
Google Summer of Code 2009 DSpace REST Webapp
DSpace REST API and Web Application

Details
Project Title: DSpace REST Webapp

Student: Bojan Suzic, University of Technology Graz

Mentor: Aaron Zeckoski

Contacting author: bojan AT trust - b . com using subject line [DSPACE:DSpace]

SCM Location for Project: http://scm.dspace.org/svn/repo/modules/rest

Project Summary
A RESTful service as DSpace addon is to be implemented, enabling guest and authorized users to browse and retrieve DSpace collections and related
data.

The principles to follow:

Stateless communication

Separation of concerns: methods (GET/PUT/DELETE) are used according to their designation

JSON and XML will both be supported as output formats

Configuration interface for administrator to control aspects of functionality

Logging of requests will be handled via the framework

The API will be versioned, enabling easier upgrades in the future

The (return) status codes should be handled according to the HTTP spec

Resource retrieval (books...) should be possible (to decide later: binary encoding or forwarding approach)

BasicAuth will be supported for authentication; X509 support for user logging would be a good idea

Endpoint (API methods) descriptions
Available endpoints are described here. Please note that this list is . Suggestions and comments are welcomed.not final or complete

The required parameters are these found in path of the request URL in most cases (except where noted). Optional parameters are found in the query part
of the URL. No optional parameters are found in the URL path, except one defining format (see bellow).

Optional parameters should indicate the default value when shown in the API definitions below. For example, indicates that if the thing ?thing=true
param is not included it will default to true. For the parameters without predefined value explicitly mentioned, it is assumed that the value is not predefined
at all. It means that it is not required, but using this parameter usually produces narrower results if such are requested.

The optional version parameter in query can be used when necessary like this: }. If no version is specified then the current version ?version={version
will be returned or used. Currently it is not supported.

Universal parameters

These parameters are valid for each call and as such are not explicitly mentioned in the specification tables.

For the , by default it is determined using the ACCEPT header (e.g. in JS) but optionally may be specified in the URL as a format setRequestHeader
suffix like (e.g.). JSON is used by default if there is no ACCEPT header parameter present and the format is not .json|.xml /thing/item.json
indicated. The ACCEPT header overrides the format suffix. If there is wrong (unsupported) accept-header set, then the status code 415 Unsupported

 shall be returned.Media Type

Authentication is to be based on provided parameters, supporting cookies and basic auth. For the authentication, if parameters are omitted (and no
cookie present), the guest (readonly/public) user is used, otherwise user is authenticated according to provided parameters (?user={username}&pass=

}) or cookie (in this order). Parameters can be included in header too, in this case header has precedence over other methods. Later the {password
possibility to use X509 certificate could be implemented.

In all cases, if the requested resource is out of reach of the user, the errors (not logged in) OR (logged in but not 401 Unauthorized 403 Forbidden
allowed) are used accordingly.

http://scm.dspace.org/svn/repo/modules/rest

For the methods, we will follow OpenSearch guidelines and RoR conventions - where it is applicable. The following list with supported searching/sorting
requests is maintained and updated when needed. These will be valid for each endpoint which uses GET unless otherwise noted in the API.

When searching for entities in a list, the following parameters are handled specially in the system (note that all the RoR conventions are followed for sorting
/paging):

_start={number}: the position of the first entity to return (0 is the first, default), e.g. _start=5

_page={number}: the page of data to display (0 is first, default), e.g. _page=2

_perpage={number}: the number of entities to return for the page (0 means all, default), e.g. _perpage=20

_limit={number}: the maximum number of entities to return (0 means all, default), e.g. _limit=50

_order={string}: the sort order to return entities in (default is ascending), should be a comma separated list of entity field names which
optionally include a suffix to determine order, suffix can be or for descending order OR '' (blank) or for ascending order, e._reverse _desc _asc
g. OR OR _order=name _order=name_reverse _order=name,email_desc,firstname_asc,lastname_reverse

_sort={string}: same as order

This part usually may generate two (error) status codes: , in the case there are no fields satisfying criteria, and , 204: No content 400: Bad request
in the case the query is malformed or incompatible parameters are used.

