
Virtual Library Collection
with Linked Data

E. Lynette Rayle
Linked Data for Libraries

Cornell University

February 23,2015

Motivation for
Virtual Collections

• Large collections for the library community

• Virtual Libraries

!

• Small collections defined by users or small groups

• Course reading list

• Research reference material

• Personal organization of resources

2

Our primary motivation is to create a system for managing large scale library collections with hundreds of thousands of resources in the collection. We want the creation tools and exploration to be
integrated with the library Access & Discovery system. We want it to be able to draw resources from multiple institutions and use linked data to augment our metadata. We want to be able to share the
collections we build through our internal websites and also to make them available through linked data queries. !
We want to be able to present users with options like ‘you placed these resources in your collection, those same resources exist in another collection that may be of interest to you’. !
In the process of solving these challenges at scale for the library community, we will have put in place the infrastructure that empowers individual users to create collections as well. I list a few possibilities
for users and small collaborative groups. There are any number of other possibilities that users will come up with once the tools are in their hands.

DEMO

3

4

From My Virtual Collection page, view the items in Linked Data for Libraries virtual collection.

5

Click + beside My Virtual Collections header in left side menu to create a new virtual collection.

6

Set metadata for the new collection on Archery. !
Each new collection is saved as an aggregation in the triplestore using triples as defined in the ORE ontology.

7

New Archery collection is selected and has no items. !
Click Home to search the Cornell Catalog for items to add to the collection.

8

Search Cornell catalog for ‘Archery’

9

Select one of the resources related to archery.

10

From the ‘Add to Virtual Collection’ drop list, select Archery.

11

The book is added to the Archery virtual collection. !
The host ‘localhost:3000’ is registered, so follow the Cornell catalog process.
Process to add:
* use content negotiation to get application/marcxml+xml
* convert marcxml to bibframe triples
* extract display metadata from bibframe triples
* add triples to add the URI to the aggregates list for the Archery aggregation and add the triples for a proxy resource according to the ORE ontology

12

Search Stanford’s searchworks for ‘Archery’.

13

Select one of the resources related to archery.

14

For Stanford’s searchworks, the URI is the URL. Copy the URL from the browser address bar.

15

Click + Add External Resource under the virtual collection title Archery in the header of the main content area of the page.

16

Paste in the URI and Save changes.

17

The book is added to the Archery virtual collection. !
The host ‘searchworks.stanford.edu’ is registered, so follow the Stanford catalog process, which is the same as the Cornell catalog process.
Process to add:
* use content negotiation to get application/marcxml+xml
* convert marcxml to bibframe triples
* extract display metadata from bibframe triples
* add triples to add the URI to the aggregates list for the Archery aggregation and add the triples for a proxy resource according to the ORE ontology

18

Search OCLC for ‘Archery’.

19

Select one of the resources related to archery.

20

For OCLC, the URI is a permalink. Click the permalink symbol in the top right corner of the resource page and copy the URI.

21

Click + Add External Resource under the virtual collection title Archery in the header of the main content area of the page.

22

Paste in the URI and Save changes.

23

The book is added to the Archery virtual collection. !
The host ‘www.worldcat.org’ is registered, so follow the OCLC process.
Process to add:
* use content negotiation to get application/rdf+xml
* extract display metadata from schema triples
* add triples to add the URI to the aggregates list for the Archery aggregation and add the triples for a proxy resource according to the ORE ontology

24

Search Cornell VIVO for ‘Archery’.

25

Select one of the resources related to archery.

26

For VIVO Cornell, the URI is a permalink. Click the permalink symbol beside the title of the resource and copy the URI.

27

Click + Add External Resource under the virtual collection title Archery in the header of the main content area of the page.

28

Paste in the URI and Save changes.

