GSOC 2010 Unit Tests - Technical documentation

® |ntroduction
® [ssues Found
© Multiple Maven projects
O File system dependency
© File configuration dependency
© Database dependency
o Different tests
O Structural Issues
© Development Issues
® Warnings to be taken in account:
= |ssues found:
= Fixes done:
® Dependencies
© Maven
© JUnit
© JMockit
o ContiPerf
o H2
® Unit Tests Implementation
© Structure
O Limitations
© How to build new tests
© How to run the tests
® Integration Tests
O Structure
O Limitations
" Tests structure
® Events Concurrency Issues
® Context Concurrency Issues
© How to build new tests
® Code Analysis Tools
® Functional Tests
© Choices taken
Structure
Limitations
How to build new tests
How to run the tests
Provided tests
Advanced Usage
® Future Work
® Thanks

[e]
[e]
[e]
[e]
[e]
[e]

Introduction

This document describes the technical aspects of the testing integrated into Dspace. In it we describe the tools used as well as how to use them and the
solutions applied to some issues found during development. It's intended to serve as a reference for the community so more test cases can be created.

Issues Found

During implementation we found several issues, which are described in this section, along the solution implemented to work around them.

Multiple Maven projects

DSpace is implemented as a set of Maven 2 projects with a parent-child relationship and a module that manages the final assembly of the project. Due to
the specifics of DSpace (database dependency, file system dependency) we need to set up the test environment before running any tests. While the
fragmentation in projects of DSpace is good design and desirable, that means we have to replicate the configuration settings for each project, making it
much less maintainable.

There is another issue related to the way Maven works. Maven defines a type of package for each project (jar, war or pom). Pom projects can contain
subprojects, but their lifecycle skips all the test steps. This means that even if a Pom project would be ideal to place the tests, they would be not be run
and we can't force Maven to run them by any means.

The perfect solution would be to run the tests in the Assembly project, but due to the mentioned limitations (it is a Pom project) this can't work.

To solve this issue we have created a new project, dspace-test, which will contain only unit tests. It has dependencies on the projects being tested and all
the settings required to initialize DSpace. All tests must be added to this project, as it is the only one with the proper dependencies.

File system dependency

We found that some methods and/or classes have a dependency on the file system of DSpace. This means we have to replicate the file system, including
some configuration files, before being able to run the tests.

The main issue is that the existing files we need are in the Assembly project, but we can't run the tests there. Also, we can't use an assembly to copy the
files as the test phase runs before any packaging or install phase in Maven.

The solution has been to duplicate the file system in the dspace-test project. This replica is copied to the temp folder (a folder designed by the tester via a
configuration file) before launching the tests. Once the tests finish, the files are removed. This is not an ideal solution as requires tester to duplicate files,
but is a workaround while we find a definite solution.

The files are stored under the folder dspaceFolder in the resources folder. All the contents of this folder will be copied to the temporal area. The file test-
config.properties contains settings to specify the temporal folder and other test values.

File configuration dependency

Dspace heavily depends on the file dspace.cfg for its configuration. For testing purposes we have crafted a test version of this file, available in the
resources folder of dspace-test. This file is loaded during setup instead of the default dspace.cfg so the environment is set for unit testing.

As the assembly process is run later than the test goal in Maven, we can't use external profiles to replace values. This means the values in this file are
hard-coded and might need to be changed for a specific system. The way it is set up by default, it should work on all *nix systems as it sets the /tmp/ folder
as the temporal test folder. If this has to be changed, the file test-config.properties will also need to be updated.

Database dependency

We found that many classes have a direct dependency to the database. Specifically there is a huge coupling with both Oracle and PostgreSQL, with many
pieces of code being executed or not depending on the database used. Mocking the connections is not easy due to the heavy use of default-access
constructors and relations between classes that are not following Demeter's Law.This means we need a database to run the tests, something not really
desirable but required.

While the perfect solution would be to migrate DSpace to an ORM like Hibernate, there is not time to do so in this project, and this would be too much of a
change to add to the source. The decision has been made to use an in-memory database where the DSpace database will be recreated for the purpose of
unit testing. Once the tests are finished, the database will be wiped and closed.

Taking in account the coupling with Oracle/PostgreSQL and the need to recreate the database, the solution has been to create a mock of the DatabaseMan
ager class. This mock implements the exact same functionality of the base class (being a complete copy) and adds some initialization code to reconstruct
the tables and default contents.

