
The IdentifierBundle - who is requesting authorization?
The policy interface has a single method, and looks like this:

public interface PolicyIface {
 public PolicyDecision isAuthorized(IdentifierBundle whoToAuth, RequestedAction whatToAuth);
}

The nature of is covered in and This page is about whatToAuth Creating a VIVO authorization policy - an example A more elaborate authorization policy.
.whoToAuth

The challenge of identity and authorization
A user's level of authorization may depend on a variety of information:

are they logged in?
what is their role?
do they have a profile page?
what information is in their profile page?
do they have "proxy authorization" to edit additional pages?

These questions are made more complex because this information is stored in multiple data models. Also, the policy does not have access to the current
request or session, so it is not always easy to obtain information.

The IdentifierBundle to the rescue
Notice that the method receives an argument of the type . This consists of many objects, and each isAuthorized IdentifierBundle Identifier Id

 contains a small piece of information about the current user.entifier

You can see the contents of this bundle (as well as many other things) by directing your browser to . This screen shot shows /vivo/admin/showAuth
information about an anonymous (not logged in) session:

And this one shows information about a user who is logged in as a self-editor.

https://wiki.lyrasis.org/display/VIVODOC111x/Creating+a+VIVO+authorization+policy+-+an+example
https://wiki.lyrasis.org/display/VIVODOC111x/A+more+elaborate+authorization+policy

Your policy has access to these objects, and the classes have static methods that make it easier to find the information you Identifier Identifier
want.

For example, in edu.cornell.mannlib.vitro.webapp.auth.identifier.common.IsUser

 String userUri = null;
 Collection<String> userUris = IsUser.getUserUris(whoToAuth);
 if (!userUris.isEmpty()) {
 userUri = userUris.iterator().next();
 }
 // null means not logged in.
 // Non-null is the URI of the user account.

And, in edu.cornell.mannlib.vitro.webapp.auth.identifier.common.HasProfile

 String profileUri = null;
 Collection<String> profileUris = HasProfile.getProfileUris(whoToAuth);
 if (!profileUris.isEmpty()) {
 profileUri = profileUris.iterator().next();
 }
 // null means either not logged in, or no profile.
 // Non-null is the URI of the profile page.

In most cases, the policy is more interested in the URI of the profile page, rather than the URI of the user account. However, either one might come in
handy.

It might be worth noting that and are both subclasses of . That means that you HasProfile HasProxyEditingRights HasAssociatedIndividual
can easily distinguish between them, or not, according to the needs of your particular policy.

	The IdentifierBundle - who is requesting authorization?

