
Setup Camel Message Integrations

Message Headers
Supporting Queues
Distributed Brokers
Protocol Support
Deployment

Fedora Camel Toolbox
Monitoring Your Camel Routes

The Fedora Repository makes it possible to design custom event-driven application workflows. For instance, a common use case is sending content to an
external search engine or triplestore. Other repositories may wish to generate derivative content such as creating a set of smaller images from a high-
resolution master.

Because Fedora publishes modification events on a JMS topic using a local , one can write custom listener applications to handle these ActiveMQ broker
various workflows. By default, the repository's JMS broker supports both the and protocols, which means that it is possible to write OpenWire STOMP
client listeners or consumers in a wide variety of languages, including PHP, Python, Ruby and Java, among others.

For simple message-consuming applications, writing special-purpose applications may be an excellent choice. In contrast, once a repository begins
making use of more complex message-based workflows or when there are multiple listener applications to manage, many repositories use systems such
as to simplify the handling of these messages.Apache Camel

Camel makes use of " " to integrate various services using a terse, domain specific language (DSL) that can be expressed in Java, XML, Scala components
or Groovy. There exists an component designed to work specifically with a Fedora4 repository. This makes it possible to model Solr indexing fcrepo-camel
in only a few lines of code like so:

Camel Route using the Java DSL

XPathBuilder xpath = new XPathBuilder("/rdf:RDF/rdf:Description/rdf:type[@rdf:resource='http://fedora.info
/definitions/v4/indexing#Indexable']")
xpath.namespace("rdf", "http://www.w3.org/1999/02/22-rdf-syntax-ns#")

from("activemq:topic:fedora")
 .to("fcrepo:localhost:8080/fedora/rest")
 .filter(xpath)
 .to("fcrepo:localhost:8080/fedora/rest?transform=default")
 .to("http4:localhost:8080/solr/core/update");

In this specific case, the filtering predicate is just an example; you can, of course, use many different languages, including , orXPath Predicate XQuery SQL
various .Scripting Languages

This same logic can also be expressed using the Spring XML extensions:

Camel Route using the Spring DSL

<route>
 <from uri="activemq:topic:fedora"/>
 <to uri="fcrepo:localhost:8080/fedora/rest"/>
 <filter>
 <xpath>/rdf:RDF/rdf:Description/rdf:type[@rdf:resource='http://fedora.info/definitions/v4
/indexing#Indexable']</xpath>
 <to uri="fcrepo:localhost:8080/fedora/rest?transform=default"/>
 <to uri="http4:localhost:8080/solr/core/update"/>
 </filter>
</route>

Or, in Scala:

https://activemq.apache.org
http://activemq.apache.org/openwire.html
http://stomp.github.io/
https://camel.apache.org
http://camel.apache.org/components.html
https://github.com/fcrepo4/fcrepo-camel
http://camel.apache.org/xpath.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html

Camel Route using the Scala DSL

val xpath = new XPathBuilder("/rdf:RDF/rdf:Description/rdf:type[@rdf:resource='http://fedora.info/definitions/v4
/indexing#Indexable']")
xpath.namespace("rdf", "http://www.w3.org/1999/02/22-rdf-syntax-ns#")

"activemq:topic:fedora" ==> {
 to("fcrepo:localhost:8080/fedora/rest")
 filter(xpath) {
 to("fcrepo:localhost:8080/fedora/rest?transform=default")
 to("http4:localhost:8080/solr/core/update")
 }
}

Please note that the hostnames used for Fedora and Solr in the snippets above are arbitrary. It is quite likely that these systems will be deployed on
separate hosts and that the Camel routes will be deployed on yet another host. Camel makes it easy to distribute applications and replicate data
asynchronously across an arbitrarily large number of independent systems.

