Complex Updates on Metadatavalue Table Columns

The net adat aval ue does not have all of the data needed to make decisions on how to update its columns when the decisions on how to update may be
very complex or even user driven.

This guide provides complex queries to perform most of the conditions and logic in the database via SQL while potentially providing CSV exports with
much of the data needed to help a user make decisions on what to update, independent of the database.

To achieve this, complex PostgreSQL-specific queries are provided along with more standards compliant SQL scripts (where possible). Notable
advantages and disadvantages of each approach may also be provided.

This guide follows changes to et adat aval ue. t ext _| ang table column.

The Objective

The DSpace database does not enforce any structure on text_lang and users may input any data in the field. This yields potentially very significant
inconsistencies that need to be analyzed and resolved. This is not fully achievable in SQL alone given that a user must make decisions on what to change.
A single data set is desired to perform all operations against and must contain the appropriate ids, handles, and values while keeping the number of
columns reasonably small. This set can then be exported into CSV for the decision making user to perform advanced analysis on.

PostgreSQL WITH

The PostgreSQL-specific WITH clause is used to help achieve the desired behavior in an efficient behavior when parsing the entire data set. The WITH
clause is essentially a syntax for pre-processing SQL sub-queries in a temporary manner to help Postgresql perform better optimizations when executing.
This also has a benefit of making it easier to show each part of the query in documentation. The downside is that as a pre-processor, it does not perform
as well as a monolithic query with inline sub-queries when LIMIT is used. When LIMIT and ORDER BY are both used, the PostgreSQL-specific query out
performs the standard SQL query.

Temporary View

For the purposes of this documentation as well as CSV Exporting below, the example query will be saved as a temporary view, called vi ew_i t em net ada
t a. This behavior is not necessary but is very helpful. There are also issues with PostgreSQL CSV exporting that make exporting a temporary view more
practical than directly exporting a SELECT query.

CSV Exporting

The CSV exporting can be achieved in two major ways in PostgreSQL.

L \copy ... delinmter ',' csv header force quote *;
2.\o ... COPY ... TO STDOUT DELIM TER ',"' CSV HEADER FORCE QUOTE * ... \o

The first way is simple and easy except for a major caveat of not support newline characters (making large queries impractical).

The second way, by default will try to write to the filesystem as the database user, which would require the script to be run as the postgresql user. To avoid
this, an additional command of \ o in conjunction with forcing output to STDOUT is used to redirect output to the clients machine.

SQL for Metadatavalue Text Language with Item, Collection, and Community

The SQL queries provided handles almost all cases, with the known exception to be that the query does not handle community to community recursion.

The columns desired are uui d and handl e for each community, collection, and item as well as the metadata i d, t ext _val ue, t ext _I ang, schema(sch
ema name), fi el d(schema element), and qual i fi er (schema qualifier).

PostgreSQL view_item_metadata VIEW

Postgresql-Specific: view_item_metadata

CREATE TEMPORARY VI EWvi ew_i tem netadata AS (
W TH comuni ty_handl e_to_col I ection AS (
SELECT cc.conmunity_id AS community_uuid, cc.collection_id AS collection_uuid, h.handl e AS community_handl e
FROM comuni ty2col | ection cc
INNER JO N handle h ON h.resource_id = cc.comunity_id
)
col l ection_community_handl e AS (
SELECT cnhc. conmuni ty_uui d, crhc. collection_uuid, cnmhc.community_handl e, h.handl e AS collection_handle
FROM comuni ty_handl e_to_col | ection cmhc
INNER JO N handl e h ON h.resource_id = cnhc. col |l ection_uuid

)
itemto_collection AS (
(
SELECT ci.itemid AS itemuuid, ci.collection_id AS collection_uuid
FROM col | ection2item ci
) UNION (
SELECT i.uuid AS itemuuid, i.owning_collection AS collection_uuid
FROM i tem i
)
)

itemhandl e AS (

SELECT ic.itemuuid, ic.collection_uuid, h.handle AS item handle

FROM itemto_collection ic
LEFT JON handle h ON h.resource_id = ic.itemuuid

)

itemcollection_comunity_handle AS (

SELECT cch. comuni ty_uuid, cch.collection_uuid, ih.itemuuid, cch.community_handl e, cch.collection_handle,
ih.itemhandl e

FROM i tem handl e ih
LEFT JO N col |l ecti on_comuni ty_handl e cch ON cch.collection_uuid = ih.collection_uuid

)

schema_field AS (

SELECT nfr.netadata_field_id AS field_id, nser.short_id AS field_schema, nfr.elenent AS field_name, nfr.
qualifier AS field_qualifier

FROM net adat af i el dregi stry nfr
INNER JO N net adat aschenaregi stry nmsr ON nsr. net adata_schema_id = nfr. metadata_schema_id

)

met adat a_schema AS (

SELECT m net adata_val ue_id AS netadata_id, m dspace_object_id AS netadata_uuid, sf.field_id AS
metadata_field_id, mtext_value AS netadata_text_value, mtext_lang AS netadata_text_lang, sf.field_schema AS
net adat a_schema, sf.field_nane AS netadata_field, sf.field_qualifier AS metadata_qualifier

