
Installing DSpace

Installation Overview
Installing the Backend (Server API)

Backend Requirements
Backend Installation

Installing the Frontend (User Interface)
Frontend Requirements
Frontend Installation

What Next?
Common Installation Issues

Troubleshoot an error or find detailed error messages
User Interface never appears (no content appears) or "Proxy server received an invalid response"
User Interface partially load but then spins (never fully loads or some content doesn't load)
"500 Service Unavailable" from the User Interface
"No _links section found at..." error from User Interface
"RangeError: Maximum call stack size exceeded"
"XMLHttpRequest.. has been blocked by CORS policy" or "CORS error" or "Invalid CORS request"
Cannot login from the User Interface with a password that I know is valid
"403 Forbidden" error with a message that says "Access is denied. Invalid CSRF Token"
Using a Self-Signed SSL Certificate causes the Frontend to not be able to access the Backend
My REST API is running under HTTPS, but some of its "link" URLs are switching to HTTP
My User Interface's robots.txt has incorrect sitemap URLs
Cannot upload file from User Interface
Javascript heap out of memory
Solr responds with "Expected mime type application/octet-stream but got text/html" (404 Not Found)
Database errors occur when you run ant fresh_install

Installation Overview
Try out DSpace 7 before you install

If you'd like to quickly try out DSpace 7 before a full installation, see for instructions on a quick install via Docker.Try out DSpace 7

As of version 7 (and above), the DSpace application is split into a "frontend" (User Interface) and a "backend" (Server API). Most institutions will want to
install BOTH. However, you can decide whether to run them on the same machine or separate machines.

The DSpace Frontend consists of a User Interface built on . It is a Node.js web application, i.e. once it is built/compiled, it only require Angular.io
Node.js to run. It cannot be run "standalone", as it a valid DSpace Backend to function. The frontend provides all user-facing requires
functionality.
The DSpace Backend consists of a Server API ("server" webapp), built on . It is a Java web application. It can be run standalone, Spring Boot
however it has no user interface. The backend provides all machine-based interfaces, including the REST API, OAI-PMH, SWORD (v1 and v2)
and RDF.

We recommend installing the Backend , as the Frontend requires a valid Backend to run properly.first

Installing the Backend (Server API)

Backend Requirements

UNIX-like OS or Microsoft Windows
Java JDK 11 or 17 (OpenJDK or Oracle JDK)
Apache Maven 3.5.4 or above (Java build tool)

Configuring a Maven Proxy
Apache Ant 1.10.x or later (Java build tool)
Relational Database (PostgreSQL)

PostgreSQL 12.x, 13.x, 14.x or 15.x (with pgcrypto installed)
Oracle (UNSUPPORTED AS OF 7.6)

Apache Solr 8.x (full-text index/search service)
Servlet Engine (Apache Tomcat 9, Jetty, Caucho Resin or equivalent)
(Optional) IP to City Database for Location-based Statistics

UNIX-like OS or Microsoft Windows

UNIX-like operating system (Linux, HP/UX, Mac OSX, etc.) : Many distributions of Linux/Unix come with some of the dependencies below pre-
installed or easily installed via updates. You should consult your particular distribution's documentation or local system administrators to
determine what is already available.
Microsoft Windows: While DSpace can be run on Windows servers, most institutions tend to run it on a UNIX-like operating system.

Java JDK 11 or 17 (OpenJDK or Oracle JDK)
JDK17 support was first available in DSpace 7.2. DSpace 7.1 and 7.0 only supported JDK 11.

https://wiki.lyrasis.org/display/DSPACE/Try+out+DSpace+7
https://angular.io/
https://spring.io/projects/spring-boot

OpenJDK download and installation instructions can be found here . Most operating systems provide an easy path http://openjdk.java.net/install/
to install OpenJDK. Just be sure to install the full JDK (development kit), and not the JRE (which is often the default example).
Oracle's Java can be downloaded from the following location: . Make sure to http://www.oracle.com/technetwork/java/javase/downloads/index.html
download the appropriate version of the Java SE JDK.

