
Modeling Tutorial

LD4P RareMat / ARTFrame Meeting
Columbia University
January 11-12, 2018



Outline

● Context and definitions
● Goals
● Modeling process
● Modeling example (family)
● Basic modeling concepts
● Modeling exercise - first draft 
● Modeling principles and strategies
● Modeling exercise - second draft - revisions informed by principles and strategies
● Discussion and assessment



Context and Definitions



Motivation

Modeling in the abstract precedes:

1. Using a language like RDFS or OWL to specify the model, and 

2. Writing an OWL file.



From Abstract to Concrete

● Data model
○ An abstract conceptual model that identifies things in the real world, their classifications, properties, and 

relationships to one another. 
○ Implementation-neutral: i.e., the model will be the same regardless of whether it is to be implemented as an 

ontology, a relational database, etc.
○ Most clearly represented as a diagram. 

● Ontology
○ One  type of  formal specification of the concepts (terms) in the data model, including names, definitions, and their 

interrelationships, at an abstract level.
● RDFS and OWL languages for expressing an ontology (OWL tutorial)
● RDFS and OWL language serializations to encode an ontology in a specific syntax (OWL tutorial)



Real World



Abstract Data Model

has part

planted by

has part

is a type of

“50 years”

age

“Miriam”
name



Ontology: Abstract Terms
● Tree
● Leaf
● Branch
● Willow
● Person
● Age
● Name
● Planted by
● Has part
● Is a type of



Ontology: Abstract Term Specifications
● Tree

○ Definition: “A woody perennial plant with a single trunk growing to a considerable height.”
○ A tree may have one or more leaves as parts.
○ A tree has exactly one trunk as a part.
○ A tree has an age, but possibly not known.
○ A tree may have been planted by one or more persons.

● Willow 
○ Definition:  “A tree of temperate climates that typically has narrow leaves and grows near water.”
○ Subclass of Tree - i.e., all  willows are trees.



Ontology: Abstract Term Specifications, cont.

● Age: “The length of time that a person has lived or a thing has existed.”
● Planted by: 

○ Definition: “Individual placing a seed or plant in the ground so it can  grow.”
○ Applies to plants and seeds
○ Inverse: plants



Tutorials

● Modeling Tutorial
○ From data model to ontology

● Connecting Local Decisions with the Larger Ecosystem
○ Discovering existing ontologies for reuse
○ Ontology Design Patterns for integration

● OWL Tutorial
○ Encoding an ontology as RDFS / OWL
○ Written serializations of RDFS and OWL ontologies



Modeling Tutorial Goals

● Understand the process used to  design an ontology.
● Understand basic concepts, principles, and strategies for designing an ontology.
● Gain practical experience  in building an ontology.
● Understand criteria for assessing an ontology.
● Be prepared for the next step: developing an OWL ontology.



The Modeling Process



Modeling Process

● Identify the knowledge domain.
○ “Smooth” rather than jagged outline.
○ Even if it’s “everything” - schema.org. (Though not ideal.)

● Enumerate and prioritize use cases within that domain.
● Develop the model as a conceptual diagram first.
● Identify concepts / terms from the abstract model.

○ Tree, Leaf, has part, age, etc.
● Use classes, properties, individuals, and relationships  to express these concepts.
● Specify constraints on these concepts  where relevant.

○ E.g., a tree has exactly one trunk.
● Do not include: selection of specific terms and namespaces, precise definitions, formulations in RDFS 

and OWL. This comes at a later stage.



Family Model



Family Model: Use Cases



Use Cases: Brainstorming

● Someone wants to compile a complete genealogy of their family
● Someone wants to provide a description of their household
● Family as patrons
● Order of succession in a royal family
● Evolution of the concept of family, e.g. to include same sex marriage
● Medical family 
● Insurance coverage



Family Model: Concepts



Concepts: Brainstorming

Generations Places (birth/marriage/etc.) Places (interment/origin)

Parent / Mother / Father Dates (marriage/divorce) Grandparent / Grandmother 
/ Grandfather

Person Reunions Religion

Gender Aunt / Uncle Kinship

Multiples (twins, triplets, 
etc.)

