.1

Bug fixes

• 1252153 - Error on fresh install

13.3.9. Changes in DSpace 1.3

General Improvements

• Initial i18n Support for JSPs - Note: the implementation of this feature required changes to almost all
JSP pages

• LDAP authentication support

• Log file analysis and report generation

• Configurable item licence viewing

• Supervision order/collaborative workspace administrative tools

• Basic workspace for submissions in progress, with support for supervision

• SRB storage system option

• Updated handle server system

• Database optimisations

• Latest versions of Xerces, Xalan and OAICAT jars

• Various documentation additions and cleanups

Bug fixes

• 1161459 - ItemExporter fails with Too many open files

• 1167373 - Email date field not populated

• 1193948 - New item submit problem

• 1188132 - NullPointerException when Adding EPerson

• 1188016 - Cannot Edit an Eperson

• 1219701 - Unable to open unfinished submission

• 1206836 - community strengths not reflecting sub-community

• 1238262 - Submit UI nav/progress buttons no longer show progress

• 1238276 - Double quote problem in some fields in submit UI

• 1238277 - format support level not shown in "uploaded file" page

• 1242548 - Uploading non-existing files

History

273

• 1244743 - Bad lookup key for special case of DC Title in ItemTag.java

• 1245223 - Subscription Emailer fails

• 1247508 - Error when browsing item with no content/bitstream collections

• Set the content type in the HTTP header

• Fix issue where EPerson edit would not work due to form indexing (partial fix)

• POST handling in HTMLServlet

• Missing ContentType directives added to some JSPs

• Name dependency on Collection Admin and Submitter groups fixed

• Fixed OAI-PMH XML encoding

13.3.10. Changes in DSpace 1.2.2

General Improvements

• Customisable submission forms added

• Configurable number of index terms in Lucene for full-text indexing

• Improved scalability in media filter

• Submit button on collection pages only appears if user has authorisation

• PostgreSQL 8.0 compatibility

• Search scope retention to improve browsing

• Community and collection strengths displayed

• Upgraded OAICat software

Bug fixes

• Fix for Oracle too many cursors problem.

• Fix for UTF-8 encoded searches in advanced search.

• Fix for handling "\" in bitstream names.

• Fix to prevent delete of "unknown" bitstream format

• Fix for ItemImport creating new handles for replaced items

Changes in JSPs

• collection-home.jspchanged

• community-home.jspchanged

• community-list.jspchanged

• home.jspchanged

History

274

• dspace-admin/list-formats.jspchanged

• dspace-admin/wizard-questions.jspchanged

• search/results.jspchanged

• submit/cancel.jspchanged

• submit/change-file-description.jspchanged

• submit/choose-file.jspchanged

• submit/complete.jspchanged

• submit/creative-commons.jspchanged

• submit/edit-metadata.jspnew

• submit/get-file-format.jspchanged

• submit/initial-questions.jspchanged

• submit/progressbar.jspchanged

• submit/review.jspchanged

• submit/select-collection.jspchanged

• submit/show-license.jspchanged

• submit/show-uploaded-file.jspchanged

• submit/upload-error.jspchanged

• submit/upload-file-list.jspchanged

13.3.11. Changes in DSpace 1.2.1

General Improvements

• Oracle support added

• Thumbnails in item view can now be switched off/on

• Browse and search thumbnail options

• Improved item importer

• can now import to multiple collections

• added --test flag to simulate an import, without actually making any changes

• added --resume flag to try to resume the import in case the import is aborted

• Configurable fields for the search index

• Script for transferring items between DSpace instances

• Sun library JARs (JavaMail, Java Activation Framework and Servlet) now included in DSpace source
code bundle

History

275

Bug fixes

• A logo to existing collection can now be added. Fixes SF bug #1065933

• The community logo can now be edited. Fixes SF bug #1035692

• MediaFilterManager doesn't 'touch' every item every time. Fixes SF bug #1015296

• Supported formats help page, set the format support level to "known" as default