Make sure to install the JDK and not just the JRE

DSpace requires the full JDK (Java Development Kit) be installed, rather than just the JRE (Java Runtime Environment). So, please be sure that you are
installing the full JDK and not just the JRE.

Only JDK11 and JDK 17 are fully supported

Older versions of Java are unsupported. This includes JDK v7-10.

Newer versions of Java may work (e.g. JDK v12-16), but we do not recommend running them in Production. We highly recommend running only Java LTS
(Long Term Support) releases in Production, as non-LTS releases may not receive ongoing security fixes. As of this DSpace release, JDK11 and JDK 17
are the two most recent Java LTS releases. As soon as the next Java LTS release is available, we will analyze it for compatibility with this release of
DSpace. For more information on Java releases, see the Java roadmaps for and/or .Oracle OpenJDK

Apache Maven 3.5.4 or above (Java build tool)
We recommend using the most recent version of Maven that you can, as newer releases may include performance improvements and security updates.
We recommend avoiding any that are "end of life" per https://maven.apache.org/docs/history.html

Maven is necessary in the first stage of the build process to assemble the installation package for your DSpace instance. It gives you the flexibility to
customize DSpace using the existing Maven projects found in the directory or by adding in your own Maven project to [dspace-source]/dspace/modules
build the installation package for DSpace, and apply any custom interface "overlay" changes.

Maven can be downloaded from It is also provided via many operating system package managers.http://maven.apache.org/download.html

Configuring a Maven Proxy

You can configure a proxy to use for some or all of your HTTP requests in Maven. The username and password are only required if your proxy requires
basic authentication (note that later releases may support storing your passwords in a secured keystore‚ in the meantime, please ensure your settings.xml
file (usually) is secured with permissions appropriate for your operating system).${user.home}/.m2/settings.xml

Example:

<settings>
 .
 .
 <proxies>
 <proxy>
 <active>true</active>
 <protocol>http</protocol>
 <host>proxy.somewhere.com</host>
 <port>8080</port>
 <username>proxyuser</username>
 <password>somepassword</password>
 <nonProxyHosts>www.google.com|*.somewhere.com</nonProxyHosts>
 </proxy>
 </proxies>
 .
 .
</settings>

Apache Ant 1.10.x or later (Java build tool)
While Apache Ant recommends using v1.10.x for Java 11, we've also had some success with recent versions of 1.9.x (specifically v1.9.15 seems to work
fine with Java 11). That said, earlier versions of v1.9.x are not compatible with Java 11.

Apache Ant is required for the second stage of the build process (deploying/installing the application). First, Maven is used to construct the installer ([dspa
), after which Ant is used to install/deploy DSpace to the installation directory.ce-source]/dspace/target/dspace-installer

Ant can be downloaded from the following location: It is also provided via many operating system package managers.http://ant.apache.org

Relational Database (PostgreSQL)

PostgreSQL 12.x, 13.x, 14.x or 15.x (with pgcrypto installed)

http://openjdk.java.net/install/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/java-se-support-roadmap.html
https://adoptopenjdk.net/support.html#roadmap
https://maven.apache.org/docs/history.html
http://maven.apache.org/download.html
http://ant.apache.org/

PostgreSQL can be downloaded from . It is also provided via many operating system package managers.http://www.postgresql.org/
Make sure to select a version of PostgreSQL that is still .under support from the PostgreSQL team
If the version of Postgres provided by your package manager is outdated, you may wish to use one of the official PostgreSQL provided
repositories:

Linux users can select their OS of choice for detailed instructions on using the official PostgreSQL apt or yum repository: http://w
ww.postgresql.org/download/linux/
Windows users will need to use the windows installer: http://www.postgresql.org/download/windows/
Mac OSX users can choose their preferred installation method: http://www.postgresql.org/download/macosx/

Install the It will also need to be enabled on your DSpace Database (see Installation instructions below for more info). The pgcrypto extension.
pgcrypto extension allows DSpace to create UUIDs () for all objects in DSpace, which means that (internal) object universally unique identifiers
identifiers are now globally unique and no longer tied to database sequences.

