
Upgrading VIVO
VIVO 1.10.x Documentation

Exported on 05/27/2018

VIVO 1.10.x Documentation – Upgrading VIVO

 – 2

Table of Contents

1 Overview.. 4

2 Java 8... 5

3 Jena 3.x.. 6
3.1 Upgrading The Triple Store ... 6

3.2 Upgrade Local Java Code Using Jena... 8

3.3 A Note on Other Dependency Changes... 8

4 UI Changes... 9
4.1 jQuery 1.12.4... 9

4.2 jQuery plugins .. 9

4.3 D3 v4 ... 9

5 ORCiD API .. 11

6 List View Configurations ... 12

7 Vocabulary Services.. 13

8 Servlet 3.0 Upgrade... 14

9 Java Dependencies ... 15
9.1 HttpClient ... 15

9.2 OSGi Dependencies.. 15

9.3 JSON Parsers.. 15

9.4 Replaced Dependencies .. 15

9.5 Removed Dependencies .. 15

10 Location of runtime.properties .. 17

11 Preserving Customizations During Build ... 18
11.1 Overview... 18

11.2 Maven Custom Installer ... 18

11.3 Example – Custom Theme ... 18

11.4 Example – Local Ontology ... 18

11.5 Example – Data Distribution API ... 18

VIVO 1.10.x Documentation – Upgrading VIVO

 – 3

• Overview (see page 4)
• Java 8 (see page 5)
• Jena 3.x (see page 6)

• Upgrading The Triple Store (see page 6)
• Upgrade Local Java Code Using Jena (see page 8)
• A Note on Other Dependency Changes (see page 8)

• UI Changes (see page 9)
• jQuery 1.12.4 (see page 9)
• jQuery plugins (see page 9)
• D3 v4 (see page 9)

• ORCiD API (see page 11)
• List View Configurations (see page 12)
• Vocabulary Services (see page 13)
• Servlet 3.0 Upgrade (see page 14)
• Java Dependencies (see page 15)

• HttpClient (see page 15)
• OSGi Dependencies (see page 15)
• JSON Parsers (see page 15)
• Replaced Dependencies (see page 15)
• Removed Dependencies (see page 15)

• Location of runtime.properties (see page 17)

VIVO 1.10.x Documentation – Upgrading VIVO

Overview – 4

1 Overview

Due to the dependency updates in VIVO 1.10.x, it is important that you read the instructions here carefully,
and plan your upgrade accordingly. You will need to consider:

1) The time it will take to upgrade the triple store (can not be performed against a running system)

2) SPARQL queries need to be checked for any explicit use of string datatypes

3) Any applications directly accessing the SDB triple store need to be upgraded to use Jena 3 libraries.

This includes VIVO Harvester - if you use this, you must upgrade your Harvester to 2.x at the same
time as VIVO. You must not use Harvester 1.x with VIVO 2.x, or Harvester 2.x with VIVO 1.x.

If you are planning an upgrade from anything prior to 1.9.x, please ensure that you read upgrade
instructions relating to previous releases. If your version of VIVO is prior to 1.8.x, you will have some
ontology changes to consider.

VIVO 1.10.x Documentation – Upgrading VIVO

Java 8 – 5

2 Java 8
With the upgrade to Jena 3.x, it is required that Java 8 is used. The Maven projects have been upgraded to state a
dependency on version 8, and Maven will not run without it.

If you have previously been using Java 7, you will need to install Java 8. As usual, it needs to be a full JDK to support
Tomcat.

Java 9 has now been released, but has not been tested with VIVO. However, it does build and appear to run
on Java 9. Note that to do so, you need to have a compatible version of Tomcat, as endorsed directory
support has been removed.

VIVO 1.10.x Documentation – Upgrading VIVO

Jena 3.x – 6

3 Jena 3.x
As the core framework used throughout VIVO, as well as the implementation for the default triple stores, this is the
most significant part of the upgrade (although, if you have extensive Javascript customisations in your front end,
that side may take more time).

