Curation System

As of release 1.7, DSpace supports running curation tasks, which are described in this section. DSpace includes several useful tasks out-of-the-box, but
the system also is designed to allow new tasks to be added between releases, both general purpose tasks that come from the community, and locally
written and deployed tasks.

1 Changesin 1.8
2 Tasks
3 Activation
4 Writing your own tasks
5 Task Invocation
5.1 On the command line
5.2 In the admin Ul
5.3 In workflow
5.4 In arbitrary user code
6 Asynchronous (Deferred) Operation
7 Task Output and Reporting
7.1 Status Code
7.2 Result String
7.3 Reporting Stream
8 Task Properties
9 Task Annotations
10 Scripted Tasks
10.1 Interface
10.1.1 performDso() vs. performid()
11 Bundled Tasks
11.1 MetadataWebService Task
11.1.1 ISSN to Publisher Name
11.1.2 HTTP Headers
11.1.3 Transformations
11.1.4 Result String Programatic Use
11.1.5 Limits and Use
11.2 NoOp Curation Task
11.3 Bitstream Format Profiler
11.4 Required Metadata
11.5 Virus Scan
11.5.1 Setup the service from the ClamAV documentation.
11.5.2 DSpace Configuration
11.5.3 Task Operation from the Administrative user interface
11.5.4 Task Operation from the Item Submission user interface
11.5.5 Task Operation from the curation command line client
11.5.5.1 Table 1 — Virus Scan Results Table
11.6 Link Checkers
11.6.1 Basic Link Checker
11.6.2 Metadata Value Link Checker
11.7 Microsoft Translator
11.7.1 Configure Microsoft Translator

Changesin 1.8

®* New package: The default curation task package is now org.dspace.ctask. The tasks supplied with DSpace releases are now under org.dspace.
ctask.general

New tasks in DSpace release: Some additional curation tasks have been supplied with DSpace 1.8, including a link checker and a translator

Ul task groups: Ability to assign tasks to groups whose members display together in the Administrative Ul

Task properties: Support for a site-portable system for configuration and profiling of tasks using configuration files

New framework services: Support for context management during curation operations

Scripted tasks: New (experimental) support for authoring and executing tasks in languages other than Java

Tasks

The goal of the curation system ("CS") is to provide a simple, extensible way to manage routine content operations on a repository. These operations are
known to CS as "tasks", and they can operate on any DSpaceObject (i.e. subclasses of DSpaceObject) - which means the entire Site, Communities,
Collections, and Items - viz. core data model objects. Tasks may elect to work on only one type of DSpace object - typically an Iltem - and in this case they
may simply ignore other data types (tasks have the ability to "skip" objects for any reason). The DSpace core distribution will provide a number of useful
tasks, but the system is designed to encourage local extension - tasks can be written for any purpose, and placed in any java package. This gives DSpace
sites the ability to customize the behavior of their repository without having to alter - and therefore manage synchronization with - the DSpace source code.
What sorts of activities are appropriate for tasks?

Some examples:

apply a virus scan to item bitstreams (this will be our example below)

profile a collection based on format types - good for identifying format migrations

ensure a given set of metadata fields are present in every item, or even that they have particular values
call a network service to enhance/replace/normalize an item's metadata or content

ensure all item bitstreams are readable and their checksums agree with the ingest values

Since tasks have access to, and can modify, DSpace content, performing tasks is considered an administrative function to be available only to
knowledgeable collection editors, repository administrators, sysadmins, etc. No tasks are exposed in the public interfaces.

Activation

For CS to run a task, the code for the task must of course be included with other deployed code (to [dspace] /| i b, WAR, etc) but it must also be
declared and given a name. This is done via a configuration property in [dspace] / conf i g/ nodul es/ cur at e. cf g as follows:

Task O ass inplenentations

pl ugi n. naned. or g. dspace. curat e. Curati onTask = org. dspace. ct ask. general . NoOpCur ati onTask = noop

pl ugi n. named. or g. dspace. curat e. Curati onTask = org. dspace. ct ask. general . Profil eFormats = profileformats

pl ugi n. naned. or g. dspace. curat e. Curati onTask = org. dspace. ct ask. general . Requi redMet adat a = requi rednet adat a
pl ugi n. naned. or g. dspace. curate. Curati onTask = org. dspace. ct ask. general . d anScan = vscan

pl ugi n. nanmed. or g. dspace. cur at e. Curati onTask = org. dspace. ct ask. general . M crosoft Translator = translate

pl ugi n. naned. or g. dspace. curat e. Curati onTask = org. dspace. ct ask. general . Met adat aVal ueLi nkChecker = checkl i nks

For each activated task, a key-value pair is added. The key is the fully qualified class name and the value is the taskname used elsewhere to configure the
use of the task, as will be seen below. Note that the curate.cfg configuration file, while in the config directory, is located under "modules”. The intent is that
tasks, as well as any configuration they require, will be optional "add-ons" to the basic system configuration. Adding or removing tasks has no impact on
dspace.cfg.

For many tasks, this activation configuration is all that will be required to use it. But for others, the task needs specific configuration itself. A concrete
example is described below, but note that these task-specific configuration property files also reside in [dspace] / conf i g/ nodul es

Writing your own tasks

A task is just a java class that can contain arbitrary code, but it must have 2 properties:

First, it must provide a no argument constructor, so it can be loaded by the PluginManager. Thus, all tasks are ‘'named’ plugins, with the taskname being
the plugin name.