On most Linux operating systems (Ubuntu, Debian, RedHat), this extension is provided in the "postgresql-contrib" package in your
package manager. So, ensure you've installed "postgresql-contrib".
On Windows, this extension should be provided automatically by the installer (check your "[PostgreSQL]/share/extension" folder for files
starting with "pgcrypto")

Unicode (specifically UTF-8) support must be enabled (but this is enabled by default).
Once installed, you need to enable TCP/IP connections (DSpace uses JDBC):

In : uncomment the line starting: . This is the default, in recent PostgreSQL postgresql.conf listen_addresses = 'localhost'
releases, but you should at least check it.
Then tighten up security a bit by editing and adding this line:pg_hba.conf

host dspace dspace 127.0.0.1 255.255.255.255 md5

This should appear any lines matching databases, because the first matching rule governs.before all
Then restart PostgreSQL.

Oracle (UNSUPPORTED AS OF 7.6)
As of the 7.6 release, Oracle databases are no longer supported

Oracle support has been removed as was on our mailing lists. See previously announced in March 2022 https://github.com/DSpace/DSpace/issues/8214

All DSpace sites should now use PostrgreSQL (see above)

Details on acquiring Oracle can be downloaded from the following location: . You will need to create a database http://www.oracle.com/database/
for DSpace. Make sure that the character set is one of the Unicode character sets. DSpace uses UTF-8 natively, and it is suggested that the
Oracle database use the same character set. You will also need to create a user account for DSpace (e.g.) and ensure that it has dspace
permissions to add and remove tables in the database. Refer to the Quick Installation for more details.

NOTE: If the database server is not on the same machine as DSpace, you must install the Oracle client to the DSpace server and point t
 and files to the database the Oracle server.nsnames.ora listener.ora

Apache Solr 8.x (full-text index/search service)
Solr 8.11.1 or above is recommended as all prior 8.x releases are vulnerable to CVE-2021-44228 (log4j critical vulnerability). If you must use a prior
version of 8.x, make sure to add "-Dlog4j2.formatMsgNoLookups=true" to your SOLR_OPTS environment variable, see https://solr.apache.org/security.
html#apache-solr-affected-by-apache-log4j-cve-2021-44228
Solr 9 is not yet fully supported, but can be used provided that you make minor modification to the out-of-the-box "search/conf/solrconfig.xml" that
comes with DSpace 7. See for details.this below comment
Make sure to install Solr with Authentication disabled (which is the default). DSpace does not yet support authentication to Solr (see https://github.com

). Instead, we recommend placing Solr behind a firewall and/or ensuring port 8983 (which Solr runs on) is not available for /DSpace/DSpace/issues/3169
public/anonymous access on the web. Solr only needs to be accessible to requests from the DSpace backend.

Solr can be obtained at . You may wish to read portions of to make yourself familiar the Apache Software Foundation site for Solr the quick-start tutorial
with Solr's layout and operation. Unpack a Solr .tgz or .zip archive in a place where you keep software that is not handled by your operating system's
package management tools, and arrange to have it running whenever DSpace is running. You should ensure that Solr's index directories will have plenty
of room to grow. You should also ensure that port 8983 is not in use by something else, or configure Solr to use a different port.

If you are looking for a good place to put Solr, consider or . You can simply unpack Solr in one place and use it. Or you can configure /opt /usr/local
Solr to keep its indexes elsewhere, if you need to – see the Solr documentation for how to do this.

It is not necessary to dedicate a Solr instance to DSpace, if you already have one and want to use it. Simply copy DSpace's cores to a place where they
will be discovered by Solr. See below.