The database used is H2 . The information is stored in a copy of the database_schema.sq|l file for PostgreSQL with the following modifications:

® removal of the function that provides the next value of a sequence

® removal of clause "WITH TIME ZONE" from TIMESTAMP values

removal of DEFAULT NEXTVAL('<seg>") constructs due to incompatibility. DatabaseManager has been changed to add the proper ID to the
column. Proposed to change the affected valued to IDENTITY values, that include autoincrement.

removal of UNIQUE constructs due to incompatibility. Tests will need to verify uniqueness

replaced BIGSERIAL by BIGINT

replacing getnextid for NEXTVAL on an INSERT for epersongroup

due to the parsing process some spaces have been added at the start of some lines to avoid syntax errors

Due to H2 requiring the column names in capital letters the database is defined as an Oracle database for DSpace (db.name) and the Oracle compatibility
mode for H2 has been enabled.

The code in the mock DatabaseManager has been changed so the queries are compatible with H2. The changes are minimal as H2 is mostly compatible
with PostgreSQL and Oracle.

As a note, the usage of a DDL language via DDLUtils has been tested and discarded due to multiple issues. The code base of DDL Utils is ancient, and
not compatible with H2. This required us to use HSQLDB, which in turn required us to change some tables definitions due to syntax incompatibilities. Also,
we discovered DDL Utils wasn't generating a correct DDL file, not providing relevant meta-information like which column of a table was a primary key or
the existing sequences. Due to the reliance of DatabaseManager on this meta-information, some methods were broken, giving wrong values. It seems that
more recent code is available from the project SVN, but this code can't be recovered from Maven repositories, which would make much more cumbersome
the usage of unit testing in DSpace as the developer would be required to download the code, compile it and store it in the local repository before being
able to do a test. A lot of effort has been put to use the DDL, but in the end we feel using the database_schema.sq|l file is better.

Different tests

In this project we want to enable unit tests, integration tests and functional tests for DSpace. Maven 2 has a non-modifiable life-cycle that doesn't allow us
to run tests once the project has been packaged.This same life-cycle doesn't allow us to launch an embedded server like Jetty to run the functional tests.

The solution to this is to create 2 infrastructures, one for the unit and integration tests and one for the functional tests. Unit and integration tests will be run
by Maven using the Surefire plugin. Functional tests will be run once the program has been build from an Ant task. This will allow us to launch an
embedded server to run the tests.

This option is not optimal, but due to the limitations imposed by DSpace system and Maven we have not find a better solution. Any proposals are
appreciated.

The unit and integration tests solution has been implemented in the dspace-test project.

The functional tests implementation is being done.

http://www.h2database.com/html/cheatSheet.html
http://db.apache.org/ddlutils/

Structural Issues
During the development the following issues have been detected in the code, which make Unit Testing harder and impact the maintainability of the code:

* Hidden dependencies. Many objects require other objects (like DatabaseManager) but the dependency is never explicitly declared or set. These
dependencies should be fulfilled as parameters in the constructors or factory methods.

* Hidden constructors. It would be advisable to have public constructors in the objects and provide a Factory class that manages the instantiation of all
required entities. This would facilitate testing and provide a separation of concerns, as the inclusion of the factory methods inside objects usually adds
hidden dependencies (see previous point).

Refactoring would be required to fix these issues.

Development Issues

During development some issues have arised. These issues need to be solved for the unit tests to be viable.

Warnings to be taken in account:

® Unit tests may be faulty due to misunderstanding of the source code, a revision is required to ensure they behave as expected

® Unit tests may be incomplete, missing some paths of the existing code

® Due to the tight dependencies between some classes some methods can't be tested completely. In these cases more benefit can be obtained
from integration tests than from unit tests

® For the aforementioned reasons, a revision (peer-review) is required to ensure the unit tests behave as expected and they are reliable

® The unit tests may lack tests for some edge cases. It's in the nature of Unit Tests to evolve as new bugs are found, so they should be added as
they are detected (via peer-review or via bug reports)

Issues found:

* A mock of BrowseCreateDAOOracle has been done due to an incompatibility between H2 and the "upper” function call. This will affect tests
related to case sensitivity in indexes.