Second, it must implement the interface "org.dspace.curate.CurationTask"

The CurationTask interface is almost a "tagging” interface, and only requires a few very high-level methods be implemented. The most significant is:

int perform DSpaceChj ect dso);

The return value should be a code describing one of 4 conditions:

0 : SUCCESS the task completed successfully

1: FAIL the task failed (it is up to the task to decide what 'counts' as failure - an example might be that the virus scan finds an infected file)
2 : SKIPPED the task could not be performed on the object, perhaps because it was not applicable

-1: ERROR the task could not be completed due to an error

If a task extends the AbstractCurationTask class, that is the only method it needs to define.

Task Invocation

Tasks are invoked using CS framework classes that manage a few details (to be described below), and this invocation can occur wherever needed, but CS
offers great versatility "out of the box™:

On the command line

A simple tool "CurationCli" provides access to CS via the command line. This tool bears the name "curate" in the DSpace launcher. For example, to
perform a virus check on collection "4":

[dspace]/ bi n/dspace curate -t vscan -i 123456789/ 4

The complete list of arguments:

-t tasknanme: nane of task to perform
-T filename: nane of file containing list of tasknanes
-e epersonlD: (enmil address) will be superuser if unspecified

-i identifier: Id of object to curate. May be (1) a handle (2) a workflow Id or (3) 'all' to operate on the
whol e repository
-q queue: name of queue to process - -i and -q are nutual ly exclusive

-l limt: maxi mum nunber of objects in Context cache. |If absent, unlimted objects nay be added.

-s scope: declare a scope for database transactions. Scope nust be: (1) 'open' (default value) (2) 'curation'
or (3) 'object’

-v enmt verbose output

-r - enmit reporting to standard out

As with other command-line tools, these invocations could be placed in a cron table and run on a fixed schedule, or run on demand by an administrator.

In the admin Ul
In the UI, there are several ways to execute configured Curation Tasks:

1. From the "Curate" tab/button that appears on each "Edit Community/Collection/Item" page: this tab allows an Administrator, Community
Administrator or Collection Administrator to run a Curation Task on that particular Community, Collection or Item. When running a task on a
Community or Collection, that task will also execute on all its child objects, unless the Task itself states otherwise (e.g. running a task on a
Collection will also run it across all Iltems within that Collection).

® NOTE: Community Administrators and Collection Administrators can only run Curation Tasks on the Community or Collection which they
administer, along with any child objects of that Community or Collection. For example, a Collection Administrator can run a task on that
specific Collection, or on any of the Items within that Collection.

2. From the Administrator's "Curation Tasks" page: This option is only available to DSpace Administrators, and appears in the Administrative
side-menu. This page allows an Administrator to run a Curation Task across a single object, or all objects within the entire DSpace site.

® In order to run a task from this interface, you must enter in the handle for the DSpace object. To run a task site-wide, you can use the
handle: [your - handl e-prefix]/0

Each of the above pages exposes a drop-down list of configured tasks, with a button to ‘perform’ the task, or queue it for later operation (see section
below). Not all activated tasks need appear in the Curate tab - you filter them by means of a configuration property. This property also permits you to
assign to the task a more user-friendly name than the PluginManager taskname. The property resides in [dspace] / conf i g/ nodul es/ cur at e. cf g:

curate.ui.tasknanmes = profileformats = Profile Bitstream Formts
curate.ui.tasknanes = requirednetadata = Check for Required Metadata

When a task is selected from the drop-down list and performed, the tab displays both a phrase interpreting the "status code" of the task execution, and the
"result” message if any has been defined. When the task has been queued, an acknowledgement appears instead. You may configure the words used for
status codes in curate.cfg (for clarity, language localization, etc):

curate. ui.statusnessages = -3 = Unknown Task
curate.ui.statusnessages = -2 = No Status Set
curate. ui.statusmessages = -1 = Error

curate. ui.statusnessages = 0 = Success
curate.ui.statusnessages = 1 = Fail

curate. ui.statusnessages = 2 = Skip
curate.ui.statusnessages = other = Invalid Status

As the number of tasks configured for a system grows, a simple drop-down list of all tasks may become too cluttered or large. DSpace 1.8+ provides a
way to address this issue, known as task groups. A task group is a simple collection of tasks that the Admin Ul will display in a separate drop-down list.
You may define as many or as few groups as you please. If no groups are defined, then all tasks that are listed in the ui.tasknames property will appear in
a single drop-down list. If at least one group is defined, then the admin Ul will display two drop-down lists. The first is the list of task groups, and the
second is the list of task names associated with the selected group. A few key points to keep in mind when setting up task groups:

® atask can appear in more than one group if desired
® tasks that belong to no group are invisible to the admin Ul (but of course available in other contexts of use)

The configuration of groups follows the same simple pattern as tasks, using properties in [dspace] / confi g/ nodul es/ cur at e. cf g. The group is
assigned a simple logical name, but also a localizable name that appears in the Ul. For example:

ui.taskgroups contains the list of defined groups, together with a pretty name for U display
curate.ui.taskgroups = replication = Backup and Restoration Tasks

curate.ui.taskgroups = integrity = Metadata Integrity Tasks

each group nenbership list is a separate property, whose value is comm-separated |list of |ogical task nanes
curate.ui.taskgroup.integrity = profileformats, requirednetadata