Age / Birth / Death Adoption



Concepts: Brainstorming, continued
Marriage / Divorce Birth order Partnerships other than 

marriage

Sibling Surrogacy Pets

Child Step sibling / parent / child Half sibling

In-laws Nationality Race and ethnicity

Languages Husband / Wife Cousin

Niece / Nephew Foster parent / child



Basic Modeling Concepts



Triples

● In this section we assume RDFS and OWL modeling, though as we’ve said, a data model is an abstraction 
independent of the language used to express it.

● In RDF, every statement is expressed as a triple: subject + property + object
○ English example: John ate the apple. 



Types of Resources

The building blocks of triples:

● Classes
● Individuals (with or without URIs)
● Properties
● Literals



Resources

Any resource about which somebody wants to say something: e.g.,  http://example.com/BremerDom.



Types of Resources: Classes

● Classes are a way of defining meaningful groups or sets into which resources can be placed (i.e., 
classified).

● The Bremer Dom could be a member of a Cathedral class. 
● Usually identified by a URI.

○ Exceptions made possible by OWL properties (more in OWL tutorial).



Types of Resource: Individuals

● A resource representing a single thing that we want to make assertions about is an individual, instance, 
or entity.

○ We avoid the term instance due to potential confusion with BIBFRAME Instance.
● An individual may be a member of one or more classes.

○ The Bremer Dom is an individual of the Cathedral class.
● Individuals may be identified by a URI, or not (“blank nodes”). 

○ More on blank nodes in OWL tutorial.
● Individuals serve as the subjects and objects of triples.



Types of Resources: Properties

● Describe the characteristics of an individual.
○ E.g., name(s), construction date, etc. of the Bremer Dom.

● State a relationship between two individuals.
○ E.g., the architects and builders of the Bremer Dom.

● Note for the linguistically inclined: properties are also called predicates, although they correspond to the 
verb in a natural language sentence rather than the entire predicate.



Literals

● Text strings
○ The building name “Bremer Dom” is a literal.

● Can be typed: dates, integers, decimals, strings, etc.
● May also have a language.

○ E.g., “Bremer Dom” (German) vs “Bremen Cathedral” (English)
● Can be objects but not subjects in an RDF triple.



Context Nodes

● Represent a relationship between two individuals as another resource rather than simply a property.
● Used to supplement the information that can’t be stored using direct relationships between primary 

entities.
● Examples

○ A marriage could be modeled as a context node that has relationships to two persons, and also has a date, location, 
etc.

○ ARTFrame Awards model uses an AwardsReceipt type to store information about the date and location of receipt of 
the award by an agent or bibliographic resource.

More information: 
https://wiki.duraspace.org/display/VTDA/Practical+Ontology+Design+Principles+in+the+VIVO+context



Small Group Work

Model development



Task 1: Design the Data Model

Willow

planted by

LeafTree

is a type of

Person
age

“50 years”

has part



Task 2: Abstract Term Specification

● Tree
○ Rough definition: “A woody perennial plant with a single trunk and growing to a considerable height.”
○ A tree may have one or more leaves as parts
○ A tree has exactly one trunk as a part
○ A tree may have an age
○ A tree may have been planted by one or more persons

● Etc.



Review of Small Group Work



Modeling Principles and 
Strategies



Art vs Science

● Modeling is more art than science.
○ Based on experience and practice rather than strict application of rules.

● It’s not necessarily a case of hard-and-fast rules but thoughtfully applying principles, best practices, and 
strategies.

● Many choices depend on
○ Context, use cases, knowledge domain
○ How the data will be queried - what users want to know
○ Weighing one good against another 

■ Expressivity vs simplicity 
■ Flexibility vs  power (inferencing)
■ Reuse and alignment potential vs the best model (more from Steven)

● On the other hand, sometimes one solution really is objectively better than another.



Start from the Data

● Start from the data, not from a previous representation of the data.
● Don’t be overly influenced by existing representations of the knowledge domain that you may be 

familiar with.
● Use these to dig out what the data is, but not necessarily how it should be modeled.
● Be open to examining this data to determine whether there is a real use case for modeling it, and what 

the priority of that use case is.



Class vs Relationship: Is-a vs Has-a

● Is a concept best expressed as a class or a relationship (property)?
● Class = inherent feature of a resource
● Relationship = relation between two resources
● Sometimes depends on context and use cases. E.g., parent

○ Genealogy - relationship
○ PTA / Tax credits and exemptions  for parents / Family leave policy - class

● Sometimes one is clearly not useful. E.g., birth parent / child  vs adoptive parent / child
○ Everyone is a birth child of someone.
○ Someone can be a birth parent of one child and an adoptive parent of another.
○ So class assignments are misleading and/or redundant.  