• Fixed various database connection pool leaks

Changed JSPs

• collection-homechanged

• community-homechanged

• display-itemchanged

• dspace-admin/confirm-delete-collectionmoved to tools/ and changed

• dspace-admin/confirm-delete-communitymoved to tools/ and changed

• dspace-admin/edit-collectionmoved to tools/ and changed

• dspace-admin/edit-communitymoved to tools/ and changed

• dspace-admin/indexchanged

• dspace-admin/upload-logochanged

• dspace-admin/wizard-basicinfochanged

• dspace-admin/wizard-default-itemchanged

• dspace-admin/wizard-permissionschanged

• dspace-admin/wizard-questionschanged

• help/formats.htmlremoved

• help/formatschanged

• indexchanged

• layout/navbar-adminchanged

13.3.12. Changes in DSpace 1.2

General Improvments

• Communities can now contain sub-communities

• Items may be included in more than one collection

• Full text extraction and searching for MS Word, PDF, HTML, text documents

• Thumbnails displayed in item view for items that contain images

History

276

• Configurable MediaFilter tool creates both extracted text and thumbnails

• Bitstream IDs are now persistent - generated from item's handle and a sequence number

• Creative Commons licenses can optionally be added to items during web submission process

Administration

• If you are logged in as administrator, you see admin buttons on item, collection, and community pages

• New collection administration wizard

• Can now administer collection's submitters from collection admin tool

• Delegated administration - new 'collection editor' role - edits item metadata, manages submitters list, edits
collection metadata, links to items from other collections, and can withdraw items

• Admin UI moved from /admin to /dspace-admin to avoid conflict with Tomcat /admin JSPs

• New EPerson selector popup makes Group editing much easier

• 'News' section is now editable using admin UI (no more mucking with JSPs)

Import/Export/OAI

• New tool that exports DSpace content in AIPs that use METS XML for metadata (incomplete)

• OAI - sets are now collections, identified by Handles ('safe' with /, : converted to _)

• OAI - contributor.author now mapped to oai_dc:creator

Miscellaneous

• Build process streamlined with use of WAR files, symbolic links no longer used, friendlier to later versions
of Tomcat

• MIT-specific aspects of UI removed to avoid confusion

• Item metadata now rendered to avoid interpreting as HTML (displays as entered)

• Forms now have no-cache directive to avoid trouble with browser 'back' button

• Bundles now have 'names' for more structure in item's content

JSP file changes between 1.1 and 1.2

This list generated with cvs -Q rdiff -s -r dspace-1_1 dspace and a sprinkling of perl.

• Changed: dspace/jsp/collection-home.jsp

• Changed: dspace/jsp/community-home.jsp

• Changed: dspace/jsp/community-list.jsp

• Changed: dspace/jsp/display-item.jsp

• Changed: dspace/jsp/index.jsp

• Changed: dspace/jsp/home.jsp

History

277

• Changed: dspace/jsp/styles.css.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/authorize-advanced.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/authorize-collection-edit.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/authorize-community-edit.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/authorize-item-edit.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/authorize-main.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/authorize-policy-edit.jsp

• Moved to dspace-admin: dspace/jsp/admin/collection-select.jsp

• Moved to dspace-admin: dspace/jsp/admin/community-select.jsp

• Moved to dspace-admin: dspace/jsp/admin/confirm-delete-collection.jsp

• Moved to dspace-admin: dspace/jsp/admin/confirm-delete-community.jsp

• Moved to dspace-admin: dspace/jsp/admin/confirm-delete-dctype.jsp

• Moved to dspace-admin: dspace/jsp/admin/confirm-delete-eperson.jsp

• Moved to dspace-admin: dspace/jsp/admin/confirm-delete-format.jsp

• Moved to dspace/jsp/tools: dspace/jsp/admin/confirm-delete-item.jsp

• Moved to dspace/jsp/tools: dspace/jsp/admin/confirm-withdraw-item.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/edit-collection.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/edit-community.jsp

• Moved to dspace/jsp/tools and changed: dspace/jsp/admin/edit-item-form.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/eperson-browse.jsp

• Moved to dspace-admin: dspace/jsp/admin/eperson-confirm-delete.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/eperson-edit.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/eperson-main.jsp

• Moved to dspace/jsp/tools and changed: dspace/jsp/admin/get-item-id.jsp

• Moved to dspace/jsp/tools and changed: dspace/jsp/admin/group-edit.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/group-eperson-select.jsp

• Moved to dspace/jsp/tools and changed: dspace/jsp/admin/group-list.jsp

• Moved to dspace-admin: dspace/jsp/admin/index.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/item-select.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/list-communities.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/list-dc-types.jsp

• Removed: dspace/jsp/admin/list-epeople.jsp

History

278

• Moved to dspace-admin and changed: dspace/jsp/admin/list-formats.jsp

• Moved to dspace/jsp/tools: dspace/jsp/admin/upload-bitstream.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/upload-logo.jsp