Message Headers

By default, Fedora publishes events to a on a local broker. This topic is named "fedora". Each message will contain an empty body and up to five topic
different header values. Those header values are namespaced so they look like this:

org.fcrepo.jms.identifier
org.fcrepo.jms.eventType
org.fcrepo.jms.properties
org.fcrepo.jms.timestamp
org.fcrepo.jms.baseURL

Both eventType and properties are comma-delimited lists of events or properties. The eventTypes follow the JCR 2.0 specification and include:

http://fedora.info/definitions/v4/repository#NODE_ADDED
http://fedora.info/definitions/v4/repository#NODE_REMOVED
http://fedora.info/definitions/v4/repository#PROPERTY_ADDED
http://fedora.info/definitions/v4/repository#PROPERTY_CHANGED
http://fedora.info/definitions/v4/repository#PROPERTY_REMOVED

The properties field will list the RDF properties that changed with that event. NODE_REMOVED events contain no properties. The fcrepo component
for Camel is configured to recognize these headers and act appropriately.

Supporting Queues

The default configuration is fine for locally-deployed listeners, but it can be problematic in a distributed context.
For instance, if the listener is restarted while a message is sent to the topic, that message may be missed.
Furthermore, if there is a networking hiccup between Fedora's local broker and the remote listener, that too
can result in lost messages. Instead, in this case, a queue may be better suited.

ActiveMQ supports “virtual destinations”, allowing your broker to automatically forward messages from one location to another. If Fedora4 is deployed in
Tomcat, the ActiveMQ configuration will be located in . That file can be edited to include the following block:WEB-INF/classes/config/activemq.xml

http://fedora.info/definitions/v4/repository#NODE_ADDED
http://fedora.info/definitions/v4/repository#NODE_REMOVED
http://fedora.info/definitions/v4/repository#PROPERTY_ADDED
http://fedora.info/definitions/v4/repository#PROPERTY_CHANGED
http://fedora.info/definitions/v4/repository#PROPERTY_REMOVED

activemq.xml customization: supporting a queue/fedora endpoint

<destinationInterceptors>
 <virtualDestinationInterceptor>
 <virtualDestinations>
 <compositeTopic name="fedora">
 <forwardTo>
 <queue physicalName="fedora"/>
 </forwardTo>
 </compositeTopic>
 </virtualDestinations>
 </virtualDestinationInterceptor>
</destinationInterceptors>

Now a consumer can pull messages from a queue without risk of losing messages.

This configuration, however, will not allow any other applications to read from the original . If it is necessary to have available totopic /topic/fedora
consumers, this configuration will be useful:

activemq.xml customization: supporting topic and queue endpoints

<destinationInterceptors>
 <virtualDestinationInterceptor>
 <virtualDestinations>
 <compositeTopic name="fedora" forwardOnly="false">
 <forwardTo>
 <queue physicalName="fedora"/>
 </forwardTo>
 </compositeTopic>
 </virtualDestinations>
 </virtualDestinationInterceptor>
</destinationInterceptors>

Now, both and will be available to consumers./topic/fedora /queue/fedora

Distributed Brokers

The above example will allow you to distribute the message consumers across multiple machines without missing messages, but it can also be useful to
distribute the message broker across multiple machines. This can be especially useful if you want to further decouple the message producers and
consumers. It can also be useful for high-availability and failover support.

ActiveMQ supports a variety of distributed broker . To push messages from both the message queue and topic to a remote broker, thistopologies
configuration can be used:

activemq.xml customization: distributed brokers

<networkConnectors>
 <networkConnector name="fedora_bridge" dynamicOnly="true" uri="static:(tcp://remote-host:61616)">
 <dynamicallyIncludedDestinations>
 <topic physicalName="fedora"/>
 <queue physicalName="fedora"/>
 </dynamicallyIncludedDestinations>
 </networkConnector>
</networkConnectors>

Protocol Support

ActiveMQ brokers support a wide variety of . If Fedora's internal broker is bridged to an external broker, please remember to enable the proper protocols
protocols on the remote broker. This can be done like so:

http://activemq.apache.org/topologies.html
http://activemq.apache.org/protocols.html

1.
2.
3.

4.