Object vs Datatype Properties

● Is a property best expressed an an object property (relationship) or a datatype property?
● Structured data is generally preferable to unstructured data.

○ Queryable
● Object properties are required when either:

○ There is more to say about  the object of the property
○ You want to use a controlled vocabulary as the range of the property

● Some data is truly literal data: dates, names, codes, ages, etc
○ Infinite or near-infinite variability



Atomic vs Composite Values

● Rely on structured data rather than parsing tools.
● “Given name” and “family name” is preferable to “name”.

○ No parsing needed.
○ Can easily find all persons with the same family name. 

● RDA pre-composed content types
○ “Cartographic tactile three-dimensional form” is a black box - no relationship to “cartographic,” “tactile,” or “three-

dimensional” resources.
○ To find all the cartographic resources, you need multiple queries and you need to know the entire list of types.



Context Nodes: Direct vs Indirect Relationships 

● In RDFS and OWL, it is not possible to make assertions about properties.
● So if there is more to say about the relationship between two resources, the model should define a 

context node to apply that data to.
● This may be counterintuitive given the way we normally think about relationships.
● Examples:

○ Marriage 
○ ARTFrame / RareMat Awards  
○ bibliotek-o Activities



Generalize

● Define terms  as generally as possible without losing needed expressivity.
● Tree example: “has part” vs “has leaf” + “has trunk” + “has branch” + “has root” + …
● Consider the context and the queries.
● “Has part”  allows us to query for all the parts of a tree, without knowing an entire set of predicates. 
● You can still query for only the leaf parts of a tree, not all its parts, by including the object type in the 

query (“give me all the parts of this tree that are leaves”).
● Sometimes it makes more sense to define different whole-part relationships.

○ A concerto has movements, and it has instrumental parts.
○ When querying for parts of the concerto, you have one or the other in mind and don’t want to fetch all.



Eliminate Redundancy 

● Don’t build domain / range into predicate where it’s clear  from subject / object type
○ NO: Work hasWorkTitle Title, Instance hasInstanceTitle Title
○ YES: Work or Instance + hasTitle 

● Don’t build subject type into object type
○ NO: Work hasTitle WorkTitle and Instance hasTitle InstanceTitle
○ YES: Work hasTitle Title, Instance hasTitle Title

● Provide only one way to represent a relationship
○ Otherwise, two queries are necessary to make sure we get all the data we want.
○ E.g., BIBFRAME types works via either: 

■ rdf:type + Work subclass
■ bf:content + bf:Content type



Assertion vs Inference

● Assertion: a statement explicitly added to a data set or ontology

● Inference: a statement derived from existing data based on the ontology specification

● Subclass example

○ Ontology assertion: All Willows are Trees (Willow is a subclass of Tree)

○ Instance assertion: w is a Willow

○ Inference: w is a Tree (no need to assert explicitly)

● Are there  examples from the Family Model where the assertion vs inference distinction  is applicable?  

○ Don’t worry here about how to express the ontology assertions.

● More detail in the OWL tutorial.



Model vs Application 

● Distinguish what belongs in the model from  what belongs in the application.
● The data model should not be distorted to support UX design.

● Example: Artist’s title

○ Conceptually not  a type of title but the source of the title (a single person both created the work and gave it the 

title).

○ But catalogers want to view and edit this as a type of title.

○ The UI can represent this as a title type, while behind the scenes it does not type the title but creates a source 

relationship.

○ We get both a semantically sound data model and a UI the catalogers can work with.



Assessment



Assessment of the Model

● Does it represent a defined and coherent  knowledge domain?
● Does it generally adhere to known principles, strategies, and best practices?
● Does it satisfy the (most important) use cases?
● Can we express the concepts we identified?
● Does it have a good balance between expressivity and simplicity?
● Can we query the data as simply as possible to get what we want?

○ Consider the SPARQL you would write to address the use cases



Assessment: Community Adoption 

● Does it have strong potential for community adoption?
○ Does it contribute  to modeling of this domain rather than duplicating existing work?
○ Does it provide a good balance of complexity against use case coverage? 



The End