Servlet Engine (Apache Tomcat 9, Jetty, Caucho Resin or equivalent)
Only Tomcat 9 is supported at this time. Tomcat 10 is incompatible with Tomcat 9 and will not be supported until DSpace 8.0 at the earliest. See https://git

 for more detailshub.com/DSpace/DSpace/issues/8713

Apache Tomcat 9. Tomcat can be downloaded from the following location: . It is also provided via many operating http://tomcat.apache.org
system package managers.

The Tomcat owner (i.e. the user that Tomcat runs as) (i.e.)to the DSpace installation directorymust have read/write access [dspace]
There are a few common ways this may be achieved:.

One option is to specifically give the Tomcat user (often named "tomcat") ownership of the [dspace] directories, for example:

Change [dspace] and all subfolders to be owned by "tomcat"
chown -R tomcat:tomcat [dspace]

http://www.postgresql.org/
https://www.postgresql.org/support/versioning/
http://www.postgresql.org/download/linux/
http://www.postgresql.org/download/linux/
http://www.postgresql.org/download/windows/
http://www.postgresql.org/download/macosx/
http://www.postgresql.org/docs/9.4/static/pgcrypto.html
https://github.com/DSpace/DSpace/issues/8214
https://github.com/DSpace/DSpace/issues/8214
http://www.oracle.com/database/
https://solr.apache.org/security.html#apache-solr-affected-by-apache-log4j-cve-2021-44228
https://solr.apache.org/security.html#apache-solr-affected-by-apache-log4j-cve-2021-44228
https://github.com/DSpace/DSpace/issues/3169
https://github.com/DSpace/DSpace/issues/3169
https://solr.apache.org/
https://solr.apache.org/guide/solr/latest/getting-started/introduction.html
https://github.com/DSpace/DSpace/issues/8713
https://github.com/DSpace/DSpace/issues/8713
http://tomcat.apache.org/whichversion.html

1.
2.

3.

4.

a.

Another option is to have Tomcat itself a new user named "dspace" (see installation instructions below). Some operating run as
systems make modifying the Tomcat "run as" user easily modifiable via an environment variable named TOMCAT_USER. This
option may be more desirable if you have multiple Tomcat instances running, and you do not want all of them to run under the
same Tomcat owner.

On Debian systems, you may also need to modify or override the "tomcat.service" file to specify the DSpace installation directory in the
list of ReadWritePaths. For example:

Replace [dspace] with the full path of your DSpace install
ReadWritePaths=[dspace]

You need to ensure that Tomcat a) has enough memory to run DSpace, and b) uses UTF-8 as its default file encoding for international
character support. So ensure in your startup scripts (etc) that the following environment variable is set: JAVA_OPTS="-Xmx512M -
Xms64M -Dfile.encoding=UTF-8"
Modifications in : You also need to alter Tomcat's default configuration to support searching and browsing of [tomcat]/conf/server.xml
multi-byte UTF-8 correctly. You need to add a configuration option to the element in : <Connector> [tomcat]/config/server.xml URIEncodin

e.g. if you're using the default Tomcat config, it should read:g="UTF-8"

<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->
<Connector port="8080"
 minSpareThreads="25"
 enableLookups="false"
 redirectPort="8443"
 connectionTimeout="20000"
 disableUploadTimeout="true"
 URIEncoding="UTF-8"/>

You may change the port from 8080 by editing it in the file above, and by setting the variable in . You CONNECTOR_PORT server.xml
should set the URIEncoding even if you are running Tomcat behind a reverse proxy (Apache HTTPD, Nginx, etc.) via AJP.

Jetty or Caucho Resin
DSpace 7 has not been tested with Jetty or Caucho Resin, after the switch to Java 11
Older versions of DSpace were able to run on a Tomcat-equivalent servlet Engine, such as Jetty () or https://www.eclipse.org/jetty/
Caucho Resin (). If you choose to use a different servlet container, please ensure that it supports Servlet Spec http://www.caucho.com/
3.1 (or above).
Jetty and Resin are configured for correct handling of UTF-8 by default.

