
ArchReviewNotesTues
DSpace Architectural Review
Notes from Tuesday, 24 Oct 2006 (JSE)

I. Review of Data Model (Rob)
See also: DSpace Data Model

Communities
Collections
Items

all items have a Submitter who is an ePerson
MDRecord (flat: name, value pairs)
fields
metadata schema

ePersons
permissions for items

bundles
name

bitstreams
size
checksum
name
description
format
sequence number

bitstream format
name
long name
mime/type
file extension

II. Problems with the Data Model
1. Versioning (Rob)

Rob's versioning idea (item-level down)
"snapshot" of an item at a instant of time
coarser-grained notion of "transaction"

"logical item change"
makes dealing with "events" easier
sort-of wiki "locking" model (i.e. very short-term)

concept: items are immutable
previous "versions" never go away (maybe policy driven)
encapsulating higher-level item object

What about e.g. Pre-/Post-print versioning?
discussion about identification syntax for versions...

also, Handles and versioning
(ms) issues of complexity presented to users

policies concerning displaying major and minor changes
keeping around all copies, etc

2. Identifiers

Q: should DSpace dictate the identifier system?
if so, should that be HS?

Rationale: concern over long-term interoperability
avoiding "Tower of Babel"

separate issue: if the org has a HDL prefix, it needs to be a HDL
concern over long-term, exit strategies, etc...
(hj) HS is an RFC and CNRI patent protects implementations thereof
(jmo) (service, namespace, resource_in_namespace)
(Rob) if we treat everything as uri or opaque string...

* Each CONTENT COMPONENT should have some sort of PERSISTENT IDENTIFIER associated with itRECOMMENDATION:

3. Metadata Flexibility Options

Structural (e.g. METS)
today, no way to specify structure and relationships

http://dspace.org/technology/system-docs/functional.html#data_model

Descriptive
today, item-level descriptive MD

Representational
Binding metadata to structure

Use cases (high level):
Versions (alternatives)
Versions (versioning)
Complex file structures

(MS) from a libary perspective, whether something is a unique work or not

Lengthy discussion of metadata as bitstreams
and TYPEs of bundles

(hj) should DSpace allow item-specific md models?
reaction in room: wow, huge implications
(Rob) crosswalks required
problems with user interface
e.g. have subsystem whose job it is to deal with MD in specific way

(Rob) all of this is possible with the current architecture
media filter to convert whatever the scheme is into DC (e.g. for OAI)

(MS) ultimate model would be RDF, someday

RECOMMENDATION: Always must be able to CROSSWALK to DC

mechanism should be the default (DC)
but MD typing mechanism/bundling needs to be extensible
currently there are examples (oai, mit 'dwell') that allow asking for specific

JD: Right now, flat metadata structure is the bottleneck

(RJ) Perhaps we need to think about what it means to be an item in DSpace
a specification we put out
(MS) Larry Stone's "IP" proposal

canonical components of a "DSpace Item"
i.e. a manifest of the AIP, with structure map
then, arbitrary complex objects
MIT's purpose is for interop with SRB

RECOMMENDATION: Put "whether to keep bundles or not" on Half-Baked list

4. Relational Metadata

inter-item relationships
intra-item relationships
between bitstreams, bundles, etc

sets of bitstreams to sets of bitstreams
between objects

Q (Rob) Bundles and bitstreams?

5. Content Format Support

6. Aggregation

7. JSR-170

versioning?

8. Terminology

bitstream vs datastream vs...