29

The report is added to the Archery virtual collection. !
The host ‘vivo.cornell.edu’ is registered, so follow the Cornell VIVO process.
Process to add:
* use content negotiation to get text/turtle
* extract display metadata from BIBO/VIVO triples

* author and publisher are URIs and the triples with details about these are not provided by the first content negotiation. For this demo, only one content negotiation is performed. Additional
content negotiation requests could be made to get the author and publisher details.

* add triples to add the URI to the aggregates list for the Archery aggregation and add the triples for a proxy resource according to the ORE ontology

30

Search for ‘Book’ at another VIVO site that is not registered in the Virtual Collection system.
NOTE: UFL doesn’t have any books on Archery in its VIVO.

31

Select one of the resources that is a Book.

32

For VIVO at UFL, the URI is a permalink. Click the permalink symbol beside the title of the resource and copy the URI.

33

Click + Add External Resource under the virtual collection title Archery in the header of the main content area of the page.

34

Paste in the URI and Save changes.

35

The report is added to the Archery virtual collection. !
The host ‘vivo.ufl.edu' is NOT registered, so use generic processing.
Process to add:
* use content negotiation to attempt to get application/rdf+xml
* recognize that the rdf type is bibo:Book and use Cornell VIVO process for metadata extraction
* extract display metadata from BIBO/VIVO triples
* add triples to add the URI to the aggregates list for the Archery aggregation and add the triples for a proxy resource according to the ORE ontology

36

Search for ‘Archery’ at another site that is not registered in the Virtual Collection system.

37

Select one of the resources related to archery.

38

For Deutsche National Bibliothek, the URI is a permalink. Copy the permalink listed as the first item in the table of information about the resource on the resource detail page.

39

Click + Add External Resource under the virtual collection title Archery in the header of the main content area of the page.

40

Paste in the URI and Save changes.

41

The book is added to the Archery virtual collection. !
The host ‘d-nb.info’ is NOT registered, so use generic processing.
Process to add:
* use content negotiation to attempt to get application/rdf+xml
* recognize that the rdf type is bibo:Document and use Cornell VIVO process for metadata extraction
* attempt to extract display metadata from BIBO/VIVO triples
* add triples to add the URI to the aggregates list for the Archery aggregation and add the triples for a proxy resource according to the ORE ontology

42

Click Show/Hide Notes and Tags to annotate a resource.

43

Type in text for the note and click Set Note. !
The note is saved as a comment annotation in the triplestore using triples as defined in the Open Annotation ontology’s.

44

Type in text for the note and click Set Tags. !
Each tag is saved as a tag annotation in the triplestore using triples as defined in the Open Annotation ontology’s.

Architecture

45

46

ORE
Ontology Gem

Open Annotation	

Ontology Gem

Works
Ontology Agnostic Gem

Virtual Collection
Engine

ActiveTriples Gem	
 !
Resource (class) Repository (class)

RDF::Graph RDF::Repository

Uses

Uses

Uses Uses

UsesUses

Extends Maintains	
 list	
 of

Cornell Access and Discovery

Uses

Two	
 major	
 pieces	
 of	
 the	
 infrastructure	
 existed	
 before	
 work	
 began	
 on	
 the	
 system.	
 	
 The	
 Cornell	
 Access	
 and	
 Discovery	
 system	
 is	
 the	
 live	
 search	
 system	
 for	
 the	
 catalog	
 that	
 was	
 implemented	
 with	
 	
 blacklight.	
 	
 The	
 goal	
 was	
 to	
 integrate	
 the	
 virtual	
 collection	

management	
 code	
 into	
 the	
 Access	
 and	
 Discovery	
 system.	
 !
The	
 other	
 existing	
 work	
 was	
 ActiveTriples	
 which	
 is	
 a	
 gem	
 that	
 was	
 extracted	
 from	
 the	
 work	
 done	
 on	
 the	
 Oregon	
 Digital	
 project.	
 	