• Moved to dspace-admin: dspace/jsp/admin/workflow-abort-confirm.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/workflow-list.jsp

• Changed: dspace/jsp/browse/authors.jsp

• Changed: dspace/jsp/browse/items-by-author.jsp

• Changed: dspace/jsp/browse/items-by-date.jsp

• Changed: dspace/jsp/browse/no-results.jsp

• New: dspace-admin/eperson-deletion-error.jsp

• New: dspace/jsp/dspace-admin/news-edit.jsp

• New: dspace/jsp/dspace-admin/news-main.jsp

• New: dspace/jsp/dspace-admin/wizard-basicinfo.jsp

• New: dspace/jsp/dspace-admin/wizard-default-item.jsp

• New: dspace/jsp/dspace-admin/wizard-permissions.jsp

• New: dspace/jsp/dspace-admin/wizard-questions.jsp

• Changed: dspace/jsp/components/contact-info.jsp

• Changed: dspace/jsp/error/internal.jsp

• New: dspace/jsp/help/formats.jsp

• Changed: dspace/jsp/layout/footer-default.jsp

• Changed: dspace/jsp/layout/header-default.jsp

• Changed: dspace/jsp/layout/navbar-admin.jsp

• Changed: dspace/jsp/layout/navbar-default.jsp

• Changed: dspace/jsp/login/password.jsp

• Changed: dspace/jsp/mydspace/main.jsp

• Changed: dspace/jsp/mydspace/perform-task.jsp

• Changed: dspace/jsp/mydspace/preview-task.jsp

• Changed: dspace/jsp/mydspace/reject-reason.jsp

• Changed: dspace/jsp/mydspace/remove-item.jsp

• Changed: dspace/jsp/register/edit-profile.jsp

• Changed: dspace/jsp/register/inactive-account.jsp

• Changed: dspace/jsp/register/new-password.jsp

History

279

• Changed: dspace/jsp/register/registration-form.jsp

• Changed: dspace/jsp/search/advanced.jsp

• Changed: dspace/jsp/search/results.jsp

• Changed: dspace/jsp/submit/cancel.jsp

• New: dspace/jsp/submit/cc-license.jsp

• Changed: dspace/jsp/submit/choose-file.jsp

• New: dspace/jsp/submit/creative-commons.css

• New: dspace/jsp/submit/creative-commons.jsp

• Changed: dspace/jsp/submit/edit-metadata-1.jsp

• Changed: dspace/jsp/submit/edit-metadata-2.jsp

• Changed: dspace/jsp/submit/get-file-format.jsp

• Changed: dspace/jsp/submit/initial-questions.jsp

• Changed: dspace/jsp/submit/progressbar.jsp

• Changed: dspace/jsp/submit/review.jsp

• Changed: dspace/jsp/submit/select-collection.jsp

• Changed: dspace/jsp/submit/show-license.jsp

• Changed: dspace/jsp/submit/show-uploaded-file.jsp

• Changed: dspace/jsp/submit/upload-error.jsp

• Changed: dspace/jsp/submit/upload-file-list.jsp

• Changed: dspace/jsp/submit/verify-prune.jsp

• New: dspace/jsp/tools/edit-item-form.jsp

• New: dspace/jsp/tools/eperson-list.jsp

• New: dspace/jsp/tools/itemmap-browse.jsp

• New: dspace/jsp/tools/itemmap-info.jsp

• New: dspace/jsp/tools/itemmap-main.jsp

13.3.13. Changes in DSpace 1.1.1

Bug fixes

• non-administrators can now submit again

• installations now preserve file creation dates, eliminating confusion with upgrades

• authorization editing pages no longer create null entries in database, and no longer handles them poorly
(no longer gives blank page instead of displaying policies.)

History

280

• registration page Invalid token error page now displayed when an invalid token is received (as opposed
to internal server error.) Fixes SF bug #739999

• eperson admin 'recent submission' links fixed for DSpaces deployed somewhere other than at / (e.g. /
dspace).

• help pages Link to help pages now includes servlet context (e.g. '/dspace'). Fixes SF bug #738399.