3.1 Upgrading The Triple Store

Upgrading the triple store(s) (there are two - content and configuration) involves dumping the contents of your
stores, and then reloading them. Whilst it is possible to do this using command line tools that are part of the Jena
projects, VIVO has created and distributes tools that work with your VIVO configurations to make the process easier.

In order to upgrade your triple store, use the following steps (replace <your-settings.xml> and <vivo_home> with
the appropriate values for your system:

1. Stop Tomcat - it is vital that Tomcat / VIVO, and any other applications that may access the triple stores, are
not running during this process.

2. Run "mvn clean install -s <your-settings.xml>" in your VIVO 1.10.0 development area to update your web
application and home directory
This will install the tools into your <vivo_home>/bin directory.

3. Export your existing triple stores:

To export your triples store, use the jena2tools utility provided with VIVO 1.10.0, in <vivo home dir>/bin,
specifying the export command, as shown below.

java -jar jena2tools.jar -d <vivo home dir> -e

Arguments:
-d - the location of the Vitro/VIVO home directory
-e - run in export mode

On execution, the program will read your configuration files, find your Vitro or VIVO configuration within the
vivo/vitro home directory, and get the necessary information to connect to your configuration triple store

This needs to be done by everybody upgrading from a previous version, using the (default) Jena triple
stores. It is necessary due to the changes in handling untyped literals in RDF 1.1. If you fail to perform the
upgrade, or you mix Jena libraries

If you are using an alternative triple store implementation (e.g. Virtuoso, Stardog), then you do not need to
reload that triple store. But please remember that VIVO uses two triple stores - content and configuration -
and if you are only using an alternative content triple store, you will still need to upgrade the configuration
store.

• To export successfully, you need to ensure no other programs are accessing your triple
stores.

• Your file system must have the space available and be capable of storing files large
enough to contain your entire triple store serialisation.

VIVO 1.10.x Documentation – Upgrading VIVO

Jena 3.x – 7

1 https://github.com/vivo-project/jenatools

(usually <vivo home dir>/tdbModels), and your content triple store (usually in SDB). If your triple store(s) are
not SDB or TDB backed, then it will simply skip them.
jena2tools will then extract the contents of the available triple stores, and dump them to <vivo home dir>/
dumps in TriG format.

4. Check that the export has completed - you should have a <vivo_home>/dumps directory, that contains the
files "configuration.trig" and "content.trig".

5. Empty your triple stores
• Drop your database and recreate it as empty, just as you would for creating a new VIVO install.

 jena3tools must find an empty database (no tables) as named in your runtime.properties and will
recreate your SDB triple store as tables in the named database using the triples produced by
jena2tools and stored in <vivo home dir>/dumps/content.trig

mysql> DROP DATABASE vitrodb;
mysql> CREATE DATABASE vitrodb CHARACTER SET utf8;
mysql> GRANT ALL ON vitrodb.* TO 'vitrodbUsername'@'localhost' IDENTIFIED BY
'vitrodbPassword';

• Delete all files in <vivo home dir>/tdbModels. Jena3tools will rebuild your configuration tdbModels
based on the content created by jena2tools and stored in <vivo home dir>/dumps/configuration.trig
rm -rf <vivo_home>/tdbModels

6. Reload your triple stores
Having exported your triple stores, you can reload them using jena3tools, also available with VIVO 1.10.0,
specifying the import command.

java -jar jena3tools.jar -d <vivo home dir> -i

Arguments:
-d - the location of the Vitro/VIVO home directory
-i - run in import mode

On execution, the program will find your Vitro or VIVO configuration within the home directory, as well as the
dumps that you have created with jena2tools. It will import them into the SDB and TDB triple stores, based
on the configuration of your Vitro/VIVO instance.
jena3tools will be present in <vivo home dir>/bin when you install the 1.10.0 beta. Alternatively, it can be
downloaded from GitHub1.

Note that this can take a while. A rough guide is to expect about 600 triples per second to reload. (Roughly 1
hour per 2 million triples).