In workflow

CS provides the ability to attach any number of tasks to standard DSpace workflows. Using a configuration file [dspace] / conf i g/ wor kf | ow
curation. xm , you can declaratively (without coding) wire tasks to any step in a workflow. An example:

<t askset - map>
<mappi ng col | ection-handl e="default" taskset="cautious" />
</ taskset - map>
<t askset s>
<t askset name="cautious">
<fl owst ep name="stepl">
<task nanme="vscan">
<wor kf | ow>r ej ect </ wor kf | ow>
<notify on="fail">$fl owgroup</notify>
<notify on="fail">$col | adnmi n</noti fy>
<notify on="error">$siteadni n</ notify>
</task>
</ fl owst ep>
</ taskset >
</taskset s>

This markup would cause a virus scan to occur during step one of workflow for any collection, and automatically reject any submissions with infected files.
It would further notify (via email) both the reviewers (step 1 group), and the collection administrators, if either of these are defined. If it could not perform
the scan, the site administrator would be notified.

The notifications use the same procedures that other workflow notifications do - namely email. There is a new email template defined for curation task use:
[dspace]/confi g/ email s/flow ask_noti fy. This may be language-localized or otherwise modified like any other email template.

Tasks wired in this way are normally performed as soon as the workflow step is entered, and the outcome action (defined by the 'workflow' element)

immediately follows. It is also possible to delay the performance of the task - which will ensure a responsive system - by queuing the task instead of
directly performing it:

<taskset name="cautious">
<fl owst ep name="stepl" queue="workfl ow'>

This attribute (which must always follow the "name" attribute in the flowstep element), will cause all tasks associated with the step to be placed on the
queue named "workflow" (or any queue you wish to use, of course), and further has the effect of suspending the workflow. When the queue is emptied
(meaning all tasks in it performed), then the workflow is restarted. Each workflow step may be separately configured,

Like configurable submission, you can assign these task rules per collection, as well as having a default for any collection.

In arbitrary user code

If these pre-defined ways are not sufficient, you can of course manage curation directly in your code. You would use the CS helper classes. For example:

Col l ection coll = (Collection)Handl eManager. resol veToChj ect (context, "123456789/4");
Curator curator = new Curator();

curator.addTask("vscan").curate(coll);

Systemout.printin("Result: " + curator.getResult("vscan"));

would do approximately what the command line invocation did. the method "curate" just performs all the tasks configured (you can add multiple tasks to a
curator).

Asynchronous (Deferred) Operation

Because some tasks may consume a fair amount of time, it may not be desirable to run them in an interactive context. CS provides a simple APl and
means to defer task execution, by a queuing system. Thus, using the previous example:

Curator curator = new Curator();
curator.addTask("vscan"). queue(context, "nonthly", "123456789/4");

would place a request on a named gueue "monthly” to virus scan the collection. To read (and process) the queue, we could for example:

[dspace] / bi n/ dspace curate -q nmonthly

use the command-line tool, but we could also read the queue programmatically. Any number of queues can be defined and used as needed.
In the administrative Ul curation "widget", there is the ability to both perform a task, but also place it on a queue for later processing.

Task Output and Reporting

Few assumptions are made by CS about what the 'outcome' of a task may be (if any) - it. could e.g. produce a report to a temporary file, it could modify
DSpace content silently, etc. But the CS runtime does provide a few pieces of information whenever a task is performed:

Status Code

This was mentioned above. This is returned to CS whenever a task is called. The complete list of values:

-3 NOTASK - CS could not find the requested task

-2 UNSET - task did not return a status code because it has not yet run
-1 ERROR - task could not be perforned

0 SUCCESS - task performed successfully

1 FAIL - task perfornmed, but failed

2 SKIP - task not perforned due to object not being eligible

In the administrative Ul, this code is translated into the word or phrase configured by the ui.statusmessages property (discussed above) for display.

Result String

The task may define a string indicating details of the outcome. This result is displayed, in the "curation widget" described above:

"Virus 12312 detected on Bitstream 4 of 1234567789/ 3"

CS does not interpret or assign result strings, the task does it. A task may not assign a result, but the "best practice" for tasks is to assign one whenever
possible.

Reporting Stream

For very fine-grained information, a task may write to a reporting stream. This stream is sent to standard out, so is only available when running a task from
the command line. Unlike the result string, there is no limit to the amount of data that may be pushed to this stream.

The status code, and the result string are accessed (or set) by methods on the Curation object:

Curator curator = new Curator();
curator.addTask("vscan").curate(coll);

int status = curator.getStatus("vscan");
String result = curator.getResult("vscan");

Task Properties

DSpace 1.8 introduces a new "idiom" for tasks that require configuration data. It is available to any task whose implementation extends Abst r act Curati o
nTask, but is completely optional. There are a number of problems that task properties are designed to solve, but to make the discussion concrete we will
start with a particular one: the problem of hard-coded configuration file names. A task that relies on configuration data will typically encode a fixed

reference to a configuration file name. For example, the virus scan task reads a file called "cl amav. cf g", which lives in [dspace] / conf i g/ nodul es.
And thus in the implementation one would find:

host = configurationService. getProperty("clanav. service. host");

and similar. But tasks are supposed to be written by anyone in the community and shared around (without prior coordination), so if another task uses the
same configuration file name, there is a name collision here that can't be easily fixed, since the reference is hard-coded in each task. In this case, if we
wanted to use both at a given site, we would have to alter the source of one of them - which introduces needless code localization and maintenance.