Improvements

• bin/dspace-info.pl now checks jsp and asset store files for zero-length files

• make-release-package now works with SourceForge CVS

• eperson editor now doesn't display the spurious text 'null'

• item exporter now uses Jakarta's cli command line arg parser (much cleaner)

• item importer improvements:

• now uses Jakarta's cli command line arg parser (much cleaner)

• imported items can now be routed through a workflow

• more validation and error messages before import

• can now use email addresses and handles instead of just database IDs

• can import an item to a collection with the workflow suppressed

13.3.14. Changes in DSpace 1.1

• Fixed various OAI-related bugs; DSpace's OAI support should now be correct. Note that harvesting is
now based on the new Item 'last modified' date (as opposed to the Dublin Core date.available date.)

• Fixed Handle support--DSpace now responds to naming authority requests correctly.

• Multiple bitstream stores can now be specified; this allows DSpace storage to span several disks, and so
there is no longer a hard limit on storage.

• Search improvements:

• New fielded searching UI

• Search results are now paged

• Abstracts are indexed

• Better use of Lucene API; should stop the number of open file handles getting large

• Submission UI improvements:

• now insists on a title being specified

• fixed navigation on file upload page

• citation & identifier fields for previously published submissions now fixed

• Many Unicode fixes to the database and Web user interface

• Collections can now be deleted

History

281

• Bitstream descriptions (if available) displayed on item display page

• Modified a couple of servlets to handle invalid parameters better (i.e. to report a suitable error message
instead of an internal server error)

• Item templates now work

• Fixed registration token expiration problem (they no longer expire.)

	DSpace System Documentation
	Table of Contents
	1. Introduction
	2. Functional Overview
	2.1. Data Model
	2.2. Plugin Manager
	2.3. Metadata
	2.4. Packager Plugins
	2.5. Crosswalk Plugins
	2.6. E-People and Groups
	2.6.1. E-Person
	2.6.2. Groups

	2.7. Authentication
	2.8. Authorization
	2.9. Ingest Process and Workflow
	2.10. Supervision and Collaboration
	2.11. Handles
	2.12. Bitstream 'Persistent' Identifiers
	2.13. Storage Resource Broker (SRB) Support
	2.14. Search and Browse
	2.15. HTML Support
	2.16. OAI Support
	2.17. OpenURL Support
	2.18. Creative Commons Support
	2.19. Subscriptions
	2.20. Import and Export
	2.21. Registration
	2.22. Statistics
	2.23. Checksum Checker
	2.24. Usage Instrumentation

	3. Installation
	3.1. For the Impatient
	3.2. Prerequisite Software
	3.2.1. UNIX-like OS or Microsoft Windows
	3.2.2. Java JDK 5 or later (standard SDK is fine, you don't need J2EE)
	3.2.3. Apache Maven 2.0.8 or later (Java build tool)
	3.2.4. Apache Ant 1.7 or later (Java build tool)
	3.2.5. Relational Database: (PostgreSQL or Oracle).
	3.2.6. Servlet Engine: (Jakarta Tomcat 4.x, Jetty, Caucho Resin or equivalent).
	3.2.7. Perl (required for [dspace]/bin/dspace-info.pl)

	3.3. Installation Options
	3.3.1. Overview of Install Options
	3.3.2. Overview of DSpace Directories
	3.3.3. Installation

	3.4. Advanced Installation
	3.4.1. 'cron' Jobs
	3.4.2. Multilingual Installation
	3.4.3. DSpace over HTTPS
	To enable the HTTPS support in Tomcat 5.0:
	To use SSL on Apache HTTPD with mod_jk:

	3.4.4. The Handle Server
	Updating Existing Handle Prefixes

	3.4.5. Google and HTML sitemaps

	3.5. Windows Installation
	3.5.1. Pre-requisite Software
	3.5.2. Installation Steps

	3.6. Checking Your Installation
	3.7. Known Bugs
	3.8. Common Problems

	4. Upgrading a DSpace Installation
	4.1. Upgrading from 1.5.x to 1.6
	4.2. Upgrading From 1.5 or 1.5.1 to 1.5.2
	4.3. Upgrading From 1.4.2 to 1.5
	4.4. Upgrading From 1.4.1 to 1.4.2
	4.5. Upgrading From 1.4 to 1.4.x
	4.6. Upgrading From 1.3.2 to 1.4.x
	4.7. Upgrading From 1.3.1 to 1.3.2
	4.8. Upgrading From 1.2.x to 1.3.x
	4.9. Upgrading From 1.2.1 to 1.2.2
	4.10. Upgrading From 1.2 to 1.2.1
	4.11. Upgrading From 1.1 (or 1.1.1) to 1.2
	4.12. Upgrading From 1.1 to 1.1.1
	4.13. Upgrading From 1.0.1 to 1.1

