
1.  
2.  
3.  
4.  

Feb 23-24 2010, London Committer Meeting
Jump to:

Purpose and Summary
Tuesday Notes

Enhanced Content Models
Service Definition/Deployment Improvements
Datastream Methods
OSGi and Spring

Wednesday Notes
High Level Storage
Other Storage Topics
Semantic Web and Linked Data
WebDAV (or not..)

Attendees

Purpose and Summary
The purpose of this meeting was to formulate, discuss, and prioritize the major Fedora development items for 2010, and to start identifying who can help 
make them happen. It was held in the Franklin-Wilkins Building on the Waterloo Campus of Kings College, London, Feb 23-24.

Based on a poll of , the  focused on the following major topics:attendees agenda

Content Modeling Architecture
Module Architecture
Storage
Interfaces

Tuesday Notes

Enhanced Content Models

Asger presented an overview of the  work, and we discussed which parts made sense to fold into the core Fedora distribution. Enhanced Content Model
The discussion focused primarily on the extension mechanism and schema + relationship validation.

Presentation by Asger

The group agreed that the following would be good to fold into the core distribution:

 An extension mechanism for DS_COMPOSITE_MODEL, inspired by ECM's
 Use of this extension mechanism to:

Include XSD references
Include OWL Lite references

 The ability to validate XSD and OWL on-demand (after ingest)
 The ability to clone objects via Fedora's APIs

The following need further discussion:

 Ability to validate XSD and OWL as prereq. to "Active" state transition
 Kai indicated interest in defining DSL(s) for validation

To drive this work forward, we identified:

 Lead: Asger
 Contrib: Kai

Service Definition/Deployment Improvements

Ben led a discussion of some of the , suggesting several improvements in addition to what has been outstanding issues with SDefs and SDeps
documented in JIRA.

The group agreed that the following would be good to have in future versions of Fedora:

 The ability to support multiple bindings in service deployment WSDL.  Create a JIRA issue for thisAction:
 Support for POST/PUT/DELETE object methods (front-end)
 Support for POST/PUT/DELETE method bindings (back-end)
 Support for SOAP method bindings (back-end)

http://prezi.com/g5ncrdmtd6a0/
http://sourceforge.net/apps/mediawiki/ecm/index.php?title=Main_Page
https://wiki.lyrasis.org/download/attachments/13770428/FedoraOR09.pdf?version=1&modificationDate=1267469847631&api=v2
https://wiki.lyrasis.org/display/~barmintor/Notes+on+SDef+and+SDep+Improvements


We did not have time to discuss everything noted in the document, but the general consensus was that a rehaul of the way the service deployment code 
works in Fedora (versus small, incremental code changes) will probably be necessary to get us where we want to go.

To drive this work forward, we identified:

 Lead: Ben
 Contrib: Asger

Followup --> Re-Implementing Service Deployment

Datastream Methods

We had planned on discussing Asger's proposal for , but decided to discuss this later in the interest of time.adding datastream methods to Fedora

OSGi and Spring

Eddie kicked off a discussion on what we've learned with OSGi so far, and Bill and Andrew shared some of their OSGi experience with DuraCloud.

The idea with the first chunk of our Fedora-OSGi work was to a) prove that Fedora can be packaged as a complete OSGi bundle, and b) begin OSGi-fying 
some of the key pieces that Fedora uses under the hood.  To that end, Eddie experiemented and had some success with building Fedora as an OSGi 

, and started doing the same for Mulgara.  Chris successfully changed Akubra's plugins to be OSGi bundles and has gained experience in making bundle
existing artifacts OSGi-friendly.

Bill and Andrew are actively using OSGi for the "service" portion of DuraCloud, but noted that there is a significant learning curve and a new set of 
dependency issues to be concerned with, similar to the "growing pains" we experienced in the transition to Maven.

Those of us with some OSGi experience agreed that OSGi still represents a promising direction for Fedora, but there are still a lot of hurdles to getting 
there.  Like maven, these hurdles will become shorter with time, as Java-OSGi adoption increases and the community around it grows.

