
BuildCookbook
This is a collection of cookbook-style examples showing how to add certain types of modifications to a DSpace installation.
It is based on experience with the DSpace 1.5.0 binary release, the first to use the new module layout and build system.

Please feel free to add your own examples of typical DSpace modifications.

Prerequisites
You must be familiar with and configuring DSpace 1.5. It may help to review .installing Building DSpace From Source

See also the presentation from , by and . It provides an Customizing DSpace 1.5 with Basic Overlays Open Repositories O8 Tim Donohue Graham Triggs
excellent overview of the build process and how overlays work. It was the inspiration for this page.

This page concentrates on examples not covered in that presentation, such as the common case of just adding some plugin implementations.

Recipe 1: Adding Local Code as a Maven Project
Customizations to DSpace often require the addition of code, i.e. classes in non-DSpace packages. For example, when you wish to provide your own local
AuthenticationMethod implmentation. By putting this code into a separate Maven project, and modifying a few DSpace POMs, you can have your local
classes added to both the webapps of interest the DSpace command-line applications.and

The trick is to manage dependencies correctly. Your local project will depend explicitly on the project so it can import DSpace API interfaces dspace-api
and classes. Thus, the project depend on it. You have to add a dependency on your local project to every POM that generates an dspace-api cannot
executable build product (i.e. the webapps, and the command-line apps). Those projects depend on so the API classes will be available.also dspace-api

Example of Local Code Project
Here is a live example of how the DSpace 1.5.2 POMs were modified to add a local package named . This project contains several plugin dash-api
implementations, and it has its own dependencies on some other projects which support that code. All of the classes in are in packages under dash-api
the hierarchy, so they do not conflict with DSpace.edu.harvard...

Note that the POMs are presented in a very simplified form, eliding the elements like that depend on your local environment or can be easily repositories
extrapolated. We only show the elements pertinent to this discussion:

First, establish POMdash-api

Create a subdirectory at the same level as , and add this POM:dash-api dspace-api

https://wiki.lyrasis.org/display/DSPACE/Installation+Guides
https://wiki.lyrasis.org/display/DSPACE/Building+DSpace+From+Source
http://pubs.or08.ecs.soton.ac.uk/135/
http://or08.ecs.soton.ac.uk/
https://wiki.lyrasis.org/display/~tdonohue/Home
https://wiki.lyrasis.org/display/DSPACE/Grahamtriggs

<project>
 <groupId>edu.harvard.hul.ois.dash</groupId>
 <artifactId>dash-api</artifactId>
 <packaging>jar</packaging>

 <parent>
 <groupId>org.dspace</groupId>
 <artifactId>dspace-parent</artifactId>
 <version>1.5.2-SNAPSHOT</version>
 </parent>

 <dependencies>
 <dependency>
 <groupId>org.dspace</groupId>
 <artifactId>dspace-api</artifactId>
 </dependency>
 ...other dspace dependencies...
 <dependency>
 <groupId>edu.harvard.hul.ois</groupId>
 <artifactId>util</artifactId>
 </dependency>
 <dependency>
 <groupId>commons-httpclient</groupId>
 <artifactId>commons-httpclient</artifactId>
 </dependency>
 other external dependencies...
 </dependencies>
</project>

Modify the POMdspace

Add the following sections to the POM of the project. This ensures the code gets built, and that it will be available to DSpace command-line dspace
utilities.