The searching criteria is applied only on items returning full info. Items returning only ids () are not sent to sorting/filtering procedures.idOnly=true

Information usually returned

In the most cases there are two types of returning information entities:

first, defined with , which returns only ids of entities satisfying requestidOnly=true

second, used by default, returning all available info

In the second case included is info for related entities. For instance, when user browses collection, it also receives information about communities related
to collection, items related to it and so on. This principle goes through several layers. For instance, Collection -> Item -> Bitstream. So, in one request all
these information are present.

Exception is present in the cases where chaining is possible. After some extent, not all information about sub/related-entities are sent, but only their ids.
Example: Collection -> Item -> Bundle -> Bitstream -> BundleId. As Bitstream and Bundle are mutually referenced and included, this would cause
unlimited chaining. For this reason the mechanism is implemented which encapsulates only id of entities after some extent. For more details please take a
look at the example and code.

Browsing methods

Name and description Value and notes

Base URI:

Description: Returns a list of all communities on the system or return just top level
communities.

HTTP method: GET

Optional parameters:

Sorting fields
supported:

: sorting by id, community name and item countid, name, countitems

Response formats: , json xml

Status codes 200: OK
204: no content
400: bad request
500: internal server error

Response details

Name and description Value and notes

Base URI:

Description: Returns a list of all parent communities of the community.id

HTTP method: GET

Optional parameters:

Sorting fields
supported:

: sorting by id, community name and item id, name, countitems
count

Response formats: , json xml

Status codes 200: OK
204: no content
400: bad request
500: internal server error

Response details

Name and description Value and notes

Base URI:

Description: Returns a list of immediate sub-communities (children) of the id
community.

HTTP method: GET

Optional parameters:

Sorting fields
supported:

: sorting by id, community name and item countid, name, countitems

Response formats: , json xml

Status codes 200: OK
204: no content
400: bad request
500: internal server error

Response details

Name and description Value and notes

Base URI:

Description: Returns a list of collections in the communityid

HTTP method: GET

Optional parameters:

Sorting fields
supported:

: sorting by id, collection name and item id, name, countitems
count

Response formats: , json xml

Status codes 200: OK
204: no content
400: bad request
500: internal server error

Response details

Name and description Value and notes

Base URI:

Description: Returns a list of recent submissions to a community

HTTP method: GET

Optional parameters:

Sorting fields
supported:

: sorting by id, name(title), last modified date and submitter(name) of id, name, lastmodified, submitter
item

Response formats: , json xml

Status codes 200: OK
204: no content
400: bad request
500: internal server error

Response details

Name and description Value and notes

Base URI:

Description: Returns a list of all collections in the system

HTTP method: GET

Optional parameters:

Sorting fields
supported:

: sorting by id, collection name and item id, name, countitems
count

Response formats: , json xml

Status codes 200: OK
204: no content
400: bad request
500: internal server error

Response details

Name and description Value and notes

Base URI:

Description: Returns a list of all communities a collection with belongs toid

HTTP method: GET

Optional parameters:

Sorting fields
supported:

: sorting by id, community name and item id, name, countitems
count

Response formats: , json xml

Status codes 200: OK
204: no content
400: bad request
500: internal server error

Response details

Name and description Value and notes

Base URI:

Description: Returns a list of all items from the collection id

HTTP method: GET

Optional parameters:

Sorting fields
supported:

: sorting by id, name, lastmodified date and submitter of id, name, lastmodified, submitter
item

Response formats: , json xml

Status codes 200: OK
204: no content
400: bad request
500: internal server error

Response details

Content searching

Name and description Value and notes

Base URI:

Description: Returns a list of all objects found by searching criteria

HTTP method: GET

Optional parameters:

Sorting fields supported: : sorting by id, name, last modifed date or submitter of id, name, lastmodified, submitter
item

Sorting/ordering
modifiers:

title, issueDate, author, subject, submitter

Response formats: , json xml

Status codes 200: OK
204: no content
400: bad request
500: internal server error

Response details

Name and description Value and notes

Base URI:

Description: Returns a list of all objects that have been created, modified or withdrawn within specified time
range

HTTP method: GET

Optional parameters:

Sorting/ordering
modifiers:

: information on item returnedid, name, lastmodified, submitter

Response formats: , json xml

Status codes 200: OK
204: no content
400: bad request
500: internal server error

Response details

Item status/info and retrieval

Name and
description

Value and notes

Base URI: }/items/{id

Description: Returns detailed information about an item

HTTP method: GET

Required
parameters:

{ }: item idid

Sorting fields
supported:

: sorting by id, name, last modifed date or submitter of itemid, name, lastmodified, submitter

Response
formats:

, json xml

Status codes 200: OK
204: no content
400: bad request
500: internal server error

Response
details

Contains an information about an item including resource name, metadata, owning collection, collections stored in, communities stored in, bundle ids,
last modified date, archival/withdrawn status and submitter of an item

Name and
description

Value and notes

Base URI: /items/{id}/permissions

Description: Returns status of user permissions on this item

HTTP method: GET

Required
parameters:

{ }: item idid

Response formats: , json xml

Status codes 200: OK
400: bad request
500: internal server error

Response details Boolean variable, stating can user edit the listed
item

Name and description Value and notes

Base URI:

Description: Returns communities this item is part of

HTTP method: GET

Required parameters:

Sorting fields
supported:

: community properties used for id, name, countitems
sorting

Response formats: , json xml

Status codes 200: OK
400: bad request
500: internal server error

Response details Communities listed

Name and description Value and notes

Base URI:

Description: Returns collections this item is part of

HTTP method: GET

Required parameters:

Sorting fields
supported:

: collection id, name, countitems
parameters

Response formats: , json xml

Status codes 200: OK
400: bad request
500: internal server error

Response details Collections listed

Name
and
descriptio
n

Value and notes

Base
URI:

}/bitstream/{id

Descriptio
n:

Returns bitstream object - usually the library item file

HTTP
method:

GET

Required
paramete
rs:

{ }: bitstream item idid

Response
formats:

, (not yet complete)json xml

Status
codes

200: OK
404: Not found
400: bad request
401: Unauthorized
403: Forbidden
500: internal server error

Response
details

Includes all information about referenced bitstream, including file name, licence, corresponding ittem etc. It is possible only to get information for particular
bitstreams. When the request is made without parameters/references, the blank list is presented (there is no list of all bitstreams in the system available).

Name and
description

Value and notes

Base URI: /bitstream/{id}/receive

Description: Returns checksum of
bitstream

HTTP method: GET

Required
parameters:

{ }: bitstreamitem idid

Response formats: binary

Status codes 200: OK
400: bad request
401: Unauthorized
403: Forbidden
500: internal server error

Response details Receive full bitstream

User-oriented functions

Name and description Value and notes

Base URI:

Description: Returns list containing id, name and email of persons (optionally matching a query)

HTTP method: GET

Optional parameters:

Sorting fields
supported:

: sorting properties of user(submitter) id, name, lastname, fullname, language
supported

Response formats: , json xml

Status codes 200: OK
204: no content
400: bad request
500: internal server error

Response details List with information on particular user. Additionaly only identifiers are sent if idOnly is true.

Statistical info

Name and
description

Value and notes

Base URI: /stats

Description: Returns general statistics

HTTP method: GET

Response formats: , json xml

Status codes 200: OK
400: bad request (if there is no stats package available)
500: internal server error

Response details Returns cummulative list of statistics data for the system currently
available

Comments

Concerning DSpace Data Model exposure in REST Paths

I am concerned about the adoption of the 1.x dspace data model, which in 2.0, is not hardcoded in this manner,
entity resource "type" being part of the url path. We are trying to move away from this convention and for the content and represent a generic mechanism
for traversing and manipulating the graph/hierarchy of the resources (entities) .