During this discussion, we noted again that moving toward OSGi is not incompatible with using Spring for dependency injection.  The latter seems to be a 
more tractable goal for the time being, with more immediate payoff.  We agreed to:

 Document best practices for being "OSGi Friendly"
 In the short-term, move to Spring for dependency injection (Fedora modules = spring beans)
 Keep the long-term goal of having a Fedora OSGi bundle that can be used by other apps

To drive this work forward, we identified:

Lead:  Chris
Contrib:  Dan,  Andrew,   Asger
Followup --> Module Architecture Development

Wednesday Notes

High Level Storage

Aaron presented his , describing the motivation and use cases that it enables.proposal for a high level storage interface for Fedora

Aaron's presentation

This proposal was generally well-recieved.

During the discussion, Aaron identified the need to have Fedora's internal datastream locations (stored within the FOXML, for pointing to managed 
content) be specific.  That is, rather than "pid+dsid+dsVersionId", they should be an internal location that means something to the underlying storage.  Acti

 Validate this with Aaron and add as a JIRA issue. on:

We also touched on what it would mean to make this interface compatible with asynchronous read/write use cases.  For reads, if Fedora cannot find the 
content immediately, a 503 http respons and a retry-after header should be sent.  It is unclear exactly what should be happening at this level to support 
such use cases, but one possibility that was mentioned as to have the operations return a Map of name-value pairs as a possible extensibility point.

The ideas around high level storage are still forming, and are inspiring some ideas about caching and sending updates to modules in Fedora in pluggable 
ways. Asger presented a follow-on proposal:

Asger's presentation

This proposal splits the high level storage interface into a read and write side.  There was some discussion about how to "stack" these interfaces.  One 
possibility that came up was having the wholistic Read+Write interface (Aaron's interface) be a singleton within the repository, through which all storage 
calls go, and some implementation of that might then send reads/writes to delegates beneath, which are read-only or write-only (Asger's interfaces).

https://wiki.lyrasis.org/display/FCREPO/Re-Implementing+Service+Deployment
http://www.mail-archive.com/fedora-commons-developers@lists.sourceforge.net/msg00716.html
https://fedora-commons.org/confluence/display/DEV/Fedora+on+OSGi
https://fedora-commons.org/confluence/display/DEV/Fedora+on+OSGi
https://wiki.lyrasis.org/display/FCREPO/Module+Architecture+Development
http://www.mail-archive.com/fedora-commons-developers@lists.sourceforge.net/msg00715.html
http://prezi.com/kjpdt6zhcir6
https://wiki.lyrasis.org/download/attachments/13770428/Highlevelstores.pdf?version=1&modificationDate=1267478858383&api=v2


One of the major questions that Asger's presentation provoked was whether versioning was still important to do at the datastream level, or whether it can 
be done at the object level.  We had a follow-on discussion about this.  The idea presented was: What if Fedora no longer held information about old 
versions in the DigitalObject class and in the stored FOXML?  In other words, these would be designed to work only with the current version of the 
components of the object.  If a datastream changed, a new version of the entire object would be made (and object-level version number would be 
incremented), and older versions of the datastreams would be retained only if storage was configured to do so.  While discussing this, one concern we 
landed on was that there would no longer be a manifest pointing to all versions of everything stored within an object.  We cut this portion of the discussion 
short in the interest of time.   Continue this discussion with others in the Fedora community (wiki page, mailing list, etc)Action:

To drive the high level storage work forward, we identified:

Lead:  Aaron
Contrib:  Asger,  Dan,  Chris
Possible Contrib:  Lee Namba (re:Caching),  Kai, Others at FIZ (re:Versioning)
Followup --> High-level storage layer

Other Storage Topics

The original agenda had several "Hot Topics" defined for storage:

Hierarchical Storage Support
Multiplexing
In-Place Ingest
Large Datastreams
Replication and Messaging

While there was not enough time to discuss these topics by themselves, we touched on some of them as part of the high-level storage topic (hierarchical 
storage support, multiplexing) and the WebDAV topic (in-place ingest).

