
Virtual Library Collection
with Linked Data

E. Lynette Rayle
Linked Data for Libraries

Cornell University

February 23,2015

Motivation for
Virtual Collections

• Large collections for the library community

• Virtual Libraries

!

• Small collections defined by users or small groups

• Course reading list

• Research reference material

• Personal organization of resources

2

Our primary motivation is to create a system for managing large scale library collections with hundreds of thousands of resources in the collection. We want the creation tools and exploration to be
integrated with the library Access & Discovery system. We want it to be able to draw resources from multiple institutions and use linked data to augment our metadata. We want to be able to share the
collections we build through our internal websites and also to make them available through linked data queries. !
We want to be able to present users with options like ‘you placed these resources in your collection, those same resources exist in another collection that may be of interest to you’. !
In the process of solving these challenges at scale for the library community, we will have put in place the infrastructure that empowers individual users to create collections as well. I list a few possibilities
for users and small collaborative groups. There are any number of other possibilities that users will come up with once the tools are in their hands.

DEMO

3

4

From My Virtual Collection page, view the items in Linked Data for Libraries virtual collection.

5

Click + beside My Virtual Collections header in left side menu to create a new virtual collection.

6

Set metadata for the new collection on Archery. !
Each new collection is saved as an aggregation in the triplestore using triples as defined in the ORE ontology.

7

New Archery collection is selected and has no items. !
Click Home to search the Cornell Catalog for items to add to the collection.

8

Search Cornell catalog for ‘Archery’

9

Select one of the resources related to archery.

10

From the ‘Add to Virtual Collection’ drop list, select Archery.

11

The book is added to the Archery virtual collection. !
The host ‘localhost:3000’ is registered, so follow the Cornell catalog process.
Process to add:
* use content negotiation to get application/marcxml+xml
* convert marcxml to bibframe triples
* extract display metadata from bibframe triples
* add triples to add the URI to the aggregates list for the Archery aggregation and add the triples for a proxy resource according to the ORE ontology

12

Search Stanford’s searchworks for ‘Archery’.

13

Select one of the resources related to archery.

14

For Stanford’s searchworks, the URI is the URL. Copy the URL from the browser address bar.

15

Click + Add External Resource under the virtual collection title Archery in the header of the main content area of the page.

16

Paste in the URI and Save changes.

17

The book is added to the Archery virtual collection. !
The host ‘searchworks.stanford.edu’ is registered, so follow the Stanford catalog process, which is the same as the Cornell catalog process.
Process to add:
* use content negotiation to get application/marcxml+xml
* convert marcxml to bibframe triples
* extract display metadata from bibframe triples
* add triples to add the URI to the aggregates list for the Archery aggregation and add the triples for a proxy resource according to the ORE ontology

18

Search OCLC for ‘Archery’.

19

Select one of the resources related to archery.

20

For OCLC, the URI is a permalink. Click the permalink symbol in the top right corner of the resource page and copy the URI.

21

Click + Add External Resource under the virtual collection title Archery in the header of the main content area of the page.

22

Paste in the URI and Save changes.

23

The book is added to the Archery virtual collection. !
The host ‘www.worldcat.org’ is registered, so follow the OCLC process.
Process to add:
* use content negotiation to get application/rdf+xml
* extract display metadata from schema triples
* add triples to add the URI to the aggregates list for the Archery aggregation and add the triples for a proxy resource according to the ORE ontology

24

Search Cornell VIVO for ‘Archery’.

25

Select one of the resources related to archery.

26

For VIVO Cornell, the URI is a permalink. Click the permalink symbol beside the title of the resource and copy the URI.

27

Click + Add External Resource under the virtual collection title Archery in the header of the main content area of the page.

28

Paste in the URI and Save changes.

29

The report is added to the Archery virtual collection. !
The host ‘vivo.cornell.edu’ is registered, so follow the Cornell VIVO process.
Process to add:
* use content negotiation to get text/turtle
* extract display metadata from BIBO/VIVO triples

* author and publisher are URIs and the triples with details about these are not provided by the first content negotiation. For this demo, only one content negotiation is performed. Additional
content negotiation requests could be made to get the author and publisher details.

* add triples to add the URI to the aggregates list for the Archery aggregation and add the triples for a proxy resource according to the ORE ontology

30

Search for ‘Book’ at another VIVO site that is not registered in the Virtual Collection system.
NOTE: UFL doesn’t have any books on Archery in its VIVO.

31

Select one of the resources that is a Book.

32

For VIVO at UFL, the URI is a permalink. Click the permalink symbol beside the title of the resource and copy the URI.

33

Click + Add External Resource under the virtual collection title Archery in the header of the main content area of the page.

34

Paste in the URI and Save changes.