I think we should treat them as such and think about how such resource/entity graphs are traversed using rest

Rather than: /communities/{id}/parents?idOnly=false&immediateOnly=true

We have something more like

/resource/{id}/related?relation=ds:isPartOfCommunity&idOnly=false&immediateOnly=true

Rather than: /communities/{id}/children?idOnly=false&immediateOnly=tru

We have

/resource/{id}/related?relation=ds:hasCommunityPart&idOnly=false&immediateOnly=true

I think we need to make sure the REST interfaces clearly map to 2.0 Services and the actions that can be performed on them. So harvest, stats and users
make sense to me. But, Community, Collection, Item and Bitstream do not and we should be consolidating these under some service path like "content/" or
"resource/" or the like.

-- 16:04, 12 July 2009 (EDT)Mark Diggory

See Fedora REST API for reference

Please see for reference:

Fedora REST
Fedora API-M
Fedora API-A

for some examples of methods appropriate for the entity relationship model we are considering for 2.0

https://wiki.lyrasis.org/pages/viewpage.action?pageId=19006714
http://www.fedora-commons.org/documentation/3.0/userdocs/server/webservices/rest/index.html
http://www.fedora-commons.org/documentation/3.0/userdocs/server/webservices/apim/index.html
http://www.fedora-commons.org/documentation/3.0/userdocs/server/webservices/apia/index.html

addRelationship

Creates a new relationship in the object. Adds the specified relationship to the object's RELS-EXT datastream. If the Resource Index is enabled, the
relationship will be added to the Resource Index.

The DSpace 2.0 proposed mapping to Fedora places RDF references for ds:hasCollection/ds:isPartOfCollection, ds:hasCommunity/ds:isPartOfCommunity
directly into the RELS-EXT as relationships between Fedora representations of DSpace objects.

URL Syntax

/objects/{pid} ? [relationship] [object] [isLiteral] [datatype]

Parameters:

pid: The PID of the object.
relationship: The predicate.
object: The object.
isLiteral: A boolean value indicating whether the object is a literal.
datatype: The datatype of the literal. Optional.

For DSpaceObjects:

(a) Creates either a new Top Level Community, SubCommunity, Collection, Item, Bundle or Bitstream as defined in the DSpace Data Model, the context of
which is the current {pid} entity

Get next pid, /objects/nextPID ? [DSPACE:type]

 /objects/nextPID?type="http://purl.org/dspace/model/Bitstream"

 /objects/{bundlePid}?relationship="http://purl.org/dspace/model/hasBitstream"&object={bitstreamPid}

 /objects/{bitstreamPid} ? ... see http://www.fedora-commons.org/documentation/3.0/userdocs/server/webservices
/rest/index.html#addDatastream

(b) Creates metadata properties attached to any of the above DSpace Objects.

/objects/{pid} ? relationship=http://purl.org/elements/1.1/title&object="My Title"&isLiteral=true

addDatastream

URL Syntax

/objects/{pid}/datastreams/{dsID} ? [controlGroup] [dsLocation] [altIDs] [dsLabel] [versionable] [dsState]
[formatURI] [checksumType] [checksum] [logMessage]

-- 15:58, 12 July 2009 (EDT)Mark Diggory

References
Microformats conventions

RFC2616 Method Definitions

RFC2616 Status Code Definitions

Fedora API-M

https://wiki.lyrasis.org/pages/viewpage.action?pageId=19006714
http://microformats.org/wiki/rest/urls
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.fedora-commons.org/documentation/3.0/userdocs/server/webservices/apim/index.html

	Google Summer of Code 2009 DSpace REST Webapp