 By	
 extending	
 the	
 ActiveTriples::Resource	
 class,	
 models	
 can	
 be	
 defined	
 to	
 have	
 predicates	
 as	
 properties	
 that	
 can	
 hold	
 the	
 object	

values	
 of	
 a	
 set	
 of	
 triples	
 for	
 a	
 common	
 subject.	
 	
 This	
 allows	
 for	
 triples	
 to	
 be	
 manipulated	
 in	
 logical	
 clusters	
 instead	
 of	
 each	
 triple	
 being	
 manipulated	
 individually,	
 thus	
 reducing	
 the	
 likelihood	
 of	
 errors	
 being	
 introduced	
 and	
 increasing	
 programming	

productivity.	
 	
 ActiveTriples	
 also	
 provides	
 a	
 means	
 for	
 persisting	
 triples	
 into	
 a	
 triplestore	
 and	
 later	
 resuming	
 all	
 the	
 related	
 triples	
 back	
 into	
 a	
 new	
 instance	
 of	
 a	
 resource	
 model.	
 	
 ActiveTriples	
 makes	
 use	
 of	
 several	
 of	
 the	
 classes	
 defined	
 in	
 the	
 ruby	
 rdf	
 project	

on	
 github.	
 	
 I	
 highlight	
 two	
 here,	
 the	
 RDF::Graph	
 and	
 RDF::Repository,	
 but	
 there	
 are	
 many	
 other	
 classes	
 that	
 can	
 be	
 used	
 for	
 querying	
 and	
 transforming	
 triples,	
 and	
 connecting	
 to	
 various	
 triplestore	
 implementations.	
 !
The	
 work	
 underway	
 for	
 the	
 LD4L	
 use	
 case	
 includes	
 the	
 definition	
 of	
 ontology	
 gems	
 which	
 inherit	
 all	
 the	
 triple	
 manipulation	
 functionality	
 provided	
 by	
 ActiveTriples	
 and	
 the	
 virtual	
 collection	
 engine	
 which	
 uses	
 the	
 ontology	
 gems	
 to	
 build	
 the	
 bigger	
 concept	
 of	

a	
 Virtual	
 Collection	
 and	
 provide	
 the	
 UI	
 integration	
 into	
 the	
 Access	
 and	
 Discovery	
 system.	
 	
 By	
 separating	
 the	
 code	
 into	
 ruby	
 supported	
 components,	
 we	
 achieve	
 code	
 isolation	
 for	
 improved	
 testing	
 and	
 a	
 higher	
 degree	
 of	
 reusability	
 which	
 lowers	
 the	

programming	
 effort.	
 	
 We	
 saw	
 this	
 earlier	
 in	
 Stanford’s	
 Triannon	
 system	
 which	
 was	
 able	
 to	
 make	
 use	
 of	
 the	
 Open	
 Annotation	
 Gem	
 for	
 working	
 with	
 annotation	
 triples	
 in	
 ruby.	
 	
 Each	
 gem	
 defines	
 models	
 for	
 classes	
 in	
 the	
 ontology	
 by	
 extending	

ActiveTriples::Resource	
 and	
 by	
 adding	
 additional	
 methods	
 that	
 provide	
 commonly	
 required	
 services	
 for	
 a	
 specific	
 ontology.	
 	
 For	
 example,	
 when	
 you	
 add	
 a	
 new	
 item	
 to	
 an	
 aggregation,	
 the	
 ORE	
 ontology	
 gem	
 adds	
 a	
 new	
 proxy	
 resource	
 for	
 the	
 item	
 and	

updates	
 the	
 aggregation	
 which	
 holds	
 a	
 list	
 of	
 URIs	
 for	
 all	
 items	
 in	
 the	
 list.	