5.

activemq.xml customization: protocol support

<transportConnectors>
 <transportConnector name="openwire" uri="tcp://0.0.0.0:61616"/>
 <transportConnector name="stomp" uri="stomp://0.0.0.0:61613"/>
</transportConnectors>

Each supports many additional that can be added to this configuration.transportConnector options

Deployment

Camel routes can be deployed in any JVM container. In order to deploy to Jetty or Tomcat, the route must be built as a WAR file. This command will get
you started:

$> mvn archetype:generate \
 -DarchetypeGroupId=org.apache.camel.archetypes \
 -DarchetypeArtifactId=camel-archetype-war \
 -DarchetypeVersion=2.14.0 \
 -DgroupId=org.example.camel \
 -DartifactId=my-camel-route \
 -Dversion=1.0.0-SNAPSHOT \
 -Dpackage=org.example.camel

After the project has been built (), you will find the WAR file in . That file can simply be copied to the directory of your mvn install ./target webapps
Jetty/Tomcat server.

Another popular deployment option is , which is a light-weight OSGi-based JVM container. Karaf has the advantage of supporting hot code swapping, Karaf
which allows you to make sure that your routes are always running. It also allows you to deploy XML-based routes (or) by simply copying Spring Blueprint
the files into a directory. If deploying camel routes to Karaf, Blueprint-based routes have some advantages over the Spring-based $KARAF_HOME/deploy
DSL, particularly in terms of being able to use within your routes.property placeholders

Karaf can be set up by:

downloading Karaf 4.x or later from an apache.org mirror
running ./bin/karaf to enter the shell
installing required bundles:

Karaf console

$> feature:repo-add camel 2.16.2
$> feature:repo-add activemq 5.11.1
$> feature:install camel
$> feature:install activemq-camel

display available camel features
$> feature:list | grep camel

install camel features, as needed
$> feature:install camel-http4

install fcrepo-camel (as of v4.4.0)
$> feature:repo-add mvn:org.fcrepo.camel/fcrepo-camel/4.4.0/xml/features
$> feature:install fcrepo-camel

setting up a service wrapper (so that karaf runs as a system-level service)

Karaf console

$> feature:install wrapper
$> wrapper:install

following the directions provided by this command

http://activemq.apache.org/configuring-transports.html
https://karaf.apache.org
http://camel.apache.org/spring.html
http://camel.apache.org/using-osgi-blueprint-with-camel.html
http://camel.apache.org/using-propertyplaceholder.html
http://karaf.apache.org/index/community/download.html

Now, routes can be deployed (and re-deployed) by simply copying JAR files or XML documents to .$KARAF_HOME/deploy

Fedora Camel Toolbox

The Fedora project distributes camel routes for several common repository tasks as part of the project, for use with Karaf version 4.x. fcrepo-camel-toolbox
Additional information is available on the page. Detailed installation instructions are available as part of the project and Integration Services README
follow this pattern:

Karaf Shell

install fcrepo-camel-toolbox (as of v4.1.0)
$> feature:repo-add mvn:org.fcrepo.camel/fcrepo-camel-toolbox/4.1.0/xml/features

install fcrepo-camel-toolbox (as of v4.5.0)
$> feature:repo-add mvn:org.fcrepo.camel/toolbox-features/4.5.0/xml/features

display available features
$> feature:list | grep fcrepo

install feature
$> feature:install fcrepo-indexing-triplestore

Monitoring Your Camel Routes

It is often useful to keep runtime statistics for your camel routes. is a web console for monitoring your messaging infrastructure, and it can be Hawtio
deployed in any JVM container, including Karaf, Tomcat or Jetty.

In Karaf, hawtio can be installed like so:

Karaf console

$> feature:repo-add hawtio 1.4.29
$> feature:install hawtio

Once deployed, hawtio is available at http://localhost:8181/hawtio/

With Tomcat or Jetty, deploying hawtio is simply a matter of installing a WAR file. Please see the for more information.hawtio website

https://github.com/fcrepo4-exts/fcrepo-camel-toolbox
https://wiki.lyrasis.org/display/FEDORA51/Integration+Services
https://github.com/fcrepo4-exts/fcrepo-camel-toolbox
http://hawt.io/
http://localhost:8181/hawtio/
http://hawt.io/getstarted/index.html

	Setup Camel Message Integrations