® Many objects (like Supervisedltem) lack a proper definition of the "equals” method, which makes comparison between objects and unit testing
harder

® Update method of many objects doesn't provide any feedback, we can only test if it raises an exception or not, but we can't be 100% sure if it
worked

® Many objects have methods to change the policies related to the object or children objects (like Item), it would be good to have some methods to
retrieve these policies also in the same object (code coherence)

® There are some inconsistencies in the calls to certain methods. For example getName returns an empty String in a Collection where the name is
not set, but a null in an Item without name

® DCDate: the tests raise many errors. | can't be sure if it's due to misunderstanding of the purpose of the methods or due to faulty implementation
(probably the previous). In some cases extra encapsulation of the internals of the class would be advisable, to hide the complexities of the
Calendars (months starting by 0, etc)

® The Authorization system gets a bit confusing. We have AuthorizationManager, AuthorizationUtils, methods that raise exceptions and methods

that return booleans. Given the number of checks we have to do for permissions, and that some classes call methods that require extra

permissions not declared or visible at first, this makes creation of tests (and usage of the API) a bit complex. | know we can ignore all permissions

via context (turning on and off authorizations) but usually we don't want that

Community: set logo checks for authorization, but set metadata doesn't. It's in purpose?

Collection: methods create and delete don't check for authorization

Item: there is no authorization check for changing policies, no need to be an administrator

Itemiterator: it uses ArrayLists in the methods instead of List

Itemliterator: we can't verify if the Iterator has been closed

Metadata classes: usually most classes have a static method to create a new instance of the class. Instead, for the metadata classes (Schema,

Field and Value) the method create is part of the object, thus requiring you to first create an instance via new and then calling create. This should

be changed to follow the convention established in other objects (or the other objects should be amended to behave like the Metadata classes)

® Site: this class extends DSpaceObject. With it being a Singleton, it creates potential problems, for example when we use DSpaceObject methods
to store details in the object. It's this relation necessary?

Fixes done:

- Bitstream: added an "isDeleted" method to verify if a bitstream has been deleted

- Bundle: added methods to check the policies of bundle and its bitstreams

- Collection: just a comment: delete requires authorization to remove the template Item and write, not to remove. Is that correct?

- Community: when a community is created with a parent, it's added as a child community immediately

- DCLanguage: added checks for null name in languages

- Formatldentifier: fixed the check for filename == null in guessFormat

- SiteTest: the test is in the abstract DSpaceObjectTest so I've make it inherit AbstractUnitTest. | see the class has almost no usage so we could remove
the inheritance from DSpaceObject, but I'm not sure if to do this. It's something that we should ask the developers?

- Several equals and hashCode methods added for other issues in tests

Pending of a review by a DSpace developer:

- DCDate: Here many tests fail because I'm not sure of the purpose of the class. | would expect it to hide the implementation of Calendar (with all those
things like months starting by 0 and other odd stuff) so it's easier to use, but it seems that's not the case...

Bitstream: added an "isDeleted" method to verify if a bitstream has been deleted
Bundle: added methods to check the policies of bundle and its bitstreams
Collection: just a comment: delete requires authorization to remove the template Item and write, not to remove. Is that correct?

L]
L]
L]
® Community: when a community is created with a parent, it's added as a child community immediately

® DCLanguage: added checks for null name in languages
* Formatldentifier: fixed the check for filename == null in guessFormat
® SiteTest: the test is in the abstract DSpaceObjectTest so I've make it inherit AbstractUnitTest. | see the class has almost no usage so we could
remove the inheritance from DSpaceObject, but I'm not sure if to do this. It's something that we should ask the developers?
® Several equals and hashCode methods added for other issues in tests
Proposals:
To solve the previous issues, some proposals are done:
® Database dependency causes too many issues, making unit testing much harder and increasing the complexity of the code. Refactoring to a
database-neutral system should be a priority

* Arelease could be done (1.8?) centered on cleaning code, improving stability and coherency and refactoring unit tests, as well as replacing the
database system. No new functionalities. This would make future work much easier.

Dependencies

There is a set of tools used by all the tests. These tools will be described in this section.

Maven

The build tool for DSpace, Maven, will also be used to run the tests. For this we will use the Surefire plugin, which allows us to launch automatically tests
included in the "test" folder of the project. We also include the Surefire-reports plugin in case you are not using a Continous Integration environment that
can read the output and generate the reports.

The plugin has been configured to ignore test files whose name starts with "Abstract", that way we can create a hierarchy of classes and group common
elements to various tests (like certain mocks or configuration settings) in a parent class.

Tests in Maven are usually added into src/test, like in src/test/java/<package> with resources at src/test/resources.

