
DSpace 7 - Angular UI Development

Quick Links
Developer Resources
How to install locally

Fast approach - Angular UI front end only
Full Approach - DSpace 7 backend + Angular UI Frontend

How to contribute
Prerequisites
Workflow
Guidelines

General
Code Style
Documentation
Testing
Creating a new component
(S)CSS
i18n
State changes
DataServices and RemoteData objects

Quick Links
The source code can be found on GitHub: https://github.com/DSpace/dspace-angular
There's a project board on GitHub: https://github.com/orgs/DSpace/projects

Developer Resources
Overview of the new Technology
DSpace-Angular Workshop : this workshop was held at OR2017, but all materials are available freely online

Video Tutorial: A shorter version of this workshop was held as a tutorial at the North American User Group meeting at Georgetown
University on Aug 23, 2017. This shorter Angular tutorial (which doesn't include hands-on activities) was recorded and made available at
https://youtu.be/c4AJ8HeZzcw

Official Angular for TypeScript Style Guide
RxJS - or creating new sequences using existing sequences
DSpace Wiki: TypeScript-Guideline

How to install locally

Fast approach - Angular UI front end only

If you are primarily interested in the Angular UI development, without having to deal with the DSpace back-end, you can choose to only setup the UI
components, and have them talk to the REST API of the public, demo rest api

These installation steps are outlined in the or in project.OR2018 Workshop README.md of the Angular UI

Full Approach - DSpace 7 backend + Angular UI Frontend

Please be aware that this all is work in progress and will change often. As we did not release any version (neither an alpha or beta version) yet, there is no
stable state to which we can refer to. Nevertheless let us give you some short hints on what you can do to install your own local version:

Currently the DSpace 7 UI is read-only (submit/edit/admin tools will be coming). Therefore, if you want test content in place, you'll need to do one
of the following:

Option #1: Start with an install of DSpace 6, create some communities, collections and archive some items. In this situation, you'll
perform an "ant update" to DSpace 7.
Option #2: Create some AIPs from a DSpace 5 or 6 instance to load into DSpace 7 for testing.

Compile/Install/Deploy the current main () using the normal DSpace install process ("mvn package" https://github.com/DSpace/DSpace/tree/main
and "ant update" or "ant fresh_install").

This codebase is very similar to DSpace 6, but it includes no XMLUI or JSPUI, and has a new "dspace-spring-rest" project (which is the
DSpace 7 REST API)

Deploy the webapp dspace-server-webapp as /server (if you use another path, you may want to change the index.html file within the webapp)
Start your servlet container and take a look into its logfiles

If you have problems deploying the webapp in cause for slf4j and log4j, it may be necessary to delete [dspace]/webapps/spring-rest
/WEB-INF/lib/slf4j-log4j12-1.7.22.jar

Test if dspace-spring-rest was loaded successfully by opening it in a browser. You can compare it to the demo site: https://api7.dspace.org/server/
Install dspace-angular. You can try it as described in the or take a look into the in the dspace-OR2017 DSpace Angular Workshop Readme.md
angular git repository.

https://github.com/DSpace/dspace-angular
https://github.com/orgs/DSpace/projects
https://wiki.lyrasis.org/display/DSPACE/DSpace+7+UI+Technology+Stack
https://wiki.lyrasis.org/display/DSPACE/OR2017+DSpace+Angular+Workshop
https://youtu.be/c4AJ8HeZzcw
https://angular.io/styleguide
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-static.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-instance.md
https://github.com/DSpace-Labs/angular2-ui-prototype/wiki/TypeScript-Guidelines
https://dspace7.4science.it/dspace-spring-rest/
https://wiki.lyrasis.org/display/DSPACE/OR2018+DSpace+Angular+Workshop
https://github.com/DSpace/dspace-angular/blob/master/README.md
https://github.com/DSpace/DSpace/tree/main
https://api7.dspace.org/server/
https://wiki.lyrasis.org/display/DSPACE/OR2017+DSpace+Angular+Workshop
https://github.com/DSpace/dspace-angular/blob/master/README.md

How to contribute

Prerequisites

You'll need to be in the dspace-angular github team to get the required access. Send your github username to to get an invite, Art Lowel (Atmire)
or ask on Slack ()https://dspace-org.slack.com/
Fork the repository on Github
Refer to for learning resources about the technologies used.DSpace 7 UI Technology Stack
We highly recommend joining as it's a great place to ask questions and get feedbackDSpace's Slack

