
OAI 2.0 Server

1 Introduction
1.1 What is OAI 2.0?
1.2 Why OAI 2.0?
1.3 Concepts (XOAI Core Library)

2 OAI 2.0
2.1 Indexing OAI content

2.1.1 OAI Manager
2.1.2 Scheduled Tasks

2.2 Client-side stylesheet
2.3 Metadata Formats
2.4 Encoding problems

3 Configuration
3.1 Basic Configuration
3.2 Advanced Configuration

3.2.1 General options
3.2.2 Add/Remove Metadata Formats
3.2.3 Add/Remove Metadata Fields

4 Driver/OpenAIRE compliance
4.1 Driver Compliance
4.2 OpenAIRE compliance

5 Sanity check your OAI interface with the OAI Validator

Introduction

Open Archives Initiative Protocol for Metadata Harvesting is a low-barrier mechanism for repository interoperability. Data Providers are repositories that
expose structured metadata via OAI-PMH. Service Providers then make OAI-PMH service requests to harvest that metadata. OAI-PMH is a set of six
verbs or services that are invoked within HTTP.

What is OAI 2.0?

OAI 2.0 is a Java implementation of an OAI-PMH data provider interface (originally developed by Lyncode) that uses .XOAI, an OAI-PMH Java Library

Why OAI 2.0?

Projects like have specific metadata requirements (to the published content through the OAI-PMH interface). As the OAI-PMH protocol doesn't OpenAIRE
establish any frame to these specifics, OAI 2.0 can, in a simple way, have more than one instance of an OAI interface (feature provided by the XOAI core
library) so one could define an interface for each project. That is the main purpose, although, OAI 2.0 allows much more than that.

Concepts (XOAI Core Library)

To understand how XOAI works, one must understand the concept of Filter, Transformer and Context. With a Filter it is possible to select information from
the data source. A Transformer allows one to make some changes in the metadata before showing it in the OAI interface. XOAI also adds a new concept
to the OAI-PMH basic specification, the concept of context. A context is identified in the URL:

http://www.example.com/oai/<context>

Contexts could be seen as virtual distinct OAI interfaces, so with this one could have things like:

http://www.example.com/oai/request
http://www.example.com/oai/driver
http://www.example.com/oai/openaire

With this ingredients it is possible to build a robust solution that fulfills all requirements of , and also other project-specific requirements. Driver OpenAIRE
As shown in Figure 1, with contexts one could select a subset of all available items in the data source. So when entering the context, all OAI-OpenAIRE
PMH request will be restricted to that subset of items.

http://www.openarchives.org/pmh/
https://github.com/DSpace/xoai
http://www.openaire.eu/
http://www.example.com/oai/request
http://www.example.com/oai/driver
http://www.example.com/oai/openaire

At this stage, contexts could be seen as sets (also defined in the basic OAI-PMH protocol). The magic of XOAI happens when one need specific metadata
format to be shown in each context. Metadata requirements by slightly differs from the ones. So for each context one must define its Driver OpenAIRE
specific transformer. So, contexts could be seen as an extension to the concept of sets.

To implement an OAI interface from the XOAI core library, one just need to implement the datasource interface.

OAI 2.0

OAI 2.0 is deployed as a part of the DSpace server (backend) webapp. OAI 2.0 has a configurable data source, by default it will not query the DSpace
SQL database at the time of the OAI-PMH request. Instead, it keeps the required metadata in its Solr index (currently in a separate "oai" Solr core) and
serves it from there. It's also possible to set OAI 2.0 to only use the database for querying purposes if necessary, but this decreases performance
significantly. Furthermore, it caches the requests, so doing the same query repeatedly is very fast. In addition to that it also compiles DSpace items to
make uncached responses much faster.

Details about OAI 2.0 internals can be found .here

The OAI 2.0 Server only uses Solr for its indexing. The previous capability to use Database indexing has been removed.

Indexing OAI content

OAI 2.0 uses Solr for all indexing of content.

The Solr index can be updated at your convenience, depending on how fresh you need the information to be. Typically, the administrator sets up a nightly
cron job to update the Solr index from the SQL database.