Task properties gives us a simple solution. Here is how it works: suppose that both colliding tasks instead use this method provided by
AbstractCurationTask in their task implementation code (e.g. in virus scanner):

host = taskProperty("clamav. service. host");

Note that there is no name of the configuration file even mentioned, just the property name whose value we want. At runtime, the curation system resolves
this call to a set of configuration properties, and it uses the name the task has been configured as as the prefix of the properties. So, for example, if both
were installed (in, say, cur at e. cf g) as:

org. dspace. ct ask. general . G amAv = vscan,
org.conmmuni ty. ctask. ConflictTask = virusscan,

then "t askProperty("foo") " will resolve to the property named vscan. f oo when called from ClamAv task, but vi russcan. f oo when called from
ConflictTask's code. Note that the "vscan" etc are locally assigned names, so we can always prevent the "collisions" mentioned, and we make the tasks
much more portable, since we remove the "hard-coding" of config names.

The entire "API" for task properties is:

public String taskProperty(String nane);

public int tasklntProperty(String name, int defaultValue);

public long taskLongProperty(String nane, |ong defaultVal ue);
publ i c bool ean taskBool eanProperty(String nanme, boolean default);

Another use of task properties is to support multiple task profiles. Suppose we have a task that we want to operate in one of two modes. A good example
would be a mediafilter task that produces a thumbnail. We can either create one if it doesn't exist, or run with "-force" which will create one regardless.
Suppose this behavior was controlled by a property in a config file. If we configured the task as "thumbnail”, then we would have in (perhaps) [dspace]
/ confi g/ nodul es/ t hunbnai | . cfg:

...other properties...

t hunbnai | . t hunbnai | . maxhei ght = 80
t hunbnai | . t hunbnai | . maxwi dth = 80
t hunbnai | . f or ceupdat e=f al se

Then, following the pattern above, the thumbnail generating task code would look like:

if (taskBool eanProperty("forceupdate")) {
/1 do sonething

}

But an obvious use-case would be to want to run force mode and non-force mode from the admin Ul on different occasions. To do this, one would have to
stop Tomcat, change the property value in the config file, and restart, etc However, we can use task properties to elegantly rescue us here. All we need to
do is go into the config/modules directory, and create a new file perhaps called: t hunbnai | . f or ce. cf g. In this file, we put the properties:

t hunbnai | . force. t hunbnai | . maxhei ght = 80
thurmbnai | . force. t hunbnai |l . maxwi dth = 80
t hunbnai |l . f orce. f or ceupdat e=t r ue

Then we add a new task (really just a new name, no new code) in curate.cfg:

or g. dspace. ct ask. gener al . Thunbnai | Task = t hunbnai |
org. dspace. ct ask. general . Thunbnai | Task = thunbnail.force

Consider what happens: when we perform the task "t hunbnai | " (using taskProperties), it uses the t hunbnai | . * properties and operates in "non-force'
profile (since the value is false), but when we run the task "t hunbnai | . f or ce" the curation system uses the t hunbnai | . f or ce. * properties. Notice
that we did all this via local configuration - we have not had to touch the source code at all to obtain as many "profiles" as we would like.

Task Annotations

CS looks for, and will use, certain java annotations in the task Class definition that can help it invoke tasks more intelligently. An example may explain
best. Since tasks operate on DSOs that can either be simple (Items) or containers (Collections, and Communities), there is a fundamental problem or
ambiguity in how a task is invoked: if the DSO is a collection, should the CS invoke the task on each member of the collection, or does the task "know"
how to do that itself? The decision is made by looking for the @Distributive annotation: if present, CS assumes that the task will manage the details,
otherwise CS will walk the collection, and invoke the task on each member. The java class would be defined:

@i stributive
public class MyTask inplements CurationTask

A related issue concerns how non-distributive tasks report their status and results: the status will normally reflect only the last invocation of the task in the
container, so important outcomes could be lost. If a task declares itself @Suspendable, however, the CS will cease processing when it encounters a FAIL
status. When used in the Ul, for example, this would mean that if our virus scan is running over a collection, it would stop and return status (and result) to
the scene on the first infected item it encounters. You can even tune @Supendable tasks more precisely by annotating what invocations you want to
suspend on. For example:

@uspendabl e(i nvoked=Cur at or . | nvoked. | NTERACTI VE)
public class MyTask inplements CurationTask

would mean that the task would suspend if invoked in the Ul, but would run to completion if run on the command-line.

Only a few annotation types have been defined so far, but as the number of tasks grow, we can look for common behavior that can be signaled by
annotation. For example, there is a @Mutative type: that tells CS that the task may alter (mutate) the object it is working on.

Scripted Tasks

The_procedure to set up curation tasks in Jython is described on a separate page: Curation tasks in Jython

DSpace 1.8 includes limited (and somewhat experimental) support for deploying and running tasks written in languages other than Java. Since version 6,
Java has provided a standard way (API) to invoke so-called scripting or dynamic language code that runs on the java virtual machine (JVM). Scripted tasks
are those written in a language accessible from this API. The exact number of supported languages will vary over time, and the degree of maturity of each
language, or suitability of the language for curation tasks will also vary significantly. However, preliminary work indicates that Ruby (using the JRuby
runtime) and Groovy may prove viable task languages.

