
1.
a.

2.
a.

3.
a.
b.
c.

4.
a.
b.

5.
a.

6.
a.
b.
c.

i.
7.

a.

1.
a.

2.
a.

3.
a.
b.
c.

i.

4.
a.
b.
c.
d.

5.

a.

Part 4: Integrating The Packager
As the software which interacts with the Packager, the Intake services need to be updated to apply the new file layout to any incoming data in order to
support new functionality.

Tokenization DECISION

As one of the processes which creates ACE Tokens for our collections, any changes to how we deal with when we create tokens and over what files would
occur in intake. This is a good time to think about important questions regarding our current practices: what files do we need to create tokens for and is
it wasteful to create tokens for packaging metadata?

In general the payload files are what we care the most about being synchronized between files, as the metadata for the file layout is used for verification on
transfer, not for long term preservation. Therefore we might want to consider a workflow where we only create ACE Tokens for the payload files of a
package, and let each replication service validate the metadata.

Additionally, if the ACE Tokens are embedded in the collection there is a question of if we need to store them in the Ingest database. Currently they are
stored in the database so that they can be distributed to each Chronopolis Node.

OCFL Packaging
The workflows defined will be specifically for the OTM Bridge but are general enough that they will need to be applied to other Chronopolis Intake
workflows

New Packages

The workflow for creating a new OCFL Object should be very similar to the current flow, with the exception that we are now applying a different packaging
format. There are additional steps which may be taken depending on what we decide is included.

Workflow

Query OTM Bridge service for a deposit waiting to be ingested
List Deposits

Query Ingest to check for existence of the OCFL Object
For this workflow, assume we see that it does not exist

Use OCFL Packager to create a new OCFL Storage Root and OCFL Object
Handles creation of the namaste, , version directory, etcinventory.json
Handles moving files into the directorycontent
Checks for files during movement of datafixity

Create optional files
Generate ACE Tokens and put them in a Token Store
Generate logging information if needed

Finalize the OCFL Object
Packager generates inventory.json.{alg}

Register the OCFL Object with the Ingest Server
Load Files
Load Fixity
Load ACE Tokens

If these are embedded in the package, is it still needed?
When the OCFL Object is marked as PRESERVED

Create Audit Events for Ingest and Replication

Applying Versions

Depending on how much work we want to do, the workflow for applying a new payload to a package has additional steps which must be taken. In addition,
this process requires more communication as data will need to be re-staged so that it can be modified.

Workflow

Query Bridge service for a preservation package waiting to be ingested
List Deposits

Query Ingest to check for existence of the OCFL Object
For this workflow, we assume that the Ingest tells us that a package does exists

Request staging of the OCFL Object
Ideally should go through the same Chronopolis node that Ingested the package to begin with
Could be a workflow of its own, potentially through a staging service
We should aim to stage the minimum amount of data needed

The payload of the OCFL Object should not be necessary as we aren't computing differences on files and have access to the
manifest through the inventory.json

Modify the preservation OCFL Object
Validate fixity
Add new version timestamp, number, files
Move the payload files in to place
Update package metadata for versioning

Create optional files

https://ucsdlib.github.io/otm-specs/otm-bridge.html#list-deposits
https://ucsdlib.github.io/otm-specs/audit-appendix.html
https://ucsdlib.github.io/otm-specs/otm-bridge.html#list-deposits

5.

a.
b.

6.
a.

7.
a.

i.
ii.

b.
8.

a.

Generate ACE Tokens for new files
Generate logging information if needed

Finalize the OCFL Object
Regenerate the inventory.json.{alg}

Update the OCFL Object in the Ingest Server
Create new version of the Collection

Registers new fixity for files
Registers new tokens for files

Files which do not change are not re-distributed
When the OCFL Object is marked as PRESERVED

Create Audit Events for Ingest and Replication

Deleting Versions

Workflow Decisions DECISION

Before implementing a workflow for deleting versions and version data from a collection, we first need to decide how that will occur and what implications
that has on the system.

Repackaging Considerations

In OCFL, when removing a file it is recommended to "create a new object that excludes the offending file, with a revised version history taking this into
account." (). We should abide by this if possible, in order to keep our packages consistent with the OCFL best OCFL Implementation Note - File Purging
practices. When creating a new package, there is the option to either remove the file entirely, or provide a which replaces the file but keeps the stub
identifier.

It is conceivable that repackaging can be done solely on the and files, as well as overriding the of the inventory.json inventory.json.{alg}
deleted file so that a can be transferred throughout the Chronopolis network.stub

Distributed Repackaged Collections

Once a collection is repacked, it will need to be redistributed throughout Chronopolis. As the changes to the OCFL Object will modify every inventory.
 from when the deleted file was introduced, we will want to look at the best way to distribute these changes throughout the system.json

Overwrites

By overwriting files, we can transfer less overall data to the nodes in Chronopolis. However, we would need to make modifications to each inventory.
 and in the Ingest Server as well as each ACE AM.json inventory.json.{alg}

Deprecation and Redistribute

This is similar to the current Chronopolis workflow in which collections are marked as and removed from the ACE AM instances at each site DEPRECATED
in Chronopolis. By doing this, we can re-ingest a collection and distribute it as one whole operation. This would need to ensure that all versions of the
collection are still available in the Ingest Server, and that replications are able to grab the entire OCFL Object.

https://ucsdlib.github.io/otm-specs/audit-appendix.html
https://ocfl.io/0.3/implementation-notes/#file-purging

	Part 4: Integrating The Packager