OAI Manager

OAI manager is a utility that allows one to do certain administrative operations with OAI. You can call it from the command line using the dspace launcher:

Syntax

[dspace]/bin/dspace oai <action> [parameters]

Actions

import Imports DSpace items into OAI Solr index (also cleans OAI cache)
clean-cache Cleans the OAI cache

Parameters

-c Clears the Solr index before indexing (it will import all items again)
-v Verbose output
-h Shows an help text

Scheduled Tasks

In order to refresh the OAI Solr index, it is required to run the command periodically. You can add the following [dspace]/bin/dspace oai import
task to your crontab:

0 3 * * * [dspace]/bin/dspace oai import

Note that should be replaced by the correct value, that is, the value defined in parameter .[dspace] dspace.cfg dspace.dir

Client-side stylesheet

https://wiki.duraspace.org/pages/viewpage.action?pageId=32478690

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

1.
2.
3.

1.
2.

The OAI-PMH response is an XML file. While OAI-PMH is primarily used by harvesting tools and usually not directly by humans, sometimes it can be
useful to look at the OAI-PMH requests directly - usually when setting it up for the first time or to verify any changes you make. For these cases, XOAI
provides an XSLT stylesheet to transform the response XML to a nice looking, human-readable and interactive HTML. The stylesheet is linked from the
XML response and the transformation takes place in the user's browser (this requires a recent browser, older browsers will only display the XML directly).
Most automated tools are interested only in the XML file itself and will not perform the transformation. If you want, you can change which stylesheet will be
used by placing it into the directory (or into the [dspace]/webapps/oai/static [dspace-src]/dspace-xoai/dspace-xoai-webapp/src/main

 after which you have to rebuild DSpace), modifying the "stylesheet" attribute of the "Configuration" element in /webapp/static [dspace]/config
 and restarting your servlet container./crosswalks/oai/xoai.xml

Metadata Formats

By default OAI 2.0 provides 12 metadata formats within the /request context:

OAI_DC
DIDL
DIM
ETDMS
METS
MODS
OAI-ORE
QDC
RDF
MARC
UKETD_DC
XOAI

At /driver context it provdes:

OAI_DC
DIDL
METS

And at /openaire context it provides:

OAI_DC
METS

Encoding problems

There are two main potential sources of encoding problems:

a) The servlet connector port has to use the correct encoding. E.g. for Tomcat, this would be <Connector port="8080" ... URIEncoding="UTF-
, where the port attribute specifies port of the connector that DSpace is configured to access Solr on (this is usually 8080, 80 or in case of AJP 8" />

8009).

b) System locale of the dspace command line script that is used to do the oai import. Make sure the user account launching the script (usually from cron)
has the correct locale set (e.g. en_US.UTF-8). Also make sure the locale is actually present on your system.

Configuration

Basic Configuration

Configuration
File:

[dspace]/config/modules/oai.cfg

Property: oai.enabled

Example Value: oai.enabled = true (default)

Information Note: Allows you to enable or disable the OAI module/endpoint

Property: oai.path

Example Value: oai.path = oai (default)

Information Note: Allows you to specify the path where the OAI module will be deployed. This path is relative to the dspace.server.url. So, for
example, if "dspace.server.url=http://localhost:8080/server", then by default the OAI module is available at http://localhost:8080
/server/oai/

Property: oai.storage

Example Value: oai.storage = solr

Information Note: This allows to choose the OAI data source between solr and database. ONLY "solr" is supported at this time.

Property: oai.solr.url

Example Value: oai.solr.url = ${solr.server}/oai

Informational
Note:

Solr Server location

Property: oai.identifier.prefix

Example Value: oai.identifier.prefix = ${dspace.hostname}

Informational
Note:

OAI persistent identifier prefix. Format - oai:PREFIX:HANDLE

Property: oai.config.dir

Example Value: oai.config.dir = ${dspace.dir}/config/crosswalks/oai

Informational
Note:

Configuration directory, used by XOAI (core library). Contains xoai.xml, metadata format XSLTs and transformer XSLTs.

Property: oai.cache.enabled

Example Value: oai.cache.enabled = true

Informational
Note:

Whether to enable the OAI cache. Default is true (for better performance).

Property: oai.cache.dir

Example Value: oai.cache.dir = ${dspace.dir}/var/oai

Informational
Note:

Directory to store runtime generated files (for caching purposes).