Support for scripted tasks does not include any DSpace pre-installation of the scripting language itself - this must be done according to the instructions
provided by the language maintainers, and typically only requires a few additional jars on the DSpace classpath. Once one or more languages have been

installed into the DSpace deployment, task support is fairly straightforward. One new property must be defined in [dspace] / conf i g/ nodul es/ cur at e.
cfg:

curate.script.dir = ${dspace.dir}/scripts

This merely defines the directory location (usually relative to the deployment base) where task script files should be kept. This directory will contain a
"catalog” of scripted tasks named t ask. cat al og that contains information needed to run scripted tasks. Each task has a 'descriptor' property with value
syntax:

<engi ne>| <rel Fi | ePat h>| <i npl Cl assCt or >

An example property for a link checking task written in Ruby might be:

I'i nkchecker = ruby]|rubytask. rb| Li nkChecker. new

This descriptor means that a "r uby" script engine will be created, a script file named "r ubyt ask. r b" in the directory <scr i pt . di r > will be loaded and
the resolver will expect an evaluation of "Li nkChecker . new" will provide a correct implementation object. Note that the task must be configured in all
other ways just like java tasks (in ui . t asknanes, ui.taskgroups, etc).

Script files may embed their descriptors to facilitate deployment. To accomplish this, a script must include the descriptor string with syntax:
$t d=<descri pt or > somewhere on a comment line. For example:

My descriptor $td=ruby|rubytask.rb]|Li nkChecker. new

https://wiki.lyrasis.org/display/DSDOC6x/Curation+tasks+in+Jython

For reasons of portability, the <relFilePath> component may be omitted in this context. Thus, "$t d=r uby| | Li nkChecker . new" will be expanded to a
descriptor with the name of the embedding file.

Interface

Scripted tasks must implement a slightly different interface than the CurationTask interface used for Java tasks. The appropriate interface for scripting
tasks is ScriptedTask and has the following methods:

public void init(Curator curator, String taskld) throws |OException;
public int perfornDso(DSpaceChj ect dso) throws | OException;
public int performd(Context ctx, String id) throws | CException;

The difference is that ScriptedTask has separate perform methods for DSO and identifier. The reason for that is that some scripting languages (e.g. Ruby)
don't support method overloading.

performDso() vs. performld()

You may have noticed that the Scri pt edTask interface has both per f or nDso() and perf or i d() methods, but only performDso is ever called when
curator is launched from command line.

There are a class of use-cases in which we want to construct or create new DSOs (DSpaceObject) given an identifier in a task. In these cases, there may
be no live DSO to pass to the task.

You actually can get curation system to call per f or ml d() if you queue a task then process the queue - when reading the queue all CLI has is the handle
to pass to the task.

Bundled Tasks

DSpace bundles a small number of tasks of general applicability. Those that do not require configuration (or have usable default values) are activated to
demonstrate the use of the curation system. They may be removed (deactivated by means of configuration) if desired without affecting system integrity.
Those that require configuration may be enabled (activated) by means editing DSpace configuration files. Each task - current as of DSpace 4.0 - is briefly
described below.

MetadataWebService Task

DSpace item metadata can contain any number of identifiers or other field values that participate in networked information systems. For example, an item
may include a DOI which is a controlled identifier in the DOI registry. Many web services exist to leverage these values, by using them as 'keys' to retrieve
other useful data. In the DOI case for example, CrossRef provides many services that given a DOI will return author lists, citations, etc. The
MetadataWebService task enables the use of such services, and allows you to obtain and (optionally) add to DSpace metadata the results of any web
service call to any service provider. You simply need to describe what service you want to call, and what to do with the results. Using the task code ([t ask
code]), you can create as many distinct tasks as you have services you want to call.

Each task description lives in a configuration file in ‘config/modules’ (or in your local.cfg), and is a simple properties file, like all other DSpace configuration
files (see Configuration Reference). All of the settings associated with a given task should be prepended with the task name (as assigned in conf i g

/ nmodul es/ cur at e. cf g). For example, if the task name is i ssn2pubnane in curate.cfg, then all settings should start with "i ssn2pubnane. " Your
settings can either be set in your | ocal . cf g, or in a new configuration file which is included (i ncl ude = path/to/ new fil e.cfg)into either your
local.cfg or the dspace.cfg. See the Configuration Reference for examples of including configuration files, or modifying your | ocal . cf g

There are a few required properties you must configure for any service, and for certain services, a few additional ones. An example will illustrate best.