Add to elementprofiles

 <profile>
 <id>dash-api</id>
 <activation>
 <file>
 <exists>../dash-api/pom.xml</exists>
 </file>
 </activation>
 <modules>
 <module>../dash-api</module>
 </modules>
 </profile>

Add to elementdependencies

 <dependency>
 <groupId>edu.harvard.hul.ois.dash</groupId>
 <artifactId>dash-api</artifactId>
 </dependency>

Modify POM for each relevant Webapp

For each webapp you plan to build, e.g. , add the following elements to the POM in its subdirectory under . For example, add to xmlui dspace/modules/
 this element to its list:dspace/modules/xmlui/pom.xml dependencies

 <dependency>
 <groupId>edu.harvard.hul.ois.dash</groupId>
 <artifactId>dash-api</artifactId>
 </dependency>

Modify the POMdspace-parent

Finally, you must add a version declaration for to the POM.dash-api dspace-parent
Add this element to the list:dependencies

 <dependency>
 <groupId>edu.harvard.hul.ois.dash</groupId>
 <artifactId>dash-api</artifactId>
 <version>${project.version}</version>
 </dependency>

Other Dependencies

Don't forget to add version declarations for other new dependencies if they are not explicit in e.g. the POM.dash-api

Recipe 2: Adding Customizations to Webapps with Overlays
The excellent presentation from , by and shows how to Customizing DSpace 1.5 with Basic Overlays Open Repositories O8 Tim Donohue Graham Triggs
manage your local UI customizations and keep your added code well-segregated from the DSpace codebase so upgrades are simplified. It also provides
an overview of the build process and how maven overlays work.

Recipe 3: (Deprecated) Old Quick-and-Dirty Method of Adding Plugins
This is a slightly simpler but less powerful way to add code to a single webapp at a time. It has drawbacks over the local-API method described in the first
section.

With the overlay mechanism, it is easy to add a or plugin . This techniqueCrosswalk PackagerPlugins to of the webappsone
does let you add code to the libraries accessed by the command-line utilities, such as (more about that later).not /bin/packagerdspace

The following notes assume a installation of DSpace 1.5.0, under the directories:binary

[source] is the "source" directory where builds are done.
[dspace] is the target runtime directory, e.g. /dspace

Procedure to Add a Plugin

Step 1: Install sources

Add the necessary Java source files to the for each module that you want to have access to the plugin. This isoverlay directory
 for additional Java sources./dspace/modules/ /src/main/java[source] {MODULE}

Note that adding a plugin to multiple modules requires a separate copy of the source files for each module, which might complicate maintenance when you
have to update the sources; use symbolic links to work around this if you are familiar with them.

For this example, I'll show an ingestion/dissemination crosswalk Plugin, and a package ingester Plugin that are both implemented in the following class
files:

 edu/mit/libraries/facade/PIMConstants.java
 edu/mit/libraries/facade/PIMCrosswalk.java
 edu/mit/libraries/facade/PIMMETSIngester.java

For the example, assume these files reside under a directory, .development { }development
To add these classes to the LNI module, we install the sources under with the following commands:/dspace/modules/lni/src/main/java[source]

http://pubs.or08.ecs.soton.ac.uk/135/
http://or08.ecs.soton.ac.uk/
https://wiki.lyrasis.org/display/~tdonohue/Home
https://wiki.lyrasis.org/display/DSPACE/Grahamtriggs
https://wiki.lyrasis.org/display/DSPACE/CrosswalkPlugins
https://wiki.lyrasis.org/display/DSPACE/PackagerPlugins
#

 mkdir -p [source]/dspace/modules/lni/src/main/java/edu/mit/libraries/facade
 cp {development}/edu/mit/libraries/facade/*.java [source]/dspace/modules/lni/src/main/java/edu/mit/libraries
/facade

Step 2: Update DSpace Configuration

If you maintain the DSpace configuration file in your source directory and use the build tools to copy it into the runtime hierarchy, then update the source
copy of now. (In my development environment, I just edit the runtime copy in .)dspace.cfg [dspace]/config/dspace.cfg

Add entries for the crosswalks, e.g. like the line here (other entries elided for clarity):bold

 # Crosswalk Plugins:
 plugin.named.org.dspace.content.crosswalk.IngestionCrosswalk = \
 edu.mit.libraries.facade.PIMCrosswalk = PIM \
 org.dspace.content.crosswalk.PREMISCrosswalk = PREMIS \
 ...