Advanced Configuration

OAI 2.0 allows you to configure following advanced options:

Contexts
Transformers
Metadata Formats
Filters
Sets

It's an XML file commonly located at: [dspace]/config/crosswalks/oai/xoai.xml

General options

These options influence the OAI interface globally. "per page" means per request, next page (if there is one) can be requested using resumptionToken
provided in current page.

identation [boolean] - whether the output XML should be indented to make it human-readable
maxListIdentifiersSize [integer] - how many identifiers to show per page (verb=ListIdentifiers)
maxListRecordsSize [integer] - how many records to show per page (verb=ListRecords)
maxListSetsSize [integer] - how many sets to show per page (verb=ListSets)
stylesheet [relative file path] - an xsl stylesheet used by client's web browser to transform the output XML into human-readable HTML

Their location and default values are shown in the following fragment:

<Configuration xmlns="http://www.lyncode.com/XOAIConfiguration"
 identation="false"
 maxListIdentifiersSize="100"
 maxListRecordsSize="100"
 maxListSetsSize="100"
 stylesheet="static/style.xsl">

Add/Remove Metadata Formats

Each context could have its own metadata formats. So to add/remove metadata formats to/from it, just need add/remove its reference within xoai.xml, for
example, imagine one need to remove the XOAI schema from:

<Context baseurl="request">
 <Format refid="oaidc" />
 <Format refid="mets" />
 <Format refid="xoai" />
 <Format refid="didl" />
 <Format refid="dim" />
 <Format refid="ore" />
 <Format refid="rdf" />
 <Format refid="etdms" />
 <Format refid="mods" />
 <Format refid="qdc" />
 <Format refid="marc" />
 <Format refid="uketd_dc" />
</Context>

Then one would have:

<Context baseurl="request">
 <Format refid="oaidc" />
 <Format refid="mets" />
 <Format refid="didl" />
 <Format refid="dim" />
 <Format refid="ore" />
 <Format refid="rdf" />
 <Format refid="etdms" />
 <Format refid="mods" />
 <Format refid="qdc" />
 <Format refid="marc" />
 <Format refid="uketd_dc" />
</Context>

It is also possible to create new metadata format by creating a specific XSLT for it. All already defined XSLT for DSpace can be found in the [dspace]
 directory. So after producing a new one, add the following information (location marked using brackets) inside /config/crosswalks/oai/metadataFormats

the element in [dspace]/config/crosswalks/oai/xoai.xml:<Formats>

<Format id="[IDENTIFIER]">
 <Prefix>[PREFIX]</Prefix>
 <XSLT>metadataFormats/[XSLT]</XSLT>
 <Namespace>[NAMESPACE]</Namespace>
 <SchemaLocation>[SCHEMA_LOCATION]</SchemaLocation>
</Format>

where:

Parameter Description

IDENTIFIER The identifier used within context configurations to reference this specific format, must be unique within all Metadata Formats
available.

PREFIX The prefix used in OAI interface (metadataPrefix=PREFIX).

XSLT The name of the XSLT file within directory[dspace]/config/crosswalks/oai/metadataFormats

NAMESPACE XML Default Namespace of the created Schema

SCHEMA_LOCATION URI Location of the XSD of the created Schema

NOTE: Changes in [dspace]/config/crosswalks/oai/xoai.xml requires reloading/restarting the servlet container.

Add/Remove Metadata Fields

The internal DSpace fields (Dublin Core) are exposed in the internal XOAI format (xml). All other metadata formats exposed via OAI are mapped from this
XOAI format using XSLT (xoai.xsl itself is just an identity transformation). These XSLT stylesheets are found in the [dspace]/config/crosswalks/oai

 directory. So e.g. oai_dc.xsl is a transformation from the XOAI format to the oai_dc format (unqualified Dublin Core)./metadataFormats

Therefore exposing any DSpace metadata field in any OAI format is just a matter of modifying the corresponding output format stylesheet (This assumes
the general knowledge of how XSLT works. For a tutorial, see e.g.).http://www.w3schools.com/xsl/

http://www.w3schools.com/xsl/

For example, if you have a DC field "local.note.librarian" that you want to expose in oai_dc as <dc:note> (please note that this is not a valid DC field and
thus breaks compatibility), then edit oai_dc.xsl and add the following lines just above the closing tag </oai_dc:dc>:

<xsl:for-each select="doc:metadata/doc:element[@name='local']/doc:element[@name='note']/doc:element/doc:element
/doc:field[@name='librarian']">
 <dc:note><xsl:value-of select="." /></dc:note>
</xsl:for-each>

If you need to add/remove metadata fields, you're changing the output format. Therefore it is recommended to as a copy of create a new metadata format
the one you want to modify. This way the old format will remain available along with the new one and any upgrades to the original format during DSpace
upgrades will not overwrite your customizations. If you need the format to have the same name as the original format (e.g. the default oai_dc format), you
can create a new in xoai.xsl containing your modified format with the original name, which will be available as /oai/context-name.context

NOTE: Please, keep in mind that the OAI provider caches the transformed output, so you have to run after [dspace]/bin/dspace oai clean-cache
any .xsl modification and reload the OAI page for the changes to take effect. When adding/removing metadata formats, making changes in [dspace]/config
/crosswalks/oai/xoai.xml requires reloading/restarting the servlet container.