To run the tests execute:
mvn test

The tests will also be run during a normal Maven build cycle. To skip the tests, run Maven like:
mvn package -Dmaven.test. ski p=true

By default we will disable running the tests, as they might slow the compilation cycle for developers. They can be activated using the command
m/n package -Dmaven. test. skip=fal se

or by changing the property "activeByDefault" at the corresponding profile (skiptests) in the main pom.xml file, at the root of the project.

JUnit

JUnit is a testing framework for Java applications. It was one of the first testing frameworks for Java and it's a widespread use in the community. The
framework simplifies the development of unit tests and the current IDE's make even easier building those tests from existing classes and running them.

Junit 4.8.1 is added as a dependency in the parent project. The dependency needs to be propagated to the subprojects that contain tests to be run.

As of JUnit 4.4, Harmcrest is included. Harmcrest is a library of matcher objects that facilitate the validation of conditions in the tests.

JMockit

JMockit is popular and powerful mocking framework. Unlike other mocking frameworks it can mock final classes and methods, static methods, constructors
and other code fragments that can't be mocked using other frameworks.

JMockit 0.998 has been added to the project to provide a mocking framework to the tests.

ContiPerf

ContiPerf is a lightweight testing utility that enables the user to easily leverage JUnit 4 test cases as performance tests e.g. for continuous performance
testing.

http://maven.apache.org/plugins/maven-surefire-plugin/
http://en.wikipedia.org/wiki/JUnit
http://code.google.com/p/hamcrest/
http://code.google.com/p/jmockit/
http://databene.org/contiperf.html

The project makes use of ContiPerf 1.06.

H2

H2 is an in-memory database that has been used

The project makes use of H2 version 1.2.137

Unit Tests Implementation

These are tests which test just how one object works. Typically test each method on an object for expected output in several situations. They are executed
exclusively at the API level.

We can consider two types of classes when developing the unit tests: classes which have a dependency on the database and classes that don't. The
classes that don't can be tested easily, using standard procedures and tests. Our main problem are classes tightly coupled with the database and its
helper objects, like BitstreamFormat or the classes that inherit from DSpaceObject. To run the unit tests we need a database but we don't want to set up a
standard PostgreSQL instance. Our decision is to use an in-memory database that will be used to emulate PostgreSQL.

To achieve this we mock DatabaseManager and we replace the connector to point to our in-memory database. In this class we also initialise the replica
with the proper data.

Structure

Due to the Dspace Maven structure discussed in previous sections, all the tests belonging to any module (dspace-api, dspace-xmlui-api, etc) must be
stored in the module dspace-test. This module enables us to apply common configuration, required by all tests, in a single area thus avoiding duplication of
code. Related to this point is the requirement for Dspace to run using a database and a certain file system structure. We have created a base class

that initializes this structure via a in-memory database (using H2) and a temporary copy of the required file system.

The described base class is called "AbstractUnitTest". This class contains a series of mocks and references which are necessary to run the tests in
DSpace, like mocks of the DatabaseManager object. All Unit Tests should inherit this class, located under the package "org.dspace" in the test folder of dsp
ace-test. There is an exception with classes that originally inherit DSpaceObject, its tests should inherit AbstractDSpaceObjectTest class.

Several mocks are used in the tests. The more relevant ones are:

®* MockDatabaseManager: a mock of the database manager that launches H2 instead of PostgreSQL/Oracle and creates the basic structure of
tables for DSpace in memory

®* MockBrowseCreateDAOOTracle: due to the strong link between DSpace and the databases, there are some classes that have specific
implementations if we are using Oracle or PostgreSQL, like this one. In this case we've had to create a mock class that overrides
the functionality of MockBrowseCreateDAOOracle so we are able to run the Browse related tests.

You may need to create new mocks to be able to test certain areas of code. Creation of the Mock goes beyond the scope of this document, but you can
see the mentioned classes as an example. BAsically it consists on adding annotations to a copy of the existing class to indicate a method is a mock of the
original implementation and modifying the code as required for our tests.

Limitations
The solution to copy the file system is not a very elegant one, so we appreciate any insight that can help us to replicate the required files appropriately.

The fact that we load the tests configuration from a dspace-test.cfg file means we are only testing the classes against a specific set of configurations. We
probably would like to have tests that runs with multiple settings for the specific piece of code we are testing. This will require some extra classes to modify
the configuration system and the way this is accessed by DSpace.