35

The report is added to the Archery virtual collection. !
The host ‘vivo.ufl.edu' is NOT registered, so use generic processing.
Process to add:
* use content negotiation to attempt to get application/rdf+xml
* recognize that the rdf type is bibo:Book and use Cornell VIVO process for metadata extraction
* extract display metadata from BIBO/VIVO triples
* add triples to add the URI to the aggregates list for the Archery aggregation and add the triples for a proxy resource according to the ORE ontology

36

Search for ‘Archery’ at another site that is not registered in the Virtual Collection system.

37

Select one of the resources related to archery.

38

For Deutsche National Bibliothek, the URI is a permalink. Copy the permalink listed as the first item in the table of information about the resource on the resource detail page.

39

Click + Add External Resource under the virtual collection title Archery in the header of the main content area of the page.

40

Paste in the URI and Save changes.

41

The book is added to the Archery virtual collection. !
The host ‘d-nb.info’ is NOT registered, so use generic processing.
Process to add:
* use content negotiation to attempt to get application/rdf+xml
* recognize that the rdf type is bibo:Document and use Cornell VIVO process for metadata extraction
* attempt to extract display metadata from BIBO/VIVO triples
* add triples to add the URI to the aggregates list for the Archery aggregation and add the triples for a proxy resource according to the ORE ontology

42

Click Show/Hide Notes and Tags to annotate a resource.

43

Type in text for the note and click Set Note. !
The note is saved as a comment annotation in the triplestore using triples as defined in the Open Annotation ontology’s.

44

Type in text for the note and click Set Tags. !
Each tag is saved as a tag annotation in the triplestore using triples as defined in the Open Annotation ontology’s.

Architecture

45

46

ORE
Ontology Gem

Open Annotation	
Ontology Gem

Works
Ontology Agnostic Gem

Virtual Collection
Engine

ActiveTriples Gem	 !
Resource (class) Repository (class)

RDF::Graph RDF::Repository

Uses

Uses

Uses Uses

UsesUses

Extends Maintains	 list	 of

Cornell Access and Discovery

Uses

Two	 major	 pieces	 of	 the	 infrastructure	 existed	 before	 work	 began	 on	 the	 system.	 	 The	 Cornell	 Access	 and	 Discovery	 system	 is	 the	 live	 search	 system	 for	 the	 catalog	 that	 was	 implemented	 with	 	 blacklight.	 	 The	 goal	 was	 to	 integrate	 the	 virtual	 collection	
management	 code	 into	 the	 Access	 and	 Discovery	 system.	 !
The	 other	 existing	 work	 was	 ActiveTriples	 which	 is	 a	 gem	 that	 was	 extracted	 from	 the	 work	 done	 on	 the	 Oregon	 Digital	 project.	 	 By	 extending	 the	 ActiveTriples::Resource	 class,	 models	 can	 be	 defined	 to	 have	 predicates	 as	 properties	 that	 can	 hold	 the	 object	
values	 of	 a	 set	 of	 triples	 for	 a	 common	 subject.	 	 This	 allows	 for	 triples	 to	 be	 manipulated	 in	 logical	 clusters	 instead	 of	 each	 triple	 being	 manipulated	 individually,	 thus	 reducing	 the	 likelihood	 of	 errors	 being	 introduced	 and	 increasing	 programming	
productivity.	 	 ActiveTriples	 also	 provides	 a	 means	 for	 persisting	 triples	 into	 a	 triplestore	 and	 later	 resuming	 all	 the	 related	 triples	 back	 into	 a	 new	 instance	 of	 a	 resource	 model.	 	 ActiveTriples	 makes	 use	 of	 several	 of	 the	 classes	 defined	 in	 the	 ruby	 rdf	 project	
on	 github.	 	 I	 highlight	 two	 here,	 the	 RDF::Graph	 and	 RDF::Repository,	 but	 there	 are	 many	 other	 classes	 that	 can	 be	 used	 for	 querying	 and	 transforming	 triples,	 and	 connecting	 to	 various	 triplestore	 implementations.	 !
The	 work	 underway	 for	 the	 LD4L	 use	 case	 includes	 the	 definition	 of	 ontology	 gems	 which	 inherit	 all	 the	 triple	 manipulation	 functionality	 provided	 by	 ActiveTriples	 and	 the	 virtual	 collection	 engine	 which	 uses	 the	 ontology	 gems	 to	 build	 the	 bigger	 concept	 of	
a	 Virtual	 Collection	 and	 provide	 the	 UI	 integration	 into	 the	 Access	 and	 Discovery	 system.	 	 By	 separating	 the	 code	 into	 ruby	 supported	 components,	 we	 achieve	 code	 isolation	 for	 improved	 testing	 and	 a	 higher	 degree	 of	 reusability	 which	 lowers	 the	
programming	 effort.	 	 We	 saw	 this	 earlier	 in	 Stanford’s	 Triannon	 system	 which	 was	 able	 to	 make	 use	 of	 the	 Open	 Annotation	 Gem	 for	 working	 with	 annotation	 triples	 in	 ruby.	 	 Each	 gem	 defines	 models	 for	 classes	 in	 the	 ontology	 by	 extending	
ActiveTriples::Resource	 and	 by	 adding	 additional	 methods	 that	 provide	 commonly	 required	 services	 for	 a	 specific	 ontology.	 	 For	 example,	 when	 you	 add	 a	 new	 item	 to	 an	 aggregation,	 the	 ORE	 ontology	 gem	 adds	 a	 new	 proxy	 resource	 for	 the	 item	 and	
updates	 the	 aggregation	 which	 holds	 a	 list	 of	 URIs	 for	 all	 items	 in	 the	 list.	