Step 3: Modify the POM to Add Dependencies

If your code has any new external dependencies (i.e. it needs modules not already required by DSpace) then you need to add those to the POM for the
overlay module. In this example, we add the dependency lines to the LNI module's POM at /dspace/modules/lni/pom.xml[source]

 <project>
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>org.openrdf</groupId>
 <artifactId>sesame</artifactId>
 <version>2.1</version>
 </dependency>
 </dependencies>
 </project>

NOTE: Of course, this requires that all the libraries your code depends on are available to Maven. If not, you'll have to add them to the local
Maven repository or convince someone to put them into a networked maven repository. This example creates an entry in the local repository:

 mvn install:install-file \
 -Dfile=/opt/sesame/lib/openrdf-sesame-2.1-onejar.jar \
 -DgroupId=org.openrdf \
 -DartifactId=sesame \
 -Dversion=2.1 \
 -Dpackaging=jar \
 -DgeneratePom=true

Step 4: Build with Maven and Deploy

First, build the sources:

 cd [source]/dspace
 mvn package

Assuming that succeeds, run Ant to install the build products.
NOTE: This does NOT install the configuration files, because I don't work that way; perhaps someone who does could add an alternate command here?

 { shut down servlet container such as Tomcat }
 cd [source]/dspace/target/dspace-1.5.0-build.dir
 ant update
 { start up servlet container such as Tomcat }

Your DSpace instance should now be running with the new plugins in the LNI application.

Adding The Same Plugins to Other Applications
The procedure to add these same plugins to another DSpace application, for example the OAI-PMH server (), is identical."oai"

If you are adding the plugins to both and , you may wish to symbolically link the Java sources to one master copy someplace else, so that any lni oai
changes will take effect in both applications.

In the case of OAI-PMH, you'll also need to modify the configuration file to add the appropriate plugins to OAICAT.oaicat.properties

Recipe 4: (Deprecated) Use Overlays to Segregate Local Modifications
You can also use the overlay mechanism to implement a local change or bug-fix to the DSpace codebase. The process is exactly the same as for adding
plugin implementations, only you add the appropriate DSpace class files to the source directory instead. These will take precedence over the distributed
code in the classloader.

Again, add the sources under , only under the hierarchy./dspace/modules/ /src/main/java[source] {MODULE} org/dspace/...

For example, to fix a bug in the class, you add file in Step 1 instead of your own source:org.dspace.app.oai.DSpaceOAICatalog that

 mkdir -p [source]/dspace/modules/oai/src/main/java/org/dspace/app/oai
 cp {development}/org/dspace/app/oai/DSpaceOAICatalog.java [source]/dspace/modules/oai/src/main/java/org/dspace
/app/oai

The procedure thereafter is exactly the same as the last recipe (deprecated) for adding plugin implementations.

Recipe 5: (Deprecated) Old, Poor way of Adding Plugins to Command-Line
Applications
The build system does not appear to have any way to accomplish this with a binary DSpace installation.
(Please correct this if I'm wrong.)

As a kludgy workaround, I've simply added a JAR file manually to the "lib" directory used by all command-line apps.

Using my crosswalk and packager example above, the command to add my code to the runtime directory is:

 cd [source]/dspace
 jar cvf [dspace]/lib/pim.jar \
 -C target/dspace-1.5.0-build.dir/webapps/oai/WEB-INF/classes/ edu

Note that the JAR output file is simply what I chose to call it, use any unique name.pim.jar
The classes are all in packages under so the jar command picks up everything under in the overlay module's class directory.edu.mit edu

Of course you have to manually copy in whatever other libraries your code depends on, e.g.also

 cp /opt/sesame/lib/*.jar [dspace]/lib

Note that the build installation ("ant update") process wipes the runtime directory clean each time, so you'll have to repeat these commands after "lib"
every new update.

	BuildCookbook