	5. Configuration and Customization
	5.1. Input Conventions
	5.2. Update Reminder
	5.3. The dspace.cfg Configuration Properties File
	5.3.1. The dspace.cfg file
	5.3.2. Main DSpace Configurations
	5.3.3. DSpace Database Configuration
	5.3.4. DSpace Email Settings
	Wording of E-mail Messages

	5.3.5. File Storage
	5.3.6. SRB (Storage Resource Brokerage) File Storage
	5.3.7. Handle Server Configuration
	5.3.8. Stackable Authentication Method(s)
	Authentication by Password
	X.509 Certificate Authentication
	Example of a Custom Authentication Method
	Configuring IP Authentication
	Configuring LDAP Authentication

	5.3.9. Shibboleth Authentication Configuration Settings
	5.3.10. Logging Configuration
	5.3.11. Configuring Lucene Search Indexes
	5.3.12. Proxy Settings
	5.3.13. Configuring Media Filters
	5.3.14. Configurable MODS Dissemination Crosswalk
	5.3.15. XSLT-based Crosswalks
	Testing XSLT Crosswalks

	5.3.16. Configurable Qualified Dublin Core (QDC) dissemination crosswalk
	5.3.17. Configuring Crosswalk Plugins
	5.3.18. Configuring Packager Plugins
	5.3.19. Event System Configuration
	5.3.20. Checksum Checker Settings
	5.3.21. Item Export and Download Settings
	5.3.22. Subscription Emails
	5.3.23. Settings for the Submission Process
	5.3.24. Configuring Creative Commons License
	5.3.25. WEB User Interface Configurations
	5.3.26. Browse Index Configuration
	Defining the Indexes.
	Defining Sort Options
	Browse Index Normalization Rule Configuration
	Other Browse Options

	5.3.27. Author (Multiple metadata value) Display
	5.3.28. Links to Other Browse Contexts
	5.3.29. Recent Submissions
	5.3.30. Syndication Feed (RSS) Settings
	5.3.31. Content Inline Disposition Threshold
	5.3.32. Multi-file HTML Document/Site Settings
	5.3.33. Sitemap Settings
	5.3.34. Upload File Settings
	5.3.35. Statistical Report Configuration Setting
	5.3.36. JSP Web Interface (JSPUI) Settings
	5.3.37. Configuring Multilingual Support
	Setting the Default Language for the Application
	Supporting More Than One Language
	Changes in dspace.cfg
	Related Files

	5.3.38. Item Mapper
	5.3.39. Display of Group Membership
	5.3.40. SFX Server
	5.3.41. XMLUI Specific Configuration
	5.3.42. OAI-PMH Configuration and Activation
	OAI-PMH Configuration
	Activating Additional OAI-PMH Crosswalks

	5.3.43. Delegation Administration
	5.3.44. Batch Metadata Editing
	5.3.45. Hiding Metadata

	5.4. Optional or Advanced Configuration Settings
	5.4.1. The Metadata Format and Bitstream Format Registries
	Metadata Format Registries
	Bitstream Format Registry

	5.4.2. XPDF Filter
	Installation Overview
	Install XPDF Tools
	Fetch and install jai_imageio JAR
	Edit DSpace Configuration
	Build and Install

	5.4.3. Creating a new Media/Format Filter
	Creating a simple Media Filter
	Creating a Dynamic or "Self-Named" Format Filter

	5.4.4. Configuration Files for Other Applications
	5.4.5. Configuring Usage Instrumentation Plugins
	The Passive Plugin
	The Tab File Logger Plugin
	The XML Logger Plugin

	5.4.6. SWORD Configuration
	5.4.7. OpenSearch Support
	5.4.8. Embargo

	5.5. DSpace Services Framework
	5.5.1. Implementing Providers
	Configuring Event Listeners

	5.5.2. Architectural Overview
	DSpace 2 Kernel
	Kernel registration
	Kernel Startup and Access

	Service Manager

	5.5.3.
	5.5.4. Providers and Plugins
	Activators
	Provider Stacks

	5.5.5. Core Services
	Caching Service
	Configuration Service
	EventService
	RequestService
	SessionService

	5.6. DSpace Statistics
	5.6.1. Usage Event Logging and Usage Statistics Gathering
	5.6.2. Configuration settings for Statistics
	
	Upgrade Process for Statistics.