How to build new tests

To build a new Unit Test, create the corresponding class in the project dspace-test, under the test folder, in the package where the original class belongs.
Tests for all the projects (dspace-api, dspace-jspui-api, etc) are stored in this project, to avoid duplication of code. Name the class following the format <Ori
ginalClass>Test.java.

There are some common imports and structure, you can use the following code as a template:

/1 Add DSpace |icensing here at the top!
package org. dspace. content;

i mport java.sql.SQLException;

i nport org. dspace. core. Cont ext ;

import org.junit.*;

import static org.junit.Assert.* ;

import static org. hantrest. CoreMatchers. *;
import nockit.*;

http://www.h2database.com/html/main.html

i nport org. apache. | og4j . Logger;
i mport org.dspace. core. Const ants;

| **

* Unit Tests for class <Original G ass>Test
* @ut hor you nane
*/
public class <Original dass>Test extends Abstract Unit Test

{

/** 1 0g4] category */
private static final Logger |og = Logger.getLogger(<Oiginal G ass>Test.cl ass);

/**

* <Originaldass> instance for the tests
*/

private <Original dass> c;

* This nmethod will be run before every test as per @efore. It will
* initialize resources required for the tests.

* Other nmethods can be annotated with @efore here or in subclasses
* but no execution order is guaranteed

*/
@Before
@verride
public void init()
{
super.init();
try
{
//we have to create a new community in the database
context.turnO f Aut hori sati onSysten();
this.c = <Original Class> create(null, context);
//we need to commit the changes so we don't block the table for testing
cont ext . restoreAut hSystenttate();
context.conmmt();
}
catch (AuthorizeException ex)
{
log.error("Authorization Error ininit", ex);
fail ("Authorization Error ininit");
}
catch (SQ.Exception ex)
{
log.error("SQ Error ininit", ex);
fail ("SQ Error ininit");
}
}
/**

* This method will be run after every test as per @\fter. It wll
* clean resources initialized by the @efore nethods.
*
* Other nmethods can be annotated with @\fter here or in subclasses
* but no execution order is guaranteed
*/
@fter
@verride
public void destroy()
{
c = null;
super . destroy();

}

| **

* Test of XXXX nethod, of class <Original dass>
*/

@est
public void test XXXX() throws Exception

{
int id=-c.getlD);
<Original Cass> found = <Original Cass>. find(context, id);
assert That ("t est XXXX 0", found, notNullValue());
assert That ("test XXXX 1", found.getlD(), equal To(id));
assert That ("t est XXXX 2", found. getNanme(), equal To(""));

}

[... nore tests ...]

The sample code contains common imports for the tests and common structure (init and destroy methods as well as the log). You should add any
initialization required for the test in the init method, and free the resources in the destroy method.

The sample test shows the usage of the assertThat clause. This clause (more information in JUnit help) allows you to check for condition that, if not true,
will cause the test to fail. We name every condition via a simple schema (method name plus an integer indicating order) as the first parameter. This allows
you to identify which specific assert if failing whenever a test returns an error.

Please be aware methods init and destroy will run once per test, which means that if you create a new instance every time you run init, you may end up
with several instances in the database. This can be confusing when implementing tests, specially when using methods like findAll.

If you want to add code that it's executed once per test class, edit the parent AbstractUnitTest and its methods initOnce and destroyOnce. Be aware these
methods contain code used to recreate the structure needed to run DSpace tests, so be careful when adding or removing code there. Our suggestion is to
add code at the end of initOnce and at the beginning of destroyOnce, to minimize the risk of interferences between components.

Be aware that tests of classes that extend DSpaceObject should extend AbstractDSpaceObjectTest instead due to some extra methods and requirements
implemented in there.

How to run the tests

The tests can be activated using the commands

nmvn package -Dnaven.test.skip=false //builds DSpace and runs tests

or
nmvn test -Dmaven.test. skip=false //just runs the tests

or by changing the property "activeByDefault" at the profile (skiptests) in the main pom.xml file, at the root of the project and then running

m/n package //builds DSpace and runs tests
or
nmvn test //just runs the tests

Be aware that this command will launch both unit and integration tests.

Integration Tests

These tests work at the API level and test the interaction of components within the system. Some examples are placing an item into a collection or creating
a new metadata schema and adding some fields. Primarily these tests operate at the API level ignoring the interface components above it.