In rare cases jena2tools will fail with a java.lang.NullPointerException. This can occur if
VIVO was not properly shut down before upgrading.
The preferred fix for this is to restore VIVO 1.9.x and see that it is properly started and shut down
before upgrading. If this is not practical, another workaround is to delete the file named
tdbModels/journal.jrnl in the Vitro/VIVO home directory. This may result in the loss of the
most recent login information.

https://github.com/vivo-project/jenatools
https://github.com/vivo-project/jenatools

VIVO 1.10.x Documentation – Upgrading VIVO

Jena 3.x – 8

7. Restart Tomcat

VIVO checks its filegraphs when starting. Restarting for the first time after an upgrade will take some time.

3.2 Upgrade Local Java Code Using Jena
If you have local customisations or additional applications that make use of the Jena libraries, you will need to
upgrade these to work with Jena 3. Mostly this is simply a case of renaming any packages in imports for Jena
classes:

import com.hp.hpl.jena.*

becomes

import org.apache.jena.*

However, some classes have been moved, or removed, and some interfaces have additional methods. So in rare
cases you may find that you need to make a few small changes beyond this.

3.3 A Note on Other Dependency Changes
To remove the possibility of incompatible classes being loaded, and to remove known vulnerabilities from the code
base, most of the Java dependencies in VIVO have been removed, updated or replaced.

For the most part, this will have minimal impact on local customisations.

Some libraries - such as commons-lang3 - have new package names, but mostly compatible classes, and usually
just require the imports to be adjusted.

The CSV libary was outdated and unmaintainted, and has been replaced with commons-csv.

There were originally 5 JSON libaries (Jackson, Gson, Glassfish, Sourceforge.net and Json.org parsers). All code is
now using Jackson, and the other parsers have been removed.

38 dependencies have been removed from the standard distribution. If you have any customisations that make use
of them, that should work, but you will need to add the dependencies to your own projects.

22 dependencies will appear to have been added, but these are mostly from unbundling the owlapi OSGi
dependency, and these - along with other conflicting classes - had been packaged as part of the bundle.

Whilst every effort has been made to eliminate known vulnerabilities, the Maven dependency-check plugin still
reports 13 vulnerabilities across 8 libraries - for which these are currently the latest releases.

In total, 11 out of an original 113 dependencies are still at the same version as the previous release.

VIVO 1.10.x Documentation – Upgrading VIVO

UI Changes – 9

4 UI Changes

4.1 jQuery 1.12.4
Bootstrap based themes require a newer version of jQuery than was shipped with VIVO. In order for all of the
functionality aross the UI to work, and to minimise the amount of duplication in the UI, it was necessary to upgrade
all of the pages and plugins that used jQuery, so that the same upgraded version works across all of the pages and
themes.

This release does require some migration of javascript that makes use of it. There is a script - jquery-migrate.js that
helps with this, providing extra backwards compatibility, and logging warnings to the console whenever an old
method is used.

All of the existing code that was relying on the migrate script has been updated, so that it is no longer needed.

To aid transition, VIVO still ships with the jquery-migrate.js script, allowing most existing code to work. You should
monitor the Javascript console, and apply updates if you see any logged messages in your customisations - future
versions of VIVO will remove this migration script in order to upgrade to later versions.

4.2 jQuery plugins
In order to support the upgrade to jQuery 1.12.4, and remove any backward compatibility messages from the
Javascript console, the following plugins have been upgraded:

jQuery UI

jCrop

qTip

DataTable

In addition, the following plugins have been replaced with equivalents for compatibility and/or licensing issues:

Old New Notes

mb.FlipText Jangle Used for rotating text on the graphs (e.g. temporal graph)

isotope wookmark Used to render the three columns on the index page

4.3
D3 v4
This is another major upgrade that has architectural changes to improve modularity and make writing
visualizations easier, as well as a selection of new features.

Where D3 was being included by VIVO (e.g. on the profile page, in co-authorship networks, etc.), these now include
D3 v4, and the visualizations have been upgraded to use D3 v4.