	5.6.3. Older setting that are no currently utilized in the reports

	5.7. JSPUI Configuration and Customization
	5.7.1. Configuration
	5.7.2. Customizing the JSP pages

	5.8. XMLUI Configuration and Customization
	5.8.1. Manakin Configuration Property Keys
	5.8.2. Configuring Themes and Aspects
	Aspects
	Themes

	5.8.3. Multilingual Support
	5.8.4. Creating a New Theme
	5.8.5. Adding Static Content

	6. System Administration
	6.1. Community and Collection Structure Importer
	6.1.1. Limitation

	6.2. Package Importer and Exporter
	6.2.1. Ingesting
	6.2.2. Disseminating
	6.2.3. METS packages

	6.3. Item Importer and Exporter
	6.3.1. DSpace Simple Archive Format
	6.3.2. Importing Items
	Adding Items to a Collection
	Replacing Items in Collection
	Deleting or Unimporting Items in a Collection

	6.3.3. Exporting Items

	6.4. Transferring Items Between DSpace Instances
	6.5. Item Update
	6.5.1. DSpace simple Archive Format
	6.5.2. ItemUpdate Commands

	6.6. Registering (Not Importing) Bitstreams
	6.6.1. Accessible Storage
	6.6.2. Registering Items Using the Item Importer
	6.6.3. Internal Identification and Retrieval of Registered Items
	6.6.4. Exporting Registered Items
	6.6.5. METS Export of Registered Items
	6.6.6. Deleting Registered Items

	6.7. METS Tools
	6.7.1. The Export Tool
	6.7.2. The AIP Format
	6.7.3. Limitations

	6.8. MediaFilters: Transforming DSpace Content
	6.9. Sub-Community Management
	6.10. Batch Metadata Editing
	6.10.1. Exporting Process
	6.10.2. Import Function
	Importing Process

	6.10.3. The CSV Files

	6.11. Checksum Checker
	6.11.1. Checker Execution Mode
	6.11.2. Checker Results Pruning
	6.11.3. Checker Reporting
	6.11.4. Cron or Automatic Execution of Checksum Checker
	6.11.5. Automated Checksum Checkers' Results

	7. Storage
	7.1. RDBMS
	7.1.1. Maintenance and Backup
	7.1.2. Configuring the RDBMS Component

	7.2. Bitstream Store
	7.2.1. Backup
	7.2.2. Configuring the Bitstream Store
	Configuring Traditonal Storage
	Configuring SRB Storage

	8. Directories
	8.1. Overview
	8.2. Source Directory Layout
	8.3. Installed Directory Layout
	8.4. Contents of JSPUI Web Application
	8.5. Contents of XMLUI Web Application (aka Manakin)
	8.6. Log Files

	9. Architecture
	9.1. Overview

	10. Application
	10.1. Web User Interface
	10.1.1. Web UI Files
	10.1.2. The Build Process
	10.1.3. Servlets and JSPs
	10.1.4. Custom JSP Tags
	10.1.5. Internationalization
	Message Key Convention
	Which Languages are currently supported?

	10.1.6. HTML Content in Items
	10.1.7. Thesis Blocking

	10.2. OAI-PMH Data Provider
	10.2.1. Unique Identifier
	10.2.2. Access control
	10.2.3. Modification Date (OAI Date Stamp)
	10.2.4. 'About' Information
	10.2.5. Deletions
	10.2.6. Flow Control (Resumption Tokens)

	10.3. DSpace Command Launcher
	10.3.1. Older Versions
	10.3.2. Command Launcher Structure

	11. Business
	11.1. Core Classes
	11.1.1. The Configuration Manager (ConfigurationManager)
	11.1.2. Constants
	11.1.3. Context
	11.1.4. Email
	11.1.5. LogManager
	11.1.6. Utils

	11.2. Content Management API
	11.2.1. Other Classes
	11.2.2. Modifications
	11.2.3. What's In Memory?
	11.2.4. Dublin Core Metadata
	11.2.5. Support for Other Metadata Schemas
	11.2.6. Packager Plugins

	11.3. Plugin Manager
	11.3.1. Concepts
	11.3.2. Using the Plugin Manager
	Types of Plugin
	Self-Named Plugins
	Obtaining a Plugin Instance
	Lifecycle Management
	Getting Meta-Information