ISSN to Publisher Name

Suppose items (holding journal articles) include 'dc.identifier.issn' when available. We might also want to catalog the publisher name (in 'dc.publisher’). The
cataloger could look up the name given the ISSN in various sources, but this ‘research’ is tedious, costly and error-prone. There are many good quality,
free web services that can furnish this information. So we will configure a MetadataWebService task to call a service, and then automatically assign the
publisher name to the item metadata. As noted above, all that is needed is a description of the service, and what to do with the results. Create a new file in
‘config/modules' called 'issn2pubname.cfg' (or whatever is mnemonically useful to you). The first property in this file describes the service in a ‘template’.
The template is just the URL to call the web service, with parameters to substitute values in. Here we will use the 'Sherpa/Romeo’ service:

[taskcode] .t enpl at e=ht t p: / / www. sher pa. ac. uk/ roneo/ api 29. php?i ssn={dc. identifier.issn}

When the task runs, it will replace '{dc.identifier.issn}' with the value of that field in the item, If the field has multiple values, the first one will be used. As a
web service, the call to the above URL will return an XML document containing information (including the publisher name) about that ISSN. We need to
describe what to do with this response document, i.e. what elements we want to extract, and what to do with the extracted content. This description is
encoded in a property called the ‘datamap’. Using the example service above we might have:

[taskcode] . dat amap=// publ i sher/ nane=>dc. publ i sher, //ronmeocol or

https://github.com/DSpace/DSpace/blob/dspace-3_x/dspace-api/src/main/java/org/dspace/curate/CurationTask.java
https://github.com/DSpace/DSpace/blob/dspace-3_x/dspace-api/src/main/java/org/dspace/curate/ScriptedTask.java
https://wiki.lyrasis.org/display/DSDOC6x/Configuration+Reference
https://wiki.lyrasis.org/display/DSDOC6x/Configuration+Reference

Each separate instruction is separated by a comma, so there are 2 instructions in this map. The first instruction essentially says: find the XML element
'publisher name' and assign the value or values of this element to the 'dc.publisher’ field of the item. The second instruction says: find the XML element
‘romeocolor’, but do not add it to the DSpace item metadata - simply add it to the task result string (so that it can be seen by the person running the task).
You can have as many instructions as you like in a datamap, which means that you can retrieve multiple values from a single web service call. A little more
formally, each instruction consists of one to three parts. The first (mandatory) part identifies the desired data in the response document. The syntax (here '
/Ipublisher/name’) is an XPath 1.0 expression, which is the standard language for navigating XML trees. If the value is to be assigned to the DSpace item
metadata, then 2 other parts are needed. The first is the 'mapping symbol' (here '=>'), which is used to determine how the assignment should be made.
There are 3 possible mapping symbols, shown here with their meanings:

'->'" mapping will add to any existing value(s) in the itemfield
'=>'" mapping will replace any existing value(s) in the itemfield
'~>'" mapping will add *only if* itemfield has no existing val ue(s)

The third part (here ‘dc.publisher') is simply the name of the metadata field to be updated. These two mandatory properties (template and datamap) are
sufficient to describe a large number of web services. All that is required to enable this task is to edit 'conf i g/ modul es/ cur at e. cf g' (or your | ocal .
cf g), and add 'i ssn2pubnane’ to the list of tasks:

pl ugi n. naned. or g. dspace. cur at e. Cur at i onTask or g. dspace. ct ask. gener al . Met adat aWebSer vi ce i ssn2pubnane
pl ugi n. named. or g. dspace. curat e. Curati onTask = org. dspace. ct ask. gener al . Met adat aWbServi ce = doi 2cr ossr ef

If you wish the task to be available in the Admin Ul, see the Invocation from the Admin Ul documentation (above) about how to configure it. The remaining
sections describe some more specialized needs using the MetadataWebService task.

HTTP Headers

For some web services, protocol and other information is expressed not in the service URL, but in HTTP headers. Examples might be HTTP basic auth
tokens, or requests for a particular media type response. In these cases, simply add a property to the configuration file (our example was 'issn2pubname.
cfg’) containing all headers you wish to transmit to the service:

[taskcode] . header s=Accept: application/ xm || Cache-Control: no-cache

You can specify any number of headers, just separate them with a 'double-pipe’ ('] |). Ensure that any commas in values are escaped (with backslash
comma, i.e.'\,").

Transformations

One potential problem with the simple parameter substitutions performed by the task is that the service might expect a different format or expression of a
value than the way it is stored in the item metadata. For example, a DOI service might expect a bare prefix/suffix notation ('10.000/12345"), whereas the
DSpace metadata field might have a URI representation (‘http://dx.doi.org/10.000/12345"). In these cases one can declare a 'transformation’ of a value in
the template. For example:

[taskcode] . tenpl at e=htt p: // ww. cr ossref. org/ openurl/?i d={doi:dc.rel ation.isversionof}& or mat =uni xr ef

The 'doi:' prepended to the metadata field name declares that the value of the 'dc.relation.isversionof field should be transformed before the substitution
into the template using a transformation named 'doi'. The transformation is itself defined in the same configuration file as follows:

[taskcode] . transform doi =match 10. trunc 60

This would be read as: exclude the value string up to the occurrence of '10.', then truncate any characters after length 60. You may define as many
transformations as you want in any task, although generally 1 or 2 will suffice. They keywords 'match’, 'trunc’, etc are names of 'functions' to be applied (in
the order entered). The currently available functions are:

‘cut' <nunber> = renpve nunber |eading characters
"trunc' <nunber> = renpve trailing characters after nunber |ength
‘match' <pattern> = start match at pattern

'text' <characters> = append literal characters (enclose in

when whit espace needed)

When the task is run, if the transformation results in an invalid state (e.g. cutting more characters than there are in the value), the un-transformed value will
be used and the condition will be logged. Transformations may also be applied to values returned from the web service. That is, one can apply the
transformation to a value before assigning it to a metadata field. In this case, the declaration occurs in the datamap property, not the template:

[taskcode] . dat amap=// publ i sher/ nane=>short en: dc. publ i sher,//ronmeocol or

https://wiki.lyrasis.org/pages/viewpage.action?pageId=81952859#CurationSystem-IntheadminUI

Here the task will apply the 'shorten’ transformation (which must be defined in the same config file) before assigning the value to 'dc.publisher'.

