
PubMedPrefill-JSPPubmedPrefillStep.java

package my.dspace.app.webui.submit.step;

import org.dspace.app.webui.submit.JSPStep;
import org.dspace.app.webui.submit.JSPStepManager;
import org.dspace.app.webui.util.UIUtil;
import org.dspace.app.util.SubmissionInfo;
import org.dspace.core.Context;
import org.dspace.core.ConfigurationManager;
import org.dspace.authorize.AuthorizeException;
import org.dspace.submit.step.SampleStep;
import org.dspace.submit.AbstractProcessingStep;
import org.apache.log4j.Logger;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;
import java.io.IOException;
import java.sql.SQLException;

/**
 * Sample PubMed Prefill JSP interface layer
 */
public class JSPPubmedPrefillStep extends JSPStep
{
 /** log4j logger */
 private static Logger log = Logger.getLogger(JSPPubmedPrefillStep.class);

 /** JSP which displays the step to the user * */
 private static final String DISPLAY_JSP = "/submit/pubmed-step.jsp";

 /** JSP which displays information to be reviewed during 'verify step' * */
 private static final String REVIEW_JSP = "/submit/review-pubmed.jsp";

 /**
 * Do any pre-processing to determine which JSP (if any) is used to generate
 * the UI for this step. This method should include the gathering and
 * validating of all data required by the JSP. In addition, if the JSP
 * requires any variable to passed to it on the Request, this method should
 * set those variables.
 * <P>
 * If this step requires user interaction, then this method must call the
 * JSP to display, using the "showJSP()" method of the JSPStepManager class.
 * <P>
 * If this step doesn't require user interaction OR you are solely using
 * Manakin for your user interface, then this method may be left EMPTY,
 * since all step processing should occur in the doProcessing() method.
 *
 * @param context
 * current DSpace context
 * @param request
 * current servlet request object
 * @param response
 * current servlet response object
 * @param subInfo
 * submission info object
 */
 public void doPreProcessing(Context context, HttpServletRequest request,
 HttpServletResponse response, SubmissionInfo subInfo)
 throws ServletException, IOException, SQLException,
 AuthorizeException
 {
 // Tell JSPStepManager class to load "sample-step.jsp"
 JSPStepManager.showJSP(request, response, subInfo, DISPLAY_JSP);
 }

 /**

 * Do any post-processing after the step's backend processing occurred (in
 * the doProcessing() method).
 * <P>
 * It is this method's job to determine whether processing completed
 * successfully, or display another JSP informing the users of any potential
 * problems/errors.
 * <P>
 * If this step doesn't require user interaction OR you are solely using
 * Manakin for your user interface, then this method may be left EMPTY,
 * since all step processing should occur in the doProcessing() method.
 *
 * @param context
 * current DSpace context
 * @param request
 * current servlet request object
 * @param response
 * current servlet response object
 * @param subInfo
 * submission info object
 * @param status
 * any status/errors reported by doProcessing() method
 */
 public void doPostProcessing(Context context, HttpServletRequest request,
 HttpServletResponse response, SubmissionInfo subInfo, int status)
 throws ServletException, IOException, SQLException,
 AuthorizeException
 {
 /***
 * IMPORTANT FUNCTIONS to be aware of :
 **/

 // This function retrieves the path of the JSP which just submitted its
 // form to this class (e.g. "/submit/sample-step.jsp", in this case)
 String lastJSPDisplayed = JSPStepManager.getLastJSPDisplayed(request);

 // This function retrieves the number of the current "page"
 // within this Step. This is useful if your step actually
 // has more than one "page" within the Progress Bar. It can
 // help you determine which Page the user just came from,
 // as well as determine which JSP to load in doPreProcessing()
 int currentPageNum = SampleStep.getCurrentPage(request);

 // This function returns the NAME of the button the user
 // just pressed in order to submit the form.
 // In this case, we are saying default to the "Next" button,
 // if it cannot be determined which button was pressed.
 // (requires you use the AbstractProcessingStep.PREVIOUS_BUTTON,
 // AbstractProcessingStep.NEXT_BUTTON, and AbstractProcessingStep.CANCEL_BUTTON
 // constants in your JSPs)
 String buttonPressed = UIUtil.getSubmitButton(request,
 AbstractProcessingStep.NEXT_BUTTON);