FROM net adat aval ue m
INNER JO N schema_field sf ON sf.field_id = mnetadata_field_id

)

SELECT i cch. community_uuid, icch.collection_uuid, icch.itemuuid, ns.netadata_uuid, nms.netadata_id, ns.
metadata_field_id, icch.community_handle, icch.collection_handle, icch.itemhandle, ns.netadata_text_value, ns.
net adat a_t ext _| ang, ms. netadata_schema, ns.netadata_field, nms.netadata_qualifier

FROM i tem col | ecti on_conmmuni ty_handl e icch

LEFT JO N netadata_schema nms ON ns. netadata_uuid = icch.itemuuid

)

The above query can be replaced with the following for a more standards compliant and more efficient select when using LIMIT.

Standard SQL view_item_metadata VIEW

Standard SQL: view_item_metadata

CREATE TEMPORARY VI EWvi ew_i tem netadata AS (

SELECT i cch. community_uuid, icch.collection_uuid, icch.itemuuid, nms.netadata_uuid, nms.netadata_id, ns.
metadata_field_id, icch.community_handle, icch.collection_handle, icch.itemhandle, ns.netadata_text_value, ns.
net adat a_t ext _| ang, ms. netadata_schema, ns.netadata_field, nms.netadata_qualifier

FROM (
SELECT cch. community_uuid, cch.collection_uuid, ih.itemuuid, cch.comunity_handle, cch.
col l ection_handle, ih.itemhandle

FROM (
SELECT ic.itemuuid, ic.collection_uuid, h.handle AS item handle
FROM (
(
SELECT ci.itemid AS itemuuid, ci.collection_id AS collection_uuid
FROM col | ecti on2item ci
) UNION (
SELECT i.uuid AS itemuuid, i.owning_collection AS collection_uuid
FROM item i
)
) ic
LEFT JO N handle h ON h.resource_id = ic.itemuuid
) ih
LEFT JAON (
SELECT cnhc. communi ty_uuid, cnhc. collection_uuid, crmhc.conmunity_handl e, h.handle AS collection_handle
FROM (

SELECT cc.comunity_id AS comunity_uuid, cc.collection_id AS collection_uuid, h.handle AS
comuni ty_handl e
FROM communi ty2col | ection cc
INNER JO N handle h ON h.resource_id = cc.community_id

) cnhc
INNER JO N handl e h ON h.resource_id = cnhc. col |l ection_uuid
) cch ON cch.collection_uuid = ih.collection_uuid
) icch
LEFT JAON (

SELECT m netadata_value_id AS netadata_i d, m dspace_object_id AS netadata_uuid, sf.field_id AS
metadata_field_id, mtext_value AS netadata_text_value, mtext_lang AS netadata_text_|lang, sf.field_schema AS
nmet adat a_schema, sf.field_name AS netadata_field, sf.field_qualifier AS netadata_qualifier

FROM net adat aval ue m

I NNER JO N (

SELECT nfr.metadata_field_id AS field_id, nsr.short_id AS field_schema, nfr.elenent AS field_nane,
nfr.qualifier AS field_qualifier

FROM net adat afi el dregi stry nfr
INNER JO N net adat aschenaregi stry msr ON nsr. nmet adata_scherma_id = nfr. netadata_schena_id

) sf ONsf.field_id = mnetadata_field_id

) ns ON ns. netadata_uuid = icch.itemuuid

)

Example: Export Entire view_item_metadata as CSV

Export as CSV Example for Specific Handle

\o 'dspace-all _data.csv'

COPY (
SELECT * FROM vi ew_i tem net adat a
)
TO STDOUT DELIM TER ',' CSV HEADER FORCE QUOTE *
\o

The above example exports to a CSV file called dspace- al | _dat a. csv.

Example: CSV Export for Getting Specific Owning Collection Handle

Export as CSV Example for Specific Handle

\o 'dspace-1234-owni ng_col | ect on- uui ds. csv'
COPY (

W TH desi red_handl e AS (

SELECT resource_id FROM handl e WHERE handl e = ' 1969. 1/ 1234'

)

SELECT uuid FROM item

WHERE owni ng_col l ection IN (SELECT resource_id FROM desi red_handl e)
)
TO STDOUT DELIM TER ',' CSV HEADER FORCE QUOTE *

\o

The above example exports to a CSV file called dspace- 1234- owni ng_col | ect on- uui ds. csv. The table col | ect i on2i t emmay also be needed
and could be added using a UNION as done in vi ew_i t em net adat a.

Example: Normalize Spanish Language Code

Replace 'Spanish with 'es' for Language

W TH t ar get _subset AS (
SELECT netadata_id
FROM vi ew_i t em net adat a
VWHERE TRI M LOAER(et adata_text_lang)) in ('spanish')
)
UPDATE net adat aval ue
SET text_lang = 'es'
WHERE net adata_value_id IN (SELECT * FROM t arget _subset)

The above example shows how to perform an SQL UPDATE using information that was retrieved from analyzing the data set while utilize the vi ew_i t em_
net adat a VIEW.

	Complex Updates on Metadatavalue Table Columns

