
Introduction to Fedora 4
Features

David Wilcox, DuraSpace
@d_wilcox

Learning Outcomes

Understand the purpose of a Fedora repository

Understand the core features of the software

Fedora Facts

Managed by DuraSpace (not-for-profit)

Funded by The Community

Developed by The Community

Supported by 2 full-time staff members (not developers)

What is a Fedora Repository?

Secure software that stores, preserves, and provides
access to digital materials

Supports complex semantic relationships between objects
inside and outside the repository

Supports millions of objects, both large and small

Capable of interoperating with other applications and
services

Exposing and Connecting Content

Flexible, extensible content modeling

Atomic resources with semantic connections using
standard ontologies

RDF-based metadata using Linked Data

RESTful API with native RDF response format

Fedora 4 Project Goals

Improved performance

Flexible storage options

Research data management

Linked open data support

Improved platform for developers

Core Features

Component Stack

Standards

Focus on existing standards

Fewer customizations to maintain

Opportunities to participate in related
communities

Core Features and Standards

CRUD - Linked Data Platform (LDP)

Versioning - Memento?

Authorization - WebAC

Transactions - ??

Fixity - http://tools.ietf.org/html/rfc3230#section-4.3.2

What is LDP, and why do I care?

Linked Data Platform
● W3C Recommendation: http://www.w3.org/TR/ldp/

HTTP API for read-write RDF servers

Fedora 4 is an LDP server

http://www.w3.org/TR/ldp/

LDP Core Concepts

Resource

Container

RDF Source

Basic
Container

Direct
Container

Indirect
Container

Non-RDF Source

What About PCDM?

https://github.com/duraspace/pcdm/wiki

Hands-on: CRUD

Fedora Vagrant Components

Solr

Triplestore
(Fuseki, Sesame)

● Audit Service
● SPARQL-Query

F4

LDP / WebAC / Memento?? A
pache C

am
el

Create a “cover” Container

PUT vs. POST

...Note: names in demo are only for readability

Make “cover” a pcdm:Object

PREFIX pcdm: <http://pcdm.org/models#>

INSERT {
 <http://localhost:8080/fcrepo/rest/cover>
 rdf:type
 pcdm:Object
}
WHERE { }

REDUX
Make “cover” a pcdm:Object

PREFIX pcdm: <http://pcdm.org/models#>

INSERT { <> a pcdm:Object }
WHERE { }

Create “files” Container

...contained inside “cover”

Make “files” an ldp:DirectContainer

PREFIX ldp: <http://www.w3.org/ns/ldp#>
PREFIX pcdm: <http://pcdm.org/models#>

INSERT {
 </fcrepo/rest/cover/files> rdf:type ldp:DirectContainer .
 <> rdf:type pcdm:Object .
 <> ldp:membershipResource </fcrepo/rest/cover> .
 <> ldp:hasMemberRelation pcdm:hasFile .
}
WHERE { }

REDUX
Make “files” an ldp:DirectContainer

PREFIX ldp: <http://www.w3.org/ns/ldp#>
PREFIX pcdm: <http://pcdm.org/models#>

INSERT {
 <> a ldp:DirectContainer, pcdm:Object ;
 ldp:membershipResource </fcrepo/rest/cover> ;
 ldp:hasMemberRelation pcdm:hasFile .
}
WHERE { }

Create some cover binaries

...contained inside “files”

cover.jpg
cover.tif

* See auto-generated relationship on “cover”

Transactions

Multiple actions can be bundled together into a
single repository event (transaction)

Transactions can be rolled back or committed

Can be used to maintain consistency

Hands-on: TXNs

Authorization

The authorization framework provides a plug-in point within
the repository that calls out to an optional authorization
enforcement module

Currently, four authorization implementations exist:
● No-op
● Role-based
● XACML and
● WebAC

Hands-on: AuthZ

Create following Containers

● “my-acls”
...at top-level

● “acl”
...contained inside “my-acls”

● “authorization”
...contained inside “acl”

Final result (structure)

● cover/
○ files/

● my-acls/
○ acl/

■ authorization/

Final result (structure)

● cover/
○ files/

● my-acls/
○ acl/

■ authorization/

“cover” must point to its ACL

- An ACL must have one or
more authorizations

- “authorizations” define:
● agent(s)
● mode(s)
● resource(s) or class

acl:accessControl

Define the “authorization”

PREFIX acl: <http://www.w3.org/ns/auth/acl#>
PREFIX pcdm: <http://pcdm.org/models#>

INSERT {
<> a acl:Authorization ;
acl:accessToClass pcdm:Object ;
acl:mode acl:Read, acl:Write;
acl:agent "adminuser" .