The main difference between these and the unit tests is in the test implemented, not in the infrastructure required, as these tests will use several classes at
once to emulate a user action.

The integration tests also make use of ContiPerf to evaluate the performance of the system. We believe it doesn't make sense to add this layer to the unit
tests, as they are tested in isolation and we care about performance not on individual calls but on certain tasks that can only be emulated by integration
testing.

Structure

Integration tests use the same structure as Unit tests. A class has been created, called AbstractintegrationTest, that inherits from AbstractUnitTest. This
provides the integration tests with the same temporal file system and in-memory database as the unit tests. The class AbstractintegrationTest is created
just in case we may need some extra scaffolding for these tests. All integration tests should inherit from it to both distinguish themselves from unit tests
and in case we require specific changes for them.

Classes that contain the code for Integration Tests are named <class>IntegrationTest.java.

The only difference right now between Unit Tests and Integration Tests is that the later include configuration settings for ContiPerf. These is a performance
testing suite that allows us to reuse the same methods we use for integration testing as performance checks. Due to limitations mentioned in the following
section we can't make use of all the capabilities of ContiPerf (hamely, multiple threads to run the tests) but they can be still be useful.

Limitations

Tests structure
These limitations are shared with the unit tests.
The solution to copy the file system is not a very elegant one, so we appreciate any insight that can help us to replicate the required files appropriately.

The fact that we load the tests configuration from a dspace-test.cfg file means we are only testing the classes against a specific set of configurations. We
probably would like to have tests that runs with multiple settings for the specific piece of code we are testing. This will require some extra classes to modify
the configuration system and the way this is accessed by DSpace.

Events Concurrency Issues

We have detected an issue with the integration tests, related to the Context class. In this class, the List of events was implemented as an ArrayList<Event>.
The issue here is that ArrayList is not a safe class for concurrency. Although this would not be a problem while running the application in a JEE container,
as there will be a unique thread per request (at least in normal conditions), we can't be sure of the kind of calls users may do to the API while extending
DSpace.

To avoid the issue we have to wrap the List into a synchronized stated via Collections.synchronizedList . This, along a synchronized block, will ensure the
code behaves as expected.

We have detected the following classes affected by this behavior:
® BasicDispatcher.java

In fact any class that calls Context.getEvents() may be affected by this. A comment has been added in the javadoc of this class (alongside a TODO tag) to
warn about the issue.

Context Concurrency Issues

There is another related issue in the Context class. Context establishes locks in the tables when doing some modifications, locks that are not lifted until the
context is committed or completed. The consequence is that some methods can't be run in parallel or some executions will fail due to table locks. This can

be solved, in some cases, by running context.commit() after a method that modifies the database, but this doesn't work in all cases. For example, in the Co
mmunityCollection Integration Test, the creation of a community can mean the modification of 2 rows (parent and new community). This causes this kind of
locks, but as it occurs during the execution of the method create() it can't be solved by context.commit().

Due to these concurrency issues, ContiPerf can only be run with one thread. This slows the process considerably, but until the concurrency issue is solved
this can't be avoided.

How to build new tests

To build a new Integration Test, create the corresponding class in the project dspace-test, under the test folder, in the package where the original class
belongs. Tests for all the projects (dspace-api, dspace-jspui-api, etc) are stored in this project, to avoid duplication of code. Name the class following the
format <RelatedClasses>IntegrationTest.java.

There are some common imports and structure, you can use the following code as a template:

/1 Add DSpace |icensing here at the top!
package org. dspace. content;

i mport java.sql.SQ.Exception;

i mport org.dspace. core. Cont ext;

inport org.junit.*;

import static org.junit.Assert.* ;

import static org. hantrest. CoreMatchers. *;

i nport nockit.*;

i mport org.apache. | og4j . Logger;

i nport org. dspace. core. Constants;

/**
* This is an integration test to validate the netadata cl asses
* @uthor pvillega
*/

public class Metadatal ntegrati onTest extends AbstractlntegrationTest

http://download.oracle.com/javase/6/docs/api/java/util/Collections.html#synchronizedList%28java.util.List%29

/** 1 0g4] category */
private static final Logger |og = Logger.getLogger (Mt adatal ntegrationTest. cl ass);

* This method will be run before every test as per @efore. It will
* initialize resources required for the tests.

* Other nmethods can be annotated with @efore here or in subclasses
* but no execution order is guaranteed
*/
@efore
@verride
public void init()
{
super.init();

}

* This me