Google Summer of Code 2007 CIS
Content Integrity Service(CIS)

® Student: Jiahui Wang
® Mentor: James Rutherford
® Backup: Scott Phillips

System Design
Abstraction

The goal of the service is to demonstrate that the information of the archive is authentic and has not been altered (from the point that the certificate is
made). It relies on one-way hashing functions and time-stamping algorithms. It applies both transformation of the archival content and introduction of new
cryptographic primitives.

Framework

The essential idea of CIS is combining hash value of document with other hash values received in the same time period to create a witness hash value.
This kind of linking makes it computationally infeasible for an adversary to back-date a document, since that would entail computing hash collisions for the
witness values. This technique relies only on the collision resistance properties of hash functions, and does not have any secrets or keys that need to be
securely protected over extended periods of time.

The picture below shows approximately how CIS works:

The tatde Winess”

witness_id |ne_interval | hashwahse hash_algarithim
|[PE]imtq | intk4 | varchar | varchar
H 57050 S4digde IhATEEA00IS4adc 1 (7P I5A MOS
3 57120 41 Ih 3RS 3020/S48de 107 TFISE MOS
4 57121 221 81c0dcd 360001 LEELITSAEA0E M5
s 57124 2ractaZidSah AL A TobdaF FS025e3 MOS
— J:r 57125 C116855d33E0E2c 2 eetiackaTZachdi MD3
> e 57126 {4 1ed16ieT5 109515216088 L 76 MOS

The ifem’s lask-modified time.

The certificate for y2

<Pemil version="1.0" encoding="UTF-5"7>

<cerificate algorthm="WD5" handie="12345673&/110">

=~ | <LasiviodifiedTime>2007-07-05 10.57 46 75</LasthiodifigdTime>
<wilness position="LEFT"=3780 24 1e731 7f5ed {11 de534d7 a4 Oddb<fwilness>
<witness position="RIGHT">34d 1d4c 1b328530 20154801 a7 TH1 $6</wilness> Wituesses
awilness position="LEF T">¢ 11865433503 26 2deebadcaT 2achdfbh<fritnass>

<feartificate>

e | .

\ BT S— T YT

Merkk hash tree

\ oD odste_data
3 > ~ B I decumenk
The table “havhvelueofitem a3 drpes
hashwatue_id time_interval_id| item_id | hashealua hash_algosithm 4 [scesteboen
[PE] Ints Ink4 int4 warchar warchar O
2 57126 97 7004167317 ISeILOIS T 00 | MDS au
H 5710 100 B16ac i 2 aTEbde R ST 3T E0 DS > sDu
|20 57126 102 34d144 1132950000546 145771158 MDS : j?:
b
LR

%A

As this picture illustrates, items y1, y2, and y3 were received in a time interval. The process producing y2's certificate could be described like this:
® When install an item, store it's hash value in the database.
® Combine those three items' hash values and the witness hash value in the previous time interval, build a new witness for this interval and store it

in the database.
® Produce the certificate for y2 and store it in the file system.

Creating and renewing certificates

Representation

A certificate includes not only the hash value of the item, but also the information of the one-way hashing algorithm and witness values. It should be like
this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<certificate algorithm="NMD5" handl e="123456789/110" >
<Last Modi fi edTi me>2007- 07- 03 10: 57: 46. 75</ Last Modi fi edTi ne>
<w t ness position="LEFT">3790241e7317f 5e4f f 1dc534d7a40ddb</w t ness>
<wi t ness position="Rl GHT">34d1d4c1b32853020f 548dc1df 77f 158</ wi t ness>
<w t ness position="LEFT" >f 41deedb1d6f e55f e9551531608alf 76</ wi t ness>
</certificate>

Creating and Renewing
Create a new bitstream format in the table *bitstreamformatregistry for the certificate, with the field internal set to be true.
® Build a certificate automatically for each item when they are submitted, altered, or imported.

*The input of the renewing procedure includes the *old certificate of the item.
® The certificate should be bind to a certain hashing function, which could be appointed by the administrator.

Storage

The storage layer includes both file system and database.

Certificates
The certificate will be stored in the file system just like other bitstreams. It is treated in the same way as the bitstream License.

® The certificate would be given a internal-id, which is used to generate a directory for the certificate.

Database
A few of database table should be maintained, including:
® witness: table of witnesses which is published (accompanied with the corresponding time-interval).
® hash_request: hash values of the requests in the current time-interval.
© The entries should be deleted after certificates in this time-interval have been generated.

Verification

® The service can support verification for both archival content and the certificate itself.
® Clients can download all the witness values from the service.
® The verification procedure is run in background and provides users the results.

Work in the future

Maintain *old certificates when generate new certificate.

® Make a tool generating certificates manually for items.
® Make the Ul more friendly with Ajax.

See Also

® [Project abstract|http:/code.google.com/soc/dspace/appinfo.html?csaid=11628 COCA9FCEC61]
® A Content Integrity Service For Long-Term Digital Archives

® Hashing function APIs in JDK

* AJAX Tutorial

http://www.hpl.hp.com/techreports/2006/HPL-2006-54.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/CryptoSpec.html#AppA
http://www.w3schools.com/ajax/default.asp

	Google Summer of Code 2007 CIS