(Optional) IP to City Database for Location-based Statistics

Optionally, if you wish to record the geographic locations of clients in DSpace usage statistics records, you will need to install (and regularly update) one of
the following:

Either, a copy of MaxMind's GeoLite City database (in MMDB format)
NOTE: Installing MaxMind GeoLite2 is However, you sign up for a (free) MaxMind account in order to obtain a license key to free. must
use the GeoLite2 database.
You may download GeoLite2 directly from MaxMind, or many Linux distributions provide the tool directly via their geoipupdate
package manager. You will still need to configure your license key prior to usage.
Once the "GeoLite2-City.mmdb" database file is installed on your system, you will need to configure its location as the value of usage-
statistics.dbfile in your configuration file local.cfg .
See the "Managing the City Database File" section of SOLR Statistics for more information about using a City Database with DSpace.

Or, you can alternatively use/install (in MMDB format)DB-IP's City Lite database
This database is also free to use, but does require an account to download.not
Once the "dbip-city-lite.mmdb" database file is installed on your system, you will need to configure its location as the value of usage-
statistics.dbfile in your configuration file local.cfg .
See the "Managing the City Database File" section of SOLR Statistics for more information about using a City Database with DSpace.

Backend Installation

Install all the listed above.Backend Requirements
Create a DSpace operating system user (optional) . As noted in the prerequisites above, Tomcat (or Jetty, etc) an operating must run as
system user account that has full read/write access to the DSpace installation directory (i.e.). Either you must ensure the Tomcat [dspace]
owner also owns , OR you can create a new "dspace" user account, and ensure that Tomcat also runs as that account:[dspace]

useradd -m dspace

The choice that makes the most sense for you will probably depend on how you installed your servlet container (Tomcat/Jetty/etc). If you
installed it from source, you will need to create a user account to run it, and that account can be named anything, e.g. 'dspace'. If you used your
operating system's package manager to install the container, then a user account should have been created as part of that process and it will be
much easier to use that account than to try to change it.
Download the from the DSpace GitHub Repository. You can choose to either download the zip or tar.gz file provided by latest DSpace release
GitHub, or you can use "git" to checkout the appropriate tag (e.g.) or branch.dspace-7.2
Unpack the DSpace software. After downloading the software, based on the compression file format, choose one of the following methods to
unpack your software:

https://www.eclipse.org/jetty/
http://www.caucho.com/
https://dev.maxmind.com/geoip/geoip2/geolite2/
https://wiki.lyrasis.org/display/DSDOC7x/SOLR+Statistics
https://db-ip.com/db/download/ip-to-city-lite
https://wiki.lyrasis.org/display/DSDOC7x/SOLR+Statistics
https://github.com/DSpace/DSpace/releases

4.

a.

b.

5.

Zip file. If you downloaded do the following:dspace-7.2.zip

unzip dspace-7.2.zip

.gz file. If you downloaded do the following:dspace-7.2.tar.gz

gunzip -c dspace-7.2.tar.gz | tar -xf -

For ease of reference, we will refer to the location of this unzipped version of the DSpace release as in the remainder of [dspace-source]
these instructions. After unpacking the file, the user may wish to change the ownership of the dspace-7.x folder to the "dspace" user.
(And you may need to change the group).

Database Setup
PostgreSQL:

Create a database user (this user can have any name, but we'll assume you name it "dspace"). This is entirely dspace
separate from the operating-system user created above:dspace

createuser --username=postgres --no-superuser --pwprompt dspace

You will be prompted (twice) for a password for the new user. Then you'll be prompted for the password of the dspace
PostgreSQL superuser ().postgres
Create a database, owned by the PostgreSQL user. Similar to the previous step, this can only be done by a dspace dspace
"superuser" account in PostgreSQL (e.g.):postgres

createdb --username=postgres --owner=dspace --encoding=UNICODE dspace

You will be prompted for the password of the PostgreSQL superuser ().postgres
Finally, you MUST enable the on your new dspace database. Again, this can only be enabled by a pgcrypto extension
"superuser" account (e.g.)postgres