Result String Programatic Use

Normally a task result string appears in a window in the admin Ul after it has been invoked. The MedataWebService task will concatenate all the values
declared in the 'datamap’ property and place them in the result string using the format: 'name:value name:value' for as many values as declared. In the
example above we would get a string like 'publisher: Nature romeocolor: green'. This format is fine for simple display purposes, but can be tricky if the
values contain spaces. You can override the space separator using an optional property 'separator' (put in the config file, with all other properties). If you
use:

[taskcode] . separator=| |

for example, it becomes easy to parse the result string and preserve spaces in the values. This use of the result string can be very powerful, since you are
essentially creating a map of returned values, which can then be used to populate a user interface, or any other way you wish to exploit the data (drive a
workflow, etc).

Limits and Use

A few limitations should be noted. First, since the response parsing utilizes XPath, the service can only operate on XML, (not JSON) response documents.
Most web services can provide either, so this should not be a major obstacle. The MetadataWebService can be used in many ways: showing an admin a
value in the result string in a Ul, run in a batch to update a set of items, etc. One excellent configuration is to wire these tasks into submission workflow, so
that ‘automatic cataloging' of many fields can be performed on ingest.

NoOp Curation Task

This task does absolutely nothing. It is intended as a starting point for developers and administrators wishing to learn more about the curation system.

Bitstream Format Profiler

The task with the taskname ‘formatprofiler' (in the admin Ul it is labeled "Profile Bitstream Formats") examines all the bitstreams in an item and produces a
table ("profile") which is assigned to the result string. It is activated by default, and is configured to display in the administrative Ul. The result string has the
layout:

10 (K) Portabl e Network Graphics
5 (S) Plain Text

where the left column is the count of bitstreams of the named format and the letter in parentheses is an abbreviation of the repository-assigned support
level for that format:

U Unsupported
K Known
S Supported

The profiler will operate on any DSpace object. If the object is an item, then only that item's bitstreams are profiled; if a collection, all the bitstreams of all
the items; if a community, all the items of all the collections of the community.

Required Metadata

The "r equi r ednet adat a" task examines item metadata and determines whether fields that the web submission (i nput - f or ms. xn) marks as required
are present. It sets the result string to indicate either that all required fields are present, or constructs a list of metadata elements that are required but
missing. When the task is performed on an item, it will display the result for that item. When performed on a collection or community, the task be performed
on each item, and will display the last item result. If all items in the community or collection have all required fields, that will be the last in the collection. If
the task fails for any item (i.e. the item lacks all required fields), the process is halted. This way the results for the 'failed' items are not lost.

Virus Scan

The "vscan" task performs a virus scan on the bitstreams of items using the ClamAV software product.

Clam AntiVirus is an open source (GPL) anti-virus toolkit for UNIX. A port for Windows is also available. The virus scanning curation task interacts with the
ClamAV virus scanning service to scan the bitstreams contained in items, reporting on infection(s). Like other curation tasks, it can be run against a
container or item, in the GUI or from the command line. It should be installed according to the documentation at http://www.clamav.net. It should not be
installed in the dspace installation directory. You may install it on the same machine as your dspace installation, or on another machine which has been
configured properly.

Setup the service from the ClamAV documentation.

This plugin requires a ClamAV daemon installed and configured for TCP sockets. Instructions for installing ClamAV (http://www.clamav.net/doc/latest/clam
doc.pdf)

http://www.clamav.net/
http://www.clamav.net/doc/latest/clamdoc.pdf
http://www.clamav.net/doc/latest/clamdoc.pdf
http://www.clamav.net/doc/latest/clamdoc.pdf
http://www.clamav.net/doc/latest/clamdoc.pdf
http://www.clamav.net/doc/latest/clamdoc.pdf

NOTICE: The following directions assume there is a properly installed and configured clamav daemon. Refer to links above for more information about
ClamAV.

The Clam anti-virus database must be updated regularly to maintain the most current level of anti-virus protection. Please refer to the ClamAV
documentation for instructions about maintaining the anti-virus database.

DSpace Configuration
In[dspace]/ confi g/ nodul es/ cur at e. cf g, activate the task:

® Add the plugin to the list of curation tasks.

Task O ass inplenentations

pl ugi n. naned. or g. dspace. curat e. Curati onTask = org. dspace. ct ask. general . NoOpCur ati onTask = noop

pl ugi n. named. or g. dspace. curate. Curati onTask = org. dspace. ct ask. general . Profil eFormats = profileformats

pl ugi n. nanmed. or g. dspace. cur at e. Curati onTask = org. dspace. ct ask. general . Requi redMet adata = requi r ednet adat a

This is the damAV scanner plugin

pl ugi n. named. or g. dspace. curat e. Curati onTask = org. dspace. ct ask. general . Cl anScan = vscan

pl ugi n. naned. or g. dspace. curat e. Curati onTask = org. dspace. ct ask. general . M crosoftTransl ator = transl ate

pl ugi n. naned. or g. dspace. curate. Curati onTask = org. dspace. ct ask. general . Met adat aVal ueLi nkChecker = checkl i nks