The only visualization that has NOT been upgraded to D3 v4, is the Capability Map - as a full page visualization, that
page is still including it's own D3 v3.

VIVO 1.10.x Documentation – Upgrading VIVO

UI Changes – 10

2 https://medium.com/@mbostock/a-better-way-to-code-2b1d2876a3a0

When upgraading, you have a few choices:

1) If you have a full page custom visualization, you can continue to specify whatever libraries and versions that you
want to use, although if you are referencing the "shared" D3, you will need to adjust this to include your own D3
that is the version you require.

2) If you are embedding the visualization on a page that may have other visualizations, you should either:

a) Upgrade your custom visualization to use D3 v4.

b) Render your visualization into an iframe, so that you can specify your own javascript dependencies.

By making this change now, we are getting on to a maintained version of D3 (v3 has not had any releases for 18
months), and it prepares us for using D3.express2 in the future, for more dynamic visualization building.

https://medium.com/@mbostock/a-better-way-to-code-2b1d2876a3a0
https://medium.com/@mbostock/a-better-way-to-code-2b1d2876a3a0

VIVO 1.10.x Documentation – Upgrading VIVO

ORCiD API – 11

5 ORCiD API
It has been announced that ORCiD are looking to shut down their v1.x endpoints by the end of 2017. During
development to support the new v2 api, it was recognised that the way the settings are currently configured should
be simplified. As a result, in order for the ORCiD integration to work in VIVO 1.10, you will need to update your
runtime.properties - regardless of which version of the api that you want to use.

The new settings look like this:

orcid.clientId = 0000-0000-0000-000X
orcid.clientPassword = 00000000-0000-0000-0000-000000000000
orcid.webappBaseUrl = http://localhost:8080/vivo
orcid.externalIdCommonName = VIVO Cornell Identifier
orcid.apiVersion = 2.0
orcid.api = sandbox

Setting Values Notes

orcid.clientId <your client id> The client ID that you obtained from ORCiD for API access

orcid.clientPassword <your password> The password the you obtained from ORCiD for API access

orcid.webappBaseUrl <your VIVO
website>

The URL for your VIVO site

orcid.externalIdCommo
nName

<site description> The text that you want to appear in ORCiD for links back to
VIVO profiles

orcid.apiVersion 2.0 (or 1.2) The version of the API to use. It is recommended that you use
2.0.

orcid.api release or sandbox Use sandbox for development, release for production.

VIVO 1.10.x Documentation – Upgrading VIVO

List View Configurations – 12

6 List View Configurations
To produce complex views of data associated with properties (e.g. a person's publication list), VIVO allows the
association of externalized SPARQL queries, and associated Freemarker template links.

The configuration for this are the files called "listViewConfig-*" in the <webapp>/configs/ directory.

Due to the performance of OPTIONAL clauses for some triple stores, in VIVO 1.x the configuration files usually
consist of a SELECT query (to retrieve the data for the associated Freemarker template), and one or more
CONSTRUCTs (using UNIONs) to create a smaller model that the SELECT query would then be performed against.

This creates additional buffering of an intermediate model, the overhead of performing multiple queries, and
makes the configurations harder to write and maintain.

For triple stores with poor OPTIONAL performance, this is a result of the OPTIONAL clause returning large amounts
of data that is then joined to the rest of the query.

This can be avoided by making the OPTIONAL clauses contain the restrictions that they will be joined to, in addition
to them appearing outside for the join.

As this is not necessary for all triple stores, an element <precise-subquery> has been introduced, so that these
additional statements can be filtered out for triple stores where they aren't required.

So,

SELECT ?menuItem
 ?linkText
 HERE {
 ?subject ?property ?menuItem .
 OPTIONAL {
 ?menuItem display:linkText ?linkText .
 }
}

can be rewritten as

SELECT ?menuItem
 ?linkText
 HERE {
 ?subject ?property ?menuItem .
 OPTIONAL {
 <precise-subquery>?subject ?property ?menuItem .</precise-subquery>
 ?menuItem display:linkText ?linkText .
 }
}

When all OPTIONAL clauses are rewritten like this, the <query-construct>
elements can be removed, for approximately 10% performance improvement, and a
larger reduction in Java processing overhead. This allows the web server to
scale to handle more requests.