Slack invites are available at https://goo.gl/forms/s70dh26zY2cSqn2K3

Workflow

Have a look at the project board
Take an issue that’s in the ready section and has nobody assigned to it
Assign yourself
When you start working on it, move the issue to the “in progress” section
Work on a separate branch for the issue on your fork
When you’re ready, fire a pull request
in the comments of the pull request, write something akin to “this PR connect’s to #{the ID of the issue}”. That way the issue will be moved
automatically to the review column.
When at least two people have reviewed and approved your PR, it can be merged in master.
You can also help out by reviewing the pull requests of other people
Please keep an eye on your pull request afterwards, the reviewers may have questions or comments about it, or ask you to tackle things in a
different way, before they can approve it
Most discussions about the task or the pull request can happen through the github & project board comments.
If it’s more complex you can bring it up in one of these meetings.
After your Pull Request has been merged, drag the issue to the done column on the project board. (this can also be automated by adding “this
merge closes #{the id of the issue}” in the merge comment.
If you've claimed an issue, but can't work on it for some reason, please remember to unassign yourself and put it back in the "ready" column so
someone else can take over.

Guidelines

General

Before firing a PR, always ensure your code works on the server (disable javascript in your browser and see if it still works) as well as the client,
and that it works with the AoT build () as well as the webpack build ()yarn run start yarn run watch
Keep adaptability in mind. An institution installing DSpace will often want to modify a few things about the UI. The easier we can make that, the
better. Therefore keep your components small (divide them in to sub-components), make sub-modules for coherent functionality, use SASS
variables, etc.
We agreed to remove the concept of Communities from the UI. They should be called Collections as well. The decision to remove the concept of
Communities from the UI was reversed in the meeting of April 13th

Code Style

Follow . It contains guidelines for naming files, directory structure, etc.the official Angular style guide
TSLint can help you with that. It will run automatically whenever the code is rebuilt (even during a watch task) or you can run it manually with npm
run lint

Documentation

Document your code in the TypeDoc format

Testing

Write tests for your code. We use for unit testing and for end-to-end.jasmine protractor
Ensure your code doesn't break any existing tests.

Creating a new component

A new component should consist of at least 3 files, in the same folder
an HTML file, containing the template e.g. sidebar.component.html
an SCSS file, containing the style. Create this even if it's to remain empty. e.g. sidebar.component.scss
a TypeScript file, containing the component definition e.g. sidebar.component.ts

Its attribute should contain a reference to the HTML file: e.g.templateUrl templateUrl: './sidebar.component.
html'
Its attribute (this is an array) should contain a reference to the style file: e.g. styleUrls : ['./sidebar.styleUrls
component.scss']

https://wiki.lyrasis.org/display/~artlowel
https://dspace-org.slack.com/
https://wiki.lyrasis.org/display/DSPACE/DSpace+7+UI+Technology+Stack
https://dspace-org.slack.com/
https://goo.gl/forms/s70dh26zY2cSqn2K3
https://github.com/orgs/DSpace/projects
https://wiki.lyrasis.org/display/DSPACE/2017-04-13+DSpace+7+UI+Working+Group+Meeting+notes
https://angular.io/styleguide
http://typedoc.org/guides/doccomments/
https://jasmine.github.io/
http://www.protractortest.org/

it's selector attribute should start with ds- , and indicates it's a dspace This ensures the component name contains a dash
component. e.g. selector: 'ds-sidebar'
Example:

@Component({
 selector: 'ds-sidebar',
 styleUrls: ['./sidebar.component.scss'],
 templateUrl: './sidebar.component.html'
})
export class SidebarComponent {
}

(S)CSS

General
Avoid writing (S)CSS if you can. Instead where possible. That way it will be much easier use Bootstrap 4 CSS classes and components
to keep the style consistent across many different contributors.
If you want to use a bootstrap component, take a look at the docs first. Chances are they've already turned it into an ng-bootstrap
angular component for you.
If you need to add margins, padding, change font-sizes or colors etc, make use of the rather than entering numerical bootstrap variables
values. (e.g. write instead of and instead margin-bottom: $spacer-y; margin-bottom: 15px; color : ;$brand-primary
of) color: #0275d8;
If there's no other way but to add a numerical value or color code yourself, consider turning it in to a variable, so it can be reused by
others. Also calculations that are used more than once can benefit from being stored as variables: e.g. $ds-table-margin-bottom:
($font-size-base * 2) - ($gutter-width / 2);

Component Styles

Angular 2 makes use of . By default, these can't and affect the style of other components. Not even child component styles leak out
components
The style for a component should go in a file called , in the same directory as the component. e.g. for name.component.scss src/app

 the component style file is ./home/home.component.ts src/app/home/home.component.scss

i18n

Don't hard code user-facing text in components. We're using ngx-translate for i18n. You use it by adding your key to , and resources/i18n/en.json
then using that key in the component with the pipe. e.g.:translate

in en.json put: "my-route.my-component.my-label-descriptor": "My User Facing Text";
in your component put: "<h1>{{ 'my-route.my-component.my-label-descriptor' | translate }}</h1>"

