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NOTE: this page is a work in progress.

This page exists to document the new (as of Q4 2007) features introduced into DSpace post 1.5. This is intended for developers, mostly as a guide for 
how to migrate from coding against the 'old' API to working with the new features as they exist in DSpace+1.6+. The three main features that I will outline 
in this page are DAOs, identifiers, and versioning. Note that these aren't the only new things that will appear in 1.6.

TODO
I'll start by outlining what still needs to be fixed / refactored / tested more thoroughly, so you have an idea of what's missing before you start.

Consistency

There are several areas that need to be aligned to make the application more consistent. A lot of work has already been done here, but there is much left 
to do:

logging
level, detail, etc

Events
authorization
use of  cacheorg.dspace.core.Context

API

The API has already changed considerably (see below), but there are still a few things that I need to straighten out:

use of  instead of  or  "identifiers".org.dspace.content.uri.ObjectIdentifier int String
pre- and post-hooks for all DAO operations (or at least the basic CRUD).
resolve API conflicts such as  vs.  (the former asks the in-memory , the latter item.getBundles() bundleDAO.getBundles(item) Item
queries the data store – results will not necessarily be the same).

URLs

To ease migration away from the dependency on Handles, the 'new' URL form is basically the same as it was (site_url/resource/identifier
). While this basically, works, there are bugs waiting to creep in (mostly relating to identifiers that contain unescaped slashes), and it may be /extras

worth moving towards a more parameterized URL scheme.

Constructors

Classes that have corresponding DAOs (  etc) typically had package-private constructors which, among other things, prevented them from being Item
subclassed (which was irritating); these constructors (usually) took a  and a . In order to maintain some degree of consistency with the TableRow Context
old API, such constructors now take an  ID, and a . It is important to note that these constructors are only really for use by the DAOs – all int Context
creates and retrieves go via DAOs so there should never be a need to directly instantiate one of these objects directly.

In the near future, I will probably remove these constructors and replace them with constructors that take no arguments (the  is only required to Context
support deprecated methods anyway) to avoid confusion.

Things that are broken

org.dspace.app.itemimport.ItemImport is broken (because of the previous dependency on Handles as identifiers). I'm in the process of 
fixing this, but for now it just doesn't work.

DAOs

http://scm.dspace.org/trac/dspace/browser/dspace/branches/dspace-dao-prototype
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#


Example: ItemDAO

Sample code to follow.

org.dspace.content.proxy

This section will provide an overview of the new  class.ItemProxy

Identifiers
It used to be the case that DSpace used a mix of  and  representations of Handles to identify objects. As much as possible, I've swapped all of int String
these out in favour of using the new  class. The idea behind this identifier was driven by one of the reasons for using DAOs: nObjectIdentifier
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