If you have customized listViewConfig-*.xml files, you do not need to rewrite them for VIVO 1.10 - they will work
unmodified. However, you will have a small performance improvement, and more readable, maintainable queries,
if you choose to modify them to take advantage of the new features.

VIVO 1.10.x Documentation – Upgrading VIVO

Vocabulary Services – 13

7 Vocabulary Services
<< Upgraded web services >>

<< Registering for a UMLS key >>

VIVO 1.10.x Documentation – Upgrading VIVO

Servlet 3.0 Upgrade – 14

8 Servlet 3.0 Upgrade
The web.xml that ships with VIVO has been updated to use 3.0 semantics (the required version of Tomcat already
supported 3.0).

If you have customisations that introduce new servlets, then you can still add the configuration to web.xml, or you
can modify the servlet to use @WebServlet annotations.

If you are replacing a servlet, then you will need to map the existing servlet to an unused url, and map the new
servlet by adding configuration for these servlets to web.xml.

Alternatively, if you want to disable a servlet, then you can set the web.xml back to 2.5 spec, and add all of the
servlet configuration explicitly to the web.xml.

VIVO 1.10.x Documentation – Upgrading VIVO

Java Dependencies – 15

3 https://github.com/vivo-project/Vitro/blob/develop/dependencies/pom.xml

9 Java Dependencies

9.1 HttpClient
Due to OSGi bundling of some of the core dependencies, VIVO had been shipping three different versions of
HttpClient, all of which were incompatible with each other, and sometimes generated errors depending on which
code paths got executed first.

VIVO 1.10 brings convergence around HttpClient 4.5.3, removing the problems caused previously. If you have any
customisations that depend on HttpClient (or the fluent api - fluent-hc), please ensure that you are using the
versions that are already indlueded with VIVO. This may require some minor adjustments to your client code to
make it compatible.

9.2 OSGi Dependencies
The OWLAPI previously included with VIVO was an OSGi bundle, and included the classes of a number of libraries
(such as HttpClient above). This causes classloading conflicts. In VIVO 1.10, we are depending directly on the
libraries that were being bundled, rather than the bundle in it's entirety.

In addition, Jena has OSGi dependencies for HttpClient, leading to more duplicate classes. These have been
explicitly excluded - see dependencies/pom.xml3 for how this is done.

9.3 JSON Parsers
Four JSON parsers - GSON (com.google.gson), Glassfish (javax.json.Json, Sourceforge.net (net.sf.json) and
JSON.org (org.json) have been removed, to simplify the code base, reduce vulnerabilities and improve
performance.

All JSON parsing in VIVO is now handled through Jackson.

If you have local customisations that use a different JSON parser, you can add the dependency to your projects,
although it is recommended that migrating to Jackson is preferable for long term maintenance.

9.4 Replaced Dependencies
The CSV parser has been replaced with commons-csv.

9.5 Removed Dependencies
The following dependencies have been removed from VIVO. If you have customisations that require any of them,
you will need to add them as dependencies in your own projects.

agrovocws-3.0.jar, asm-3.1.jar, aterm-java-1.8.2.jar, axis-1.3.jar, axis-jaxrpc-1.3.jar, axis-saaj-1.3.jar, bcmail-
jdk14-1.38.jar, bcprov-jdk14-1.38.jar, bctsp-jdk14-1.38.jar, c3p0-0.9.2-pre4.jar, cglib-2.2.jarcommons-
beanutils-1.7.0.jar, commons-discovery-0.2.jar, cos-05Nov2002.jar, csv-1.0.jar, cxf-xjc-runtime-2.6.2.jar, cxf-xjc-
ts-2.6.2.jar, dom4j-1.6.1.jar, ezmorph-1.0.4.jar, gson-2.5.jar, jai_codec-1.1.3.jar, jai_core-1.1.3.jar,
JavaEWAH-0.8.6.jar, javax.json-api-1.0.jar, jjtraveler-0.6.jar, jsonld-java-jena-0.2.jar, json-lib-2.2.2-jdk15.jar, lucene-

https://github.com/vivo-project/Vitro/blob/develop/dependencies/pom.xml
https://github.com/vivo-project/Vitro/blob/develop/dependencies/pom.xml