Driver/OpenAIRE compliance

The default OAI 2.0 installation provides two new contexts. They are:

Driver context, which only exposes Driver compliant items;
OpenAIRE context, which only exposes OpenAIRE compliant items;

However, in order to be exposed DSpace items must be compliant with Driver/OpenAIRE guide-lines.

Driver Compliance

DRIVER Guidelines for Repository Managers and Administrators on how to expose digital scientific resources using OAI-PMH and Dublin Core Metadata,
creating interoperability by homogenizing the repository output. The OAI-PMH is based on DRIVER Guidelines 2.0. set driver

This set is used to expose items of the repository that are available for open access. It’s not necessary for all the items of the repository to be available for
open access.

What specific metadata values are expected?

To have items in this set, you must configure your file in order to comply with the DRIVER Guidelines:input-forms.xml

Must have a publication date - (already configured in DSpace items)dc.date.issued
dc.language must use ISO639-3
the value of must be one of the dc.type 16 types named in the guidelines

How do you easily add those metadata values?

As DRIVER guidelines use Dublin Core, all the needed items are already registered in DSpace. You just need to configure the deposit process.

OpenAIRE compliance
For OpenAIRE v4 compliance, see OpenAIRE4 Guidelines Compliancy

The OpenAIRE Guidelines 2.0 provide the OpenAIRE compatibility to repositories and aggregators. By implementing these Guidelines, repository
managers are facilitating the authors who deposit their publications in the repository in complying with the EC Open Access requirements. For developers
of repository platforms, the Guidelines provide guidance to add supportive functionalities for authors of EC-funded research in future versions.

The name of the set in OAI-PMH is "ec_fundedresources" and will expose the items of the repository that comply with these guidelines. These guidelines
are based on top of DRIVER guidelines. See .version 2.0 of the Guidelines

See the .Application Profile of OpenAIRE

What specific metadata values are expected?

These are the OpenAIRE metadata values only, to check these and driver metadata values check page 11 of the OpenAIRE guidelines 2.0.

dc:relation with the project ID (see p.8)
dc:rights with the access rights information from vocabulary (possible values)here

Optionally:

dc:date with the embargo end date (recommended for embargoed items)

http://wiki.duraspace.org/#OAI2.0Server-Concepts(XOAICoreLibrary)
http://www.driver-support.eu/
http://www.openaire.eu/
http://www-01.sil.org/iso639-3/codes.asp
http://guidelines.readthedocs.org/en/latest/literature/field_publicationtype.html
https://wiki.lyrasis.org/display/DSDOC7x/OpenAIRE4+Guidelines+Compliancy
https://guidelines.openaire.eu/en/latest/
http://colab.mpdl.mpg.de/mediawiki/ESciDoc_Application_Profile_OpenAIRE
http://wiki.surf.nl/display/standards/info-eu-repo/#info-eu-repo-AccessRights

<dc:date>info:eu-repo/date/embargoEnd/2011-05-12<dc:date>

How do you easily add those metadata values?

Have a dc:relation field in with a list of the projects. You can also use the to facilitate the input-forms.xml OpenAIRE Authority Control Addon
process of finding the project.
Just use a combo-box for dc:rights to input the 4 options:

info:eu-repo/semantics/closedAccess
info:eu-repo/semantics/embargoedAccess
info:eu-repo/semantics/restrictedAccess
info:eu-repo/semantics/openAccess

Use an input-box for dc:date to insert the embargo end date

Relevant Links

OAI 2.0 is a standard part of DSpace 3.0
Download & Install OAI 2.0 for DSpace 1.8.x: http://www.lyncode.com/dspace/addons/xoai/

Sanity check your OAI interface with the OAI Validator

There is a very useful validator for OAI interfaces available at , we urge you to use this validator to confirm your OAI interface is http://validator.oaipmh.com
in fact usable.

http://projecto.rcaap.pt/index.php/lang-pt/consultar-recursos-de-apoio/remository?func=fileinfo&id=354
http://www.lyncode.com/dspace/addons/xoai/
http://validator.oaipmh.com

	OAI 2.0 Server