	11.3.3. Implementation
	PluginManager Class
	SelfNamedPlugin Class
	Errors and Exceptions

	11.3.4. Configuring Plugins
	Configuring Sequence of Plugins
	Configuring Named Plugins
	Configuring the Reusable Status of a Plugin

	11.3.5. Validating the Configuration
	11.3.6. Use Cases
	Managing the MediaFilter plugins transparently
	A Singleton Plugin
	Plugin that Names Itself
	Stackable Authentication

	11.4. Workflow System
	11.5. Administration Toolkit
	11.6. E-person/Group Manager
	11.7. Authorization
	11.7.1. Special Groups
	11.7.2. Miscellaneous Authorization Notes

	11.8. Handle Manager/Handle Plugin
	11.9. Search
	11.9.1. Current Lucene Implementation
	11.9.2. Indexed Fields
	11.9.3. Harvesting API

	11.10. Browse API
	11.10.1. Index Maintenance
	11.10.2. Caveats

	11.11. Checksum checker
	11.12. OpenSearch Support
	11.13. Embargo

	12. Submission
	12.1. Understanding the Submission Configuration File
	12.1.1. The Structure of item-submission.xml
	12.1.2. Defining Steps (<step>) within the item-submission.xml
	Where to place your <step> definitions
	The ordering of <step> definitions matters !
	Structure of the <step> Definition

	12.2. Reordering/Removing Submission Steps
	12.3. Assigning a custom Submission Process to a Collection
	12.3.1. Getting A Collection's Handle

	12.4. Custom Metadata-entry Pages for Submission
	12.4.1. Introduction
	12.4.2. Describing Custom Metadata Forms
	12.4.3. The Structure of input-forms.xml
	Adding a Collection Map
	Getting A Collection's Handle

	Adding a Form Set
	Forms and Pages
	Composition of a Field
	Automatically Elided Fields

	Adding Value-Pairs
	Example

	12.4.4. Deploying Your Custom Forms

	12.5. Configuring the File Upload step
	12.6. Creating new Submission Steps

	13. Appendices
	13.1. Appendix
	13.1.1. Default Dublin Core Metadata Registry
	13.1.2. Default Bitstream Format Registry

	13.2. DRI Schema Reference
	13.2.1. Introduction
	The Purpose of DRI
	The Development of DRI

	13.2.2. DRI in Manakin
	Themes
	Aspect Chains

	13.2.3. Common Design Patterns
	Localization and Internationalization
	Standard attribute triplet
	Structure-oriented markup

	13.2.4. Schema Overview
	13.2.5. Merging of DRI Documents
	13.2.6. Version Changes
	Changes from 1.0 to 1.1

	13.2.7. Element Reference
	BODY
	cell
	div
	DOCUMENT
	field
	figure
	head
	help
	hi
	instance
	item
	label
	list
	META
	metadata
	OPTIONS
	p
	pageMeta
	params
	reference
	referenceSet
	repository
	repositoryMeta
	row
	table
	trail
	userMeta
	value
	xref

	13.3. History
	13.3.1. Changes in DSpace 1.6.0
	New Features
	General Improvments
	Bug fixes

	13.3.2. Changes in DSpace 1.5.2
	General Improvements
	Bug fixes and smaller patches

	13.3.3. Changes in DSpace 1.5.1
	General Improvements
	Bug fixes and smaller patches

	13.3.4. Changes in DSpace 1.5
	General Improvements
	Bug fixes and smaller patches

	13.3.5. Changes in DSpace 1.4.1
	General Improvements
	Bug fixes

	13.3.6. Changes in DSpace 1.4
	General Improvements
	Bug fixes

	13.3.7. Changes in DSpace 1.3.2
	General Improvements
	Bug fixes

	13.3.8. Changes in DSpace 1.3.1
	Bug fixes

	13.3.9. Changes in DSpace 1.3
	General Improvements
	Bug fixes

	13.3.10. Changes in DSpace 1.2.2
	General Improvements
	Bug fixes
	Changes in JSPs

	13.3.11. Changes in DSpace 1.2.1
	General Improvements
	Bug fixes
	Changed JSPs

	13.3.12. Changes in DSpace 1.2
	General Improvments
	Administration
	Import/Export/OAI
	Miscellaneous
	JSP file changes between 1.1 and 1.2

	13.3.13. Changes in DSpace 1.1.1
	Bug fixes
	Improvements

	13.3.14. Changes in DSpace 1.1