VIVO 1.10.x Documentation – Upgrading VIVO

Java Dependencies – 16

analyzers-common-5.3.1.jar, lucene-core-5.3.1.jar, lucene-memory-5.3.1.jar, lucene-queries-5.3.1.jar, lucene-
queryparser-5.3.1.jar, lucene-sandbox-5.3.1.jar, mail-1.4.jar, mchange-commons-java-0.2.2.jar, shared-
objects-1.4.9.jar, sparqltag-1.0.jar, stax-api-1.0-2.jar, wsdl4j-1.5.1.jar

VIVO 1.10.x Documentation – Upgrading VIVO

Location of runtime.properties – 17

10 Location of runtime.properties
The preferred location of runtime.properties has changed from the <vivo_home> directory to <vivo_home>/config.
VIVO will raise a warning on startup if runtime.properties is found in <vivo_home> or both <vivo_home> and
<vivo_home>/config. Continue startup by refreshing or clicking continue. Move runtime.properties into the config
directory to avoid the warning.

VIVO 1.10.x Documentation – Upgrading VIVO

Preserving Customizations During Build – 18

4 https://wiki.duraspace.org/display/VIVODOC110x/Creating+a+custom+theme
5 https://wiki.duraspace.org/display/VIVODOC110x/Adding+Additional+Ontologies+to+VIVO

11 Preserving Customizations During Build

• Overview (see page 18)
• Maven Custom Installer (see page 18)
• Example – Custom Theme (see page 18)
• Example – Local Ontology (see page 18)
• Example – Data Distribution API (see page 18)

11.1 Overview
VIVO can be customized in many ways. Most sites customize the interface using themes. See Creating a custom
theme4. Many sites create ontology extensions to introduce local terminology. See Adding Additional Ontologies to
VIVO5. Sites can add custom configurations for the Data Distribution API (see), providing custom APIs returning
data you specify in formats you specify at web addresses you specify.

In each case, files distributed with VIVO are replaced or added.

11.2 Maven Custom Installer

11.3 Example – Custom Theme

11.4 Example – Local Ontology

11.5 Example – Data Distribution API

Draft

This page is being written for 1.10 and Maven. Check back for more.

https://wiki.duraspace.org/display/VIVODOC110x/Creating+a+custom+theme
https://wiki.duraspace.org/display/VIVODOC110x/Creating+a+custom+theme
https://wiki.duraspace.org/display/VIVODOC110x/Creating+a+custom+theme
https://wiki.duraspace.org/display/VIVODOC110x/Adding+Additional+Ontologies+to+VIVO
https://wiki.duraspace.org/display/VIVODOC110x/Adding+Additional+Ontologies+to+VIVO
https://wiki.duraspace.org/display/VIVODOC110x/Adding+Additional+Ontologies+to+VIVO

	Overview
	Java 8
	Jena 3.x
	Upgrading The Triple Store
	Upgrade Local Java Code Using Jena
	A Note on Other Dependency Changes

	UI Changes
	jQuery 1.12.4
	jQuery plugins
	D3 v4

	ORCiD API
	List View Configurations
	Vocabulary Services
	Servlet 3.0 Upgrade
	Java Dependencies
	HttpClient
	OSGi Dependencies
	JSON Parsers
	Replaced Dependencies
	Removed Dependencies

	Location of runtime.properties
	Preserving Customizations During Build
	Overview
	Maven Custom Installer
	Example – Custom Theme
	Example – Local Ontology
	Example – Data Distribution API