Login to the database as a superuser, and enable the pgcrypto extension on this database
psql --username=postgres dspace -c "CREATE EXTENSION pgcrypto;"

The "CREATE EXTENSION" command should return with no result if it succeeds. If it fails or throws an error, it is likely you are
missing the required pgcrypto extension (see above).Database Prerequisites

 Alternative method: How to enable pgcrypto via a separate database schema. While the above method of
enabling pgcrypto is perfectly fine for the majority of users, there may be some scenarios where a database
administrator would prefer to install extensions into a database schema that is the DSpace tables. separate from
Developers also may wish to install pgcrypto into a separate schema if they plan to "clean" (recreate) their
development database frequently. Keeping extensions in a separate schema from the DSpace tables will ensure
developers would NOT have to continually re-enable the extension each time you run a "./dspace database

". If you wish to install pgcrypto in a separate schema here's how to do that:clean

Login to the database as a superuser
psql --username=postgres dspace
Create a new schema in this database named "extensions" (or whatever you want to
name it)
CREATE SCHEMA extensions;
Enable this extension in this new schema
CREATE EXTENSION pgcrypto SCHEMA extensions;
Grant rights to call functions in the extensions schema to your dspace user
GRANT USAGE ON SCHEMA extensions TO dspace;

Append "extensions" on the current session's "search_path" (if it doesn't already
exist in search_path)
The "search_path" config is the list of schemas that Postgres will use
SELECT set_config('search_path',current_setting('search_path') || ',extensions',
false) WHERE current_setting('search_path') !~ '(^|,)extensions(,|$)';
Verify the current session's "search_path" and make sure it's correct
SHOW search_path;
Now, update the "dspace" Database to use the same "search_path" (for all future
sessions) as we've set for this current session (i.e. via set_config() above)
ALTER DATABASE dspace SET search_path FROM CURRENT;

http://www.postgresql.org/docs/9.4/static/pgcrypto.html
https://wiki.duraspace.org/display/DSDOC6x/Installing+DSpace#InstallingDSpace-RelationalDatabase:(PostgreSQLorOracle)

5.

6.

Oracle (UNSUPPORTED AS OF 7.6):
Setting up DSpace to use Oracle is a bit different now. You will need still need to get a copy of the Oracle JDBC driver, but
instead of copying it into a lib directory you will need to install it into your local Maven repository. (You'll need to download it first
from this location: .) Run the following http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html
command (all on one line):

mvn install:install-file
 -Dfile=ojdbc6.jar
 -DgroupId=com.oracle
 -DartifactId=ojdbc6
 -Dversion=11.2.0.4.0
 -Dpackaging=jar
 -DgeneratePom=true

You need to compile DSpace with an Oracle driver (ojdbc6.jar) corresponding to your Oracle version - update the version in [dsp
 E.g.:ace-source]/pom.xml

<dependency>
 <groupId>com.oracle</groupId>
 <artifactId>ojdbc6</artifactId>
 <version>11.2.0.4.0</version>
</dependency>

Create a database for DSpace. Make sure that the character set is one of the Unicode character sets. DSpace uses UTF-8
natively, and it is required that the Oracle database use the same character set. Create a user account for DSpace (e.g.)dspace
and ensure that it has permissions to add and remove tables in the database.
NOTE: You will need to ensure the proper settings are specified in your file (see next step), as the defaults db.* local.cfg
for all of these settings assuming a PostgreSQL database backend.

db.url = jdbc:oracle:thin:@host:port/SID
e.g. db.url = jdbc:oracle:thin:@//localhost:1521/xe
NOTE: in db.url, SID is the SID of your database defined in tnsnames.ora
the default Oracle port is 1521
You may also use a full SID definition, e.g.
db.url = jdbc:oracle:thin:@(description=(address_list=(address=(protocol=TCP)
(host=localhost)(port=1521)))(connect_data=(service_name=DSPACE)))