 // We also have some Button Name constants to work with.
 // Assuming you used these constants to NAME your submit buttons,
 // we can do different processing based on which button was pressed
 if (buttonPressed.equals(AbstractProcessingStep.NEXT_BUTTON))
 {
 // special processing for "Next" button
 // YOU DON'T NEED TO ATTEMPT TO REDIRECT/FORWARD TO THE NEXT PAGE
 // HERE,
 // the SubmissionController will do that automatically!
 }
 else if (buttonPressed.equals(AbstractProcessingStep.PREVIOUS_BUTTON))
 {
 // special processing for "Previous" button
 // YOU DON'T NEED TO ATTEMPT TO REDIRECT/FORWARD TO THE PREVIOUS
 // PAGE HERE,
 // the SubmissionController will do that automatically!
 }
 else if (buttonPressed.equals(AbstractProcessingStep.CANCEL_BUTTON))
 {

 // special processing for "Cancel/Save" button
 // YOU DON'T NEED TO ATTEMPT TO REDIRECT/FORWARD TO THE CANCEL/SAVE
 // PAGE HERE,
 // the SubmissionController will do that automatically!
 }

 // Here's some sample error message processing!
 if (status == SampleStep.STATUS_USER_INPUT_ERROR)
 {
 // special processing for this error message
 JSPStepManager.showJSP(request, response, subInfo, DISPLAY_JSP);
 }

 /***
 * SAMPLE CODE (all of which is commented out)
 *
 * (For additional sample code, see any of the existing JSPStep classes)
 **/

 /*
 * HOW-TO RELOAD PAGE BECAUSE OF INVALID INPUT!
 *
 * If you have already validated the form inputs, and determined that
 * one or more is invalid, you can RELOAD the JSP by calling
 * JSPStepManger.showJSP() like:
 *
 * JSPStepManger.showJSP(request, response, subInfo, "/submit/sample-step.jsp");
 *
 * You should make sure to pass a flag to your JSP to let it know which
 * fields were invalid, so that it can display an error message next to
 * them:
 *
 * request.setAttribute("invalid-fields", listOfInvalidFields);
 */

 /*
 * HOW-TO GO TO THE NEXT "PAGE" IN THIS STEP
 *
 * If this step has multiple "pages" that appear in the Progress Bar,
 * you can step to the next page AUTOMATICALLY by just NOT calling
 * "JSPStepManger.showJSP()" in your doPostProcessing() method.
 *
 */

 /*
 * HOW-TO COMPLETE/END THIS STEP
 *
 * In order to complete this step, just do NOT call JSPStepManger.showJSP()! Once all
 * pages are finished, the JSPStepManager class will report to the
 * SubmissionController that this step is now finished!
 */
 }

 /**
 * Retrieves the number of pages that this "step" extends over. This method
 * is used by the SubmissionController to build the progress bar.
 * <P>
 * This method may just return 1 for most steps (since most steps consist of
 * a single page). But, it should return a number greater than 1 for any
 * "step" which spans across a number of HTML pages. For example, the
 * configurable "Describe" step (configured using input-forms.xml) overrides
 * this method to return the number of pages that are defined by its
 * configuration file.
 * <P>
 * Steps which are non-interactive (i.e. they do not display an interface to
 * the user) should return a value of 1, so that they are only processed
 * once!
 *
 *
 * @param request
 * The HTTP Request

 * @param subInfo
 * The current submission information object
 *
 * @return the number of pages in this step
 */
 public int getNumberOfPages(HttpServletRequest request,
 SubmissionInfo subInfo) throws ServletException
 {
 /*
 * This method tells the SubmissionController how many "pages" to put in
 * the Progress Bar for this Step.
 *
 * Most steps should just return 1 (which means the Step only appears
 * once in the Progress Bar).
 *
 * If this Step should be shown as multiple "Pages" in the Progress Bar,
 * then return a value higher than 1. For example, return 2 in order to
 * have this Step appear twice in a row within the Progress Bar.
 *
 * If you return 0, this Step will not appear in the Progress Bar at
 * ALL! Therefore it is important for non-interactive steps to return 0.
 */

 // in most cases, you'll want to just return 1
 return 1;
 }

 /**
 * Return the URL path (e.g. /submit/review-metadata.jsp) of the JSP
 * which will review the information that was gathered in this Step.
 * <P>
 * This Review JSP is loaded by the 'Verify' Step, in order to dynamically
 * generate a submission verification page consisting of the information
 * gathered in all the enabled submission steps.
 *
 * @param context
 * current DSpace context
 * @param request
 * current servlet request object
 * @param response
 * current servlet response object
 * @param subInfo
 * submission info object
 */
 public String getReviewJSP(Context context, HttpServletRequest request,
 HttpServletResponse response, SubmissionInfo subInfo)
 {
 return REVIEW_JSP;
 }
}

	PubMedPrefill-JSPPubmedPrefillStep.java