Working With an
Ontology Gem

47

Triples created… !
<http://localhost/c10> a <http://www.w3.org/ns/oa#Annotation>;
 <http://www.w3.org/ns/oa#annotatedAt> "2014-11-26T15:53:49Z";
 <http://www.w3.org/ns/oa#annotatedBy> <http://localhost/p4>;
 <http://www.w3.org/ns/oa#hasBody> <http://localhost/9c8c8126-2d31-48be-81d8-3cd4748a3351>;
 <http://www.w3.org/ns/oa#hasTarget> <http://example.org/bibref/br3>;
 <http://www.w3.org/ns/oa#motivatedBy> <http://www.w3.org/ns/oa#commenting> . !
<http://localhost/9c8c8126-2d31-48be-81d8-3cd4748a3351> a
 <http://www.w3.org/2011/content#ContentAsText>,
 <http://purl.org/dc/dcmitype/Text>;
 <http://purl.org/dc/terms/format> "text/plain";
 <http://www.w3.org/2011/content#chars> "This book is a good resource on archery technique." .

Challenges

48

processing speed for
collecting & displaying

• Real time metadata extraction is slow

• simple triple content negotiation is slow

• multiple content negotiation calls is required by some sites

• worst case occurs for sites providing only marcxml leading to
a conversion step before extracting metadata

• Working at scale

• solr indexing & caching

• periodic re-indexing of resource metadata

• length of time to re-index

49

The first challenge is processing speed for collecting and displaying metadata about each resource in the collection. Right now, this impacts every view of a virtual collection as the metadata is re-extracted
with every refresh of the display. This is simply a limitation of the system not being far enough along in the development process. !
In the near future, this problem will be relegated to adding a new item. !
The plan is to use a solr index to cache the extracted metadata and use periodic re-indexing or a lazy re-index based on last date extracted to bring the metadata up to a current state. A continuing
challenge once indexing is in place is the length of time to re-index as the number of items across all collections grows. We anticipate the potential for re-indexing to happen on the scale of a day.

batch processing for
large scale collections

• Rules for gathering records

• range of call numbers

• keywords

• owned by a particular library

• Batch metadata manipulation

• Processing ranges of items

50

As we move from the current small scale support to large, hundreds of thousands, scale, we will be adding in batch processing. At Cornell, we currently have CuLLR which is a system that allows us to gather
resources into a collection and provides a website that can be navigated and searched as though it is a separate library. The technology for this system is no longer current, but we learned a lot about batch
processing and want to carry that knowledge forward into the new system. !
For example, CuLLR supports rules like identifying a range of call numbers, matching keywords, and ownership by a particular library, as well as combinations of rules, like all call numbers starting with K that
are owned by the Law library. !
The second batch processing approach will allow common metadata to be set for all or large selections of items in a collection to be set in one step. !
As a collection grows, it will need to operate on a range of items instead of the entire collection. This is particularly challenging for ordered lists.

integration with
other institutions

• Not much linked data exists.

• Many ontologies.

• Many interpretation of ontology usage.

• Varying support for content negotiation.

• How does the user locate the URI to use?

51

Resources

• RDF Ruby Development:

• ruby-rdf - rdf, linkeddata, rdf-do

• ActiveTriples - manipulate triples as objects

• LD4L

• ORE Gem - aggregations representing lists with items

• OA Gem - comment, tag, and semantic tag annotations

• Works Gem - ontology agnostic providing multiple models
for works, metadata extraction into a simplified set of display
metadata

• Virtual Collection Engine - UI for Virtual Collections
52

https://github.com/ruby-rdf
https://github.com/ActiveTriples/ActiveTriples
https://github.com/ld4l/ore_rdf
https://github.com/ld4l/open_annotation_rdf
https://github.com/ld4l/works_rdf
https://github.com/ld4l/ld4l_virtual_collection

Similar Work

!
• projecthydra-labs/rdf-proxy_list

• CuLLR (Virtual Libraries at Cornell - non linked data)

53

https://github.com/projecthydra-labs/rdf-proxy_list
https://confluence.cornell.edu/display/culwebdev/CuLLR

54