III. Interfaces and Modularity
1. Review of the APIs (Rob)

2. Enumerating the reoccuring types of mods that break thingsPain Points:

JSPs
Servlets
Ingest workflow
metadata extensions

esp. adding new fields
downstream indexing

browsing
Authentication

issue: synching with ePerson database
Authorization
Code Protection on content classes

i.e. for extensions on content classes
Persistent data store for extensions

3. Are we going to decide to stay with servlets and JSPs

or discard and move toward e.g. Manakin?
To be discussed (below)

4. Much discussion of the current layering ("Application"/"Business Logic"/"Storage")

(MD) We need to understand why certain code keeps getting replicated

5. Overview of the AddOnMechanism (RJ)

See [AddOnMechanism Wiki|http://wiki.dspace.org/index.php/AddOnMechanism]
See [AddOnMechanism presentation|https://bora.uib.no/bitstream/1956/1156/2/presentation-1.0.pdf]

6. (Rob)Summary: What should we be able to do without changing code?

Add persistent storage for customizations
Add new UI pages, link to new pages from existing pages
Modify existing UI pages
Modify workflow

7. DSpace Manakin Overview (SP)
See: [DSpace Manakin Wiki|http://wiki.dspace.org/index.php/Manakin]

Pain points
Upgradability
Modularity
Uniformity

Aspects and Themes
Aspects contain Java source code, static resources, Cocoon's sitemap

Manakin solves these pain-points:
JSPs
Servlets
MD extensions (certain cases)
workflow (UI aspects)

Draft Recommendation (SP)
first, embrace the AddOnMechanism
proposed road map:

1.5: JSPUI full support, initial version with XMLUI
1.6: JSPUI full support, XMLUI full support & rec'd
1.7: JSPUI depreciated, XMLUI full support & rec'd
2.x: XMLUI only

*What are the alternatives to Manakin?

Are there potential incompatibilities with other of these frameworks?
(sp) Could put Manakin into the same source tree as JSPs

(Rob) Is there a really-really dumbed-down version of the AddOnMechanism that could be put in to the*Main tree
(sp) "A day's worth of work..."

8. OSGi Overview (RR)

Open Services Gateway Initiative
See esp. OSGi Technology web site
See OSGi Technical Whitepaper

*What are the alternatives to OSGi?

Spring Framework
RJ's AddOnMechanism,*but it isn't complete

(ms) Strategy: Choose framework, get resources, do analysis to identify APIs, implement...

9. What about Maven? (gt)

"Maven is about the application of patterns in order to achieve an infrastructure which displays the characteristics of visibility, reusability,
maintainability, and comprehensibility..."
"Maven uses a declarative approach, where the project structure and contents are described, rather then the task-based approach used in Ant or
in traditional make files ... This helps enforce ... development standards and reduces the time needed to write and maintain build scripts..."
Another option to consider for making the add-on build process a "little easier to do"

*What are the alternatives to Maven?

http://www.osgi.org/osgi_technology/index.asp?section=2
http://www.osgi.org/documents/collateral/TechnicalWhitePaper2005osgi-sp-overview.pdf
http://www.springframework.org/

Ant
(jd) Maven does what it wants to do

(rr) It enforces "patterns" across an org (see above)

10. What is our recommendation?

where to focus resources?
should the focus be on major refactoring?
should the focus instead be on key pain points (e.g. persistent storage)?
(rob) multiple trajectories
(md) need some reorg of code base

keep dependencies separate and isolated
once isolated, then refactor/define the interfaces
fix what breaks
use the tools (e.g. Eclipse)
need to experiment!

(rj) But if we refactor the information model, we'll need to refactor the core anyways
(jd) we're not starting from scratch!

need to define the goal and go there

11. Break-time discussion of what level of difficulty refactoring should take on, and how it might be managed...

12. (MS) Attempt at summary

Manakin with an AddOnMechanism addresses a lot of the pain points
See above: Short-term solution putting simplified AddOnMechanism in*main tree
A refactoring will be required with the refactored information model
There will be a 2.0 with an AddOnMechanism more like OSGi (see JSE questions above)

(MS) RJ's approach is a short-term but not long-term
NEED: "Plug-in framework" (e.g. OSGi) plus "build framework" (e.g. Maven)

	ArchReviewNotesTues