® Optionally, add the vscan friendly name to the configuration to enable it in the administrative user interface.

curate.ui.tasknames = profileformats = Profile Bitstream Fornmats
curate. ui.tasknanmes = requi rednetadata = Check for Required Metadata
curate. ui.tasknanes = checklinks = Check Links in Metadata

Enable C amAV from Ul

curate. ui.tasknanes = vscan = Virus Scan

® In[dspace]/ confi g/ nodul es, edit configuration file clamav.cfg:

cl amav. servi ce. host = 127.0.0.1

Change if not running on the same host as your DSpace installation.
cl anav. servi ce. port = 3310

Change if not using standard C amAV port

cl amav. socket . ti meout = 120

Change if longer tineout needed

clamav. scan.failfast = fal se

Change only if items have | arge nunbers of bitstreans

® Finally, if desired virus scanning can be enabled as part of the submission process upload file step. In [dspace] / conf i g/ nodul es, edit
configuration file subm ssi on-cur ati on. cfg:

submi ssi on-curation.virus-scan = true

Task Operation from the Administrative user interface

Curation tasks can be run against container and item dspace objects by e-persons with administrative privileges. A curation tab will appear in the
administrative ui after logging into DSpace:

1. Click on the curation tab.

2. Select the option configured in ui.tasknames above.
3. Select Perform.

Task Operation from the Item Submission user interface

If desired virus scanning can be enabled as part of the submission process upload file step. In [dspace] / conf i g/ modul es, edit configuration file submi
ssion-curation. cfg:

submi ssi on-curation.virus-scan = true

Task Operation from the curation command line client

To output the results to the console:

[dspace] / bi n/ dspace curate -t vscan -i <handl e of container or itemdso> -r -

Or capture the results in a file:

[dspace]/ bi n/dspace curate -t vscan -i <handle of container or itemdso> -r - > /<path...>/<nane>

Table 1 — Virus Scan Results Table

GUI (Interactive Mode) = FailFast Expectation

Container T Stop on 15! Infected Bitstream
Container F Stop on 1t Infected Item

Item T Stop on 1%t Infected Bitstream
Item F Scan all bitstreams

Command Line

Container T Report on 1t infected bitstream within an item/Scan all contained Items
Container F Report on all infected bitstreams/Scan all contained Items

Item T Report on 1t infected bitstream

Item F Report on all infected bitstreams

Link Checkers

Two link checker tasks, BasicLinkChecker and MetadataValueLinkChecker can be used to check for broken or unresolvable links appearing in item
metadata.

This task is intended as a prototype / example for developers and administrators who are new to the curation system.

These tasks are not configurable.

Basic Link Checker
BasicLinkChecker iterates over all metadata fields ending in "uri" (eg. dc.relation.uri, dc.identifier.uri, dc.source.uri ...), attempts a GET to the value of the

field, and checks for a 200 OK response.
Results are reported in a simple "one row per link" format.

Metadata Value Link Checker

MetadataValueLinkChecker parses all metadata fields for valid HTTP URLSs, attempts a GET to those URLSs, and checks for a 200 OK response.

Results are reported in a simple "one row per link" format.

Microsoft Translator

Microsoft Translator uses the Microsoft Translate API to translate metadata values from one source language into one or more target languages.

This task cab be configured to process particular fields, and use a default language if no authoritative language for an item can be found. Bing API v2 key
is needed.

MicrosoftTranslator extends the more generic AbstractTranslator. This now seems wasteful, but a GoogleTranslator had also been written to extend
AbstractTranslator. Unfortunately, Google has announced they are decommissioning free Translate API service, so this task hasn't been included in

DSpace's general set of curation tasks.

Translated fields are added in addition to any existing fields, with the target language code in the 'language' column. This means that running a task
multiple times over one item with the same configuration could result in duplicate metadata.

This task is intended as a prototype / example for developers and administrators who are new to the curation system.

Configure Microsoft Translator

An example configuration file can be found in [dspace] / confi g/ nodul es/transl ator. cfg.

L L TRANSLATOR CURATI ON TASK CONFI GURATI ONS-------------- #
L L e #
Configuration properties used solely by M crosoftTransl ator
Curation Task (uses Mcrosoft Translation APl v2)
L L LR E R #
Translation field settings

it

Authoritative |anguage field

This will be read to determne the original |anguage an itemwas submitted in
Default: dc.|anguage

translator.field.language = dc. | anguage

Metadata fields you wish to have transl ated
translator.field.targets = dc.description.abstract, dc.title, dc.type

Transl ation | anguage settings

#it

|f the |anguage field configured in translate.field.language is not present
in the record, set translate.language.default to a default source |anguage
or |eave blank to use autodetection

transl ator. | anguage. default = en

Target |anguages for translation
transl ator. | anguage.targets = de, fr

Transl ation APl settings

##

Your Bing APl v2 key and/or Google "Sinple APl Access" Key

(note to Coogle users: your vl APl key will not work with Translate v2,
you will need to visit https://code. googl e. conf api s/ consol e and activate
a Sinple APl Access key)

##

You do not need to enter a key for both services.

transl ator. api . key. mcrosoft = YOUR_M CROSOFT_API _KEY_GOES_HERE

transl ator. api . key. googl e = YOUR _GOOGLE_API _KEY_GCES_HERE

	Curation System