} WHERE { }

Link “acl” to “cover”

-- Update “cover” resource --

PREFIX acl: <http://www.w3.org/ns/auth/acl#>

INSERT {
<> acl:accessControl </fcrepo/rest/my-acls/acl>

} WHERE { }

Test the authorization

Open a different browser

Navigate to:
http://localhost:8080/fcrepo/rest/cover

Login with username/password:
testuser/password1

http://localhost:8080/fcrepo/rest/cover
http://localhost:8080/fcrepo/rest/cover

Add “testuser” to authorization

PREFIX acl: <http://www.w3.org/ns/auth/acl#>
PREFIX pcdm: <http://pcdm.org/models#>

INSERT {
<> acl:agent "testuser" .

} WHERE { }

Re-test the authorization

Reload /fcrepo/rest/cover in your browser

testuser should now have access

Versioning

Versions can be created on resources with an
API call

A previous version can be restored via the
REST-API

Hands-on: Versioning

Create version “v0” of “cover”

** Warning cURL sighting **

curl -ufedoraAdmin:secret3 -i -XPOST -H"slug: v0"
localhost:8080/fcrepo/rest/cover/fcr:versions

Add dc:publisher to “cover”

INSERT {
 <> dc:publisher "The Press"
}
WHERE { }

Create version “v1” of “cover”

curl -ufedoraAdmin:secret3 -i -XPOST -H"slug: v1"
localhost:8080/fcrepo/rest/cover/fcr:versions

* Inspect and Revert

Hands-on: Fixity

Fixity

Over time, digital objects can become corrupt

Fixity checks help preserve digital objects by verifying their
integrity

On ingest, Fedora can verify a user-provided checksum
against the calculated value

A checksum can be recalculated and compared at any time
via a REST-API request

Test Fixity

Navigate to the cover.jpg

Press the “Fixity” button

Verify that the checksum matches

Let’s corrupt some files!

On the command line (in your vagrant folder):

vagrant ssh

-OR-

ssh -p 2222 vagrant@localhost
password = vagrant

Let’s corrupt some files!

Navigate to:

/var/lib/tomcat7/fcrepo4-data/fcrepo.binary/directory

Find the file (based on its SHA1 checksum)

Edit or replace it with something else

Re-test Fixity

Navigate to the cover.jpg

Press the “Fixity” button

See the mismatched checksum/file size

Non-core Features

Two Non-Core Feature Types

1. External components

- Consume and act off repository messages

2. Optional, pluggable components

- Separate projects that can interact with Fedora 4 using
a common pattern

External Component Integrations

Leverages the well-supported Apache Camel
project

- Camel is middleware for integration with
external systems

- Can handle any asynchronous, event-driven
workflow

External - Indexing

Index repository content for search

Content can be assigned the rdf:type property
"Indexable" to filter from non-indexable content

Solr has been tested

External - Triplestore

An external triplestore can be used to index the
RDF triples of Fedora resources

Any triplestore that supports SPARQL-update
can be plugged in

Fuseki, Sesame, BlazeGraph have been tested

External & Pluggable - Audit Service

Maintains a history of events for each
repository resource

Both internal repository events and events from
external sources can be recorded

Uses the existing event system and an external
triplestore

Pluggable - OAI Provider

fcrepo4-oaiprovider implements Open Archives
Protocol Version 2.0 using Fedora 4 as the
backend

Exposes an endpoint which accepts OAI
conforming HTTP requests

Supports oai_dc out if the box, but users are
able to add their own metadata format
definitions to oai.xml

Pluggable - SWORD Server

SWORD is a lightweight protocol for depositing
content from one location to another

fcrepo4-swordserver implements 2.0 AtomPub
Profile, using Fedora 4 as the backend

SWORD v2 includes AtomPub CRUD
operations

Success!