For more info see the ngx-translate docs

State changes

The state in this application is managed by . ngrx
Using it properly requires some discipline from developers and reviewers.
If you're new to redux or ngrx, take a look at the resources on the technology page
Anything that's dynamic about the application is called a state change, and should be saved in the store.
That means , or , anything that can change as a boolean that saves if the navigation is open or closed a list of DSpace Objects from the backend
the application runs.
Every state change should be defined as an action. in a file called e.g. ${feature-name}-actions.ts. host-window.actions.ts
An action definition consists of

a type, in the format , added to an ActionTypes object.dspace/feature-name/ACTION-NAME
e.g. dspace/host-window/RESIZE

a class to represent the action, that takes the components of the payload as the parameters of its constructor
e.g. HostWindowResizeAction

The effect of each action on the state should be defined in the reducer, in a file called . e.g. ${feature-name}-reducer.ts host-window.
reducer.ts

keep in mind that a reducer shouldn't modify the previous state in any way. You can test for this using deep-freeze.
If an action is be the source of another action, that relation is described in an .effect

e.g. submitting the login form dispatches a action, with the user's credentials as its payload.LOGIN_REQUEST
an AuthorizationEffect class listens for that action, and when it occurs it calls the rest api with those login credentials
if the REST API answers positively, the AuthorizationEffect dispatches a new action, with the token that was returned.LOGIN_SUCESS
if the REST API returns an error, the AuthorizationEffect dispatches a new action, with the error message that was LOGIN_ERROR
returned.

All reducers need to be added to before they can be useda single reducer aggregator file per module
The same needs to happen for effect files

DataServices and RemoteData objects

There is a DataService for each type of DSpaceObject.
These data services ensure resources get fetched from the rest api (the rest api at this point), and stored in the ngrx storemock
The find methods in the DataServices return an Observable stream of RemoteData objects
 RemoteData objects contain the status of the request (loading/failed/succeeded) and the data (or error message)

https://angular.io/styleguide#!#components
https://v4-alpha.getbootstrap.com/getting-started/introduction/
https://ng-bootstrap.github.io/#/components
https://github.com/twbs/bootstrap/blob/v4-dev/scss/_variables.scss
https://angular.io/docs/ts/latest/guide/component-styles.html
https://github.com/DSpace/dspace-angular/blob/master/resources/i18n/en.json
https://github.com/ngx-translate/core
https://github.com/ngrx/store
https://wiki.duraspace.org/display/DSPACE/DSpace+7+UI+Technology+Stack#DSpace7UITechnologyStack-OtherPackages
https://github.com/DSpace/dspace-angular/pull/18/commits/69f8d9855a412952aa7696676190221da287fe58
https://github.com/artlowel/dspace-angular/commit/fdefa86bfc1bf8dec189bb13fb2d412828b39663
https://github.com/DSpace/dspace-angular/blob/8e4bec9c304f7f1b0bfcebdbde96b7c6fe35c2b9/src/app/shared/host-window.actions.ts
https://github.com/DSpace/dspace-angular/blob/8e4bec9c304f7f1b0bfcebdbde96b7c6fe35c2b9/src/app/shared/host-window.actions.ts#L5
https://github.com/DSpace/dspace-angular/blob/8e4bec9c304f7f1b0bfcebdbde96b7c6fe35c2b9/src/app/shared/host-window.actions.ts#L8
https://github.com/DSpace/dspace-angular/blob/master/src/app/shared/host-window.reducer.ts
https://github.com/DSpace/dspace-angular/blob/master/src/app/shared/host-window.reducer.ts
https://twitter.com/dan_abramov/status/659417780236742656?lang=en
https://github.com/ngrx/effects/blob/master/docs/intro.md
https://github.com/DSpace/dspace-angular/blob/master/src/app/app.reducer.ts
https://github.com/DSpace/dspace-angular/blob/master/src/app/app.effects.ts

This gist shows how you would use it in practice:

In the component I specify collection$. The dollar is a convention to indicate an observable
In the OnInit: this.collection$ = this.cds.findAll();
And then in the template, handle the different cases: dedicated messages for isLoading and hasFailed and the actual data for hasSucceeded

of course in a more realistic scenario you might send the error to a notification service instead of handling it yourself
In the template I use an and the pipe to unwrap the observable: every time the observable changes the contents of this ng-container async
block will be re-rendered, and will have the latest valuecollectionRD
The question marks check for null or undefined: the rest of the statement won't be executed unless that variable before the question mark has a
value.

https://gist.github.com/artlowel/1826582c47e11ff3cb01c8b0946de593

	DSpace 7 - Angular UI Development