Semantic Web and Linked Data

Steve presented his latest thoughts on improving SemWeb and Linked Data support in Fedora.

Steve's presentation
Wiki page

We did not have much time to discuss with the group, but the following ideas seemed well recieved and worth persuing immediately:

 Deprecate "Lite" APIs
 HTTP URIs for RI queries: new parameter: scope = local|global, where local scope is vs. "info:" uris, and global scope is vs. "http:" uris 

(translated on the way in and out)

Steve also touched on the following ideas, which need some more experimentation/specification:

 Storing quads vs triples: Each object's triples are in a graph.  Performance? Compatibility w/multiple triplestores?
 Graph hierarchy: Does it make sense to have addressable graphs for each datastream as well?  Or just per-object.  Advantages

/disadvantages.
 Declarative specification of which datastreams/triples to index.

Could be driven on a per-cmodel basis.
For base triples, system object methods might specify which triples to "generate".

 REST API for PUT/POST/DELETE of triples on a per-object basis.  Interestingly, this could allow for RDF management without the 
requirement that an index is present.  We discussed at which endpoint this logically fits: object/datastreams/datastream (straightforward to figure 
out where triples are stored), or object (can be figured out in some cases, but hard in other cases)

To drive this work forward, we identified:

Lead:  Steve
Contrib:  Asger,  Ben
Possible Contrib:  Paul Gearon

WebDAV (or not..)

Kai led a discussion on having a .  One of the major motivating use cases was to have an easy way to ingest content into the WebDAV interface for Fedora
repository.

We talked about the fact that WebDAV might not actually fit the bill here because OS-level clients (what most people would presumably be using for the 
"easy drag and drop case") are generally not that great.  OSX likes to do unnecessary locking for all writes.  Windows' client has been poorly supported for 
some time as well.

During the discussion, an alternative idea came up: If we want an easy drag-and-drop interface for the repository, how about ftp:?  OS clients' support for 
FTP is generally very good, and clients and servers already exist for FTP.  So the real problem for us is simplified to: How do you turn a directory full of 
files into Fedora objects?

This elicited a positive response from the group, especially for the simple "Drag and Drop" ingest scenario.

https://wiki.lyrasis.org/display/FCREPO/High+Level+Storage
https://wiki.lyrasis.org/download/attachments/15368195/Steve%20-%20semweb%2C%20RI%2C%20etc%20overview.pdf?version=1&modificationDate=1270636050922&api=v2
http://fedora-commons.org/confluence/display/DEV/Supporting+the+Semantic+Web+and+Linked+Data
https://fedora-commons.org/confluence/display/~kstrnad/WebDAV+Interface+Proposal


 Develop a "drop box" module for the Fedora server, which scans a directory periodically and when new items come in, wraps them and 
ingests them as Fedora objects.  This would be a prototype initially, and wouldn't have to be developed as part of the core.

Another idea that came up was that of a "live box", where content doesn't actually get moved out of the directory it's placed into, but is pointed to as a kind 
of "in-place" ingest.  We just scratched the surface of this latter idea.

To drive this work forward, we identified:

Lead:  Kai
Contrib:  Dan

Attendees
Aaron Birkland (Cornell)
Andrew Woods (DuraSpace)
Asger Askov Blekinge (State & Univ Lib, Denmark)
Ben Armintor (Columbia U)
Bill Branan (DuraSpace)
Brad McLean (DuraSpace)
Chris Wilper (DuraSpace)
Dan Davis (Cornell)
Edwin Shin (MediaShelf)
Gert Pedersen (Tech Univ of Denmark)
Kai Strnad (FIZ Karlsruhe)
Paul Pound (UPEI)
Simon Lamb (Hull)
Stephen Bayliss (Acuity Unlimited)
Tim Donohue (DuraSpace)
Thorny Staples (DuraSpace)


	Feb 23-24 2010, London Committer Meeting