Working With an
Ontology Gem

47

Triples created… !
<http://localhost/c10> a <http://www.w3.org/ns/oa#Annotation>;
 <http://www.w3.org/ns/oa#annotatedAt> "2014-11-26T15:53:49Z";
 <http://www.w3.org/ns/oa#annotatedBy> <http://localhost/p4>;
 <http://www.w3.org/ns/oa#hasBody> <http://localhost/9c8c8126-2d31-48be-81d8-3cd4748a3351>;
 <http://www.w3.org/ns/oa#hasTarget> <http://example.org/bibref/br3>;
 <http://www.w3.org/ns/oa#motivatedBy> <http://www.w3.org/ns/oa#commenting> . !
<http://localhost/9c8c8126-2d31-48be-81d8-3cd4748a3351> a
 <http://www.w3.org/2011/content#ContentAsText>,
 <http://purl.org/dc/dcmitype/Text>;
 <http://purl.org/dc/terms/format> "text/plain";
 <http://www.w3.org/2011/content#chars> "This book is a good resource on archery technique." .

Challenges

48

processing speed for
collecting & displaying

• Real time metadata extraction is slow

• simple triple content negotiation is slow

• multiple content negotiation calls is required by some sites

• worst case occurs for sites providing only marcxml leading to
a conversion step before extracting metadata

• Working at scale

• solr indexing & caching

• periodic re-indexing of resource metadata

• length of time to re-index

49

The first challenge is processing speed for collecting and displaying metadata about each resource in the collection. Right now, this impacts every view of a virtual collection as the metadata is re-extracted
with every refresh of the display. This is simply a limitation of the system not being far enough along in the development process. !
In the near future, this problem will be relegated to adding a new item. !
The plan is to use a solr index to cache the extracted metadata and use periodic re-indexing or a lazy re-index based on last date extracted to bring the metadata up to a current state. A continuing
challenge once indexing is in place is the length of time to re-index as the number of items across all collections grows. We anticipate the potential for re-indexing to happen on the scale of a day.

batch processing for
large scale collections

• Rules for gathering records

• range of call numbers

• keywords

• owned by a particular library

• Batch metadata manipulation

• Processing ranges of items

50

As we move from the current small scale support to large, hundreds of thousands, scale, we will be adding in batch processing. At Cornell, we currently have CuLLR which is a system that allows us to gather
resources into a collection and provides a website that can be navigated and searched as though it is a separate library. The technology for this system is no longer current, but we learned a lot about batch
processing and want to carry that knowledge forward into the new system. !
For example, CuLLR supports rules like identifying a range of call numbers, matching keywords, and ownership by a particular library, as well as combinations of rules, like all call numbers starting with K that
are owned by the Law library. !
The second batch processing approach will allow common metadata to be set for all or large selections of items in a collection to be set in one step. !
As a collection grows, it will need to operate on a range of items instead of the entire collection. This is particularly challenging for ordered lists.

integration with
other institutions

• Not much linked data exists.

• Many ontologies.

• Many interpretation of ontology usage.

• Varying support for content negotiation.

• How does the user locate the URI to use?

51

Resources

• RDF Ruby Development:

• ruby-rdf - rdf, linkeddata, rdf-do

• ActiveTriples - manipulate triples as objects

• LD4L

• ORE Gem - aggregations representing lists with items

• OA Gem - comment, tag, and semantic tag annotations

• Works Gem - ontology agnostic providing multiple models
for works, metadata extraction into a simplified set of display
metadata

• Virtual Collection Engine - UI for Virtual Collections
52

https://github.com/ruby-rdf
https://github.com/ActiveTriples/ActiveTriples
https://github.com/ld4l/ore_rdf
https://github.com/ld4l/open_annotation_rdf
https://github.com/ld4l/works_rdf
https://github.com/ld4l/ld4l_virtual_collection

Similar Work

!
• projecthydra-labs/rdf-proxy_list

• CuLLR (Virtual Libraries at Cornell - non linked data)

53

https://github.com/projecthydra-labs/rdf-proxy_list
https://confluence.cornell.edu/display/culwebdev/CuLLR

54