Oracle driver and dialect
db.driver = oracle.jdbc.OracleDriver
db.dialect = org.hibernate.dialect.Oracle10gDialect

Specify DB username, password and schema to use
db.username =
db.password =
db.schema = ${db.username}
For Oracle, schema is equivalent to the username of your database account,
so this may be set to ${db.username} in most scenarios

Later, during the Maven build step, don't forget to specify mvn - =oracle packageDdb.name
Initial Configuration (local.cfg): Create your own configuration file. You may wish to [dspace-source]/dspace/config/local.cfg
simply copy the provided . This local.cfg file can be used to store [dspace-source]/ local.cfg.EXAMPLEdspace/config/ any
configuration changes that you wish to make which are local to your installation (see documentation). ANY setting may local.cfg configuration file
be copied into this local.cfg file from the dspace.cfg or any other *.cfg file in order to override the default setting (see note below). For the initial
installation of DSpace, there are some key settings you'll likely want to override. Those are provided in the [dspace-source]/dspace

. (NOTE: Settings followed with an asterisk (*) are highly recommended, while all others are optional during local.cfg.EXAMPLE/config/
initial installation and may be customized at a later time.)

dspace.dir* - must be set to the (installation) directory ([dspace] NOTE: On Windows be sure to use forward slashes for the directory
 For example: " " is a valid path for Windows.)path! C:/dspace

dspace.server.url* - complete URL of this DSpace backend (including port and any subpath). . For example: Do not end with '/'
http://localhost:8080/server
dspace.ui.url* - complete URL of the DSpace frontend (including port and any subpath). REQUIRED for the REST API to fully trust
requests from the DSpace frontend. . For example: http://localhost:4000Do not end with '/'
dspace.name - Human-readable, "proper" name of your server, e.g. "My Digital Library".
solr.server* - complete URL of the Solr server. DSpace makes use of for indexing purposes. unless Solr http://localhost:8983/solr
you changed the port or installed Solr on some other host.
default.language - Default language for all metadata values (defaults to "en_US")
db.url* - The full JDBC URL to your database (examples are provided in the)local.cfg.EXAMPLE
db.driver* - Which database driver to use for PostgreSQL (default should be fine)
db.dialect* - Which database dialect to use for PostgreSQL (default should be fine)
db.username* - the database username used in the previous step.

http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html
http://Ddb.name
https://wiki.lyrasis.org/display/DSDOC7x/Configuration+Reference#ConfigurationReference-Thelocal.cfgConfigurationPropertiesFile
http://lucene.apache.org/solr/
http://localhost:8983/solr

6.

7.

8.

9.

10.

a.

11.

db.password* - the database password used in the previous step.
db.schema* - the database schema to use (examples are provided in the local.cfg.EXAMPLE)
mail.server - fully-qualified domain name of your outgoing mail server.
mail.from.address - the "From:" address to put on email sent by DSpace.
feedback.recipient - mailbox for feedback mail.
mail.admin - mailbox for DSpace site administrator.
alert.recipient - mailbox for server errors/alerts (not essential but very useful!)
registration.notify- mailbox for emails when new users register (optional)

Your local.cfg file can override ANY settings from other *.cfg files in DSpace

The provided only includes a small subset of the configuration settings available with DSpace. It provides a local.cfg.EXAMPLE
good starting point for your own file.local.cfg

However, you should be aware that ANY configuration can now be copied into your to override the default settings. This local.cfg
includes ANY of the settings/configurations in:

The primary dspace.cfg file ()[dspace]/config/dspace.cfg
Any of the module configuration files (files)[dspace]/config/modules/*.cfg
Any of the Spring Boot settings ([dspace-src]/dspace-server-webapp/src/main/resources/application.

)properties

Individual settings may also be commented out or removed in your , in order to re-enable default settings.local.cfg

See the section for more details.Configuration Reference
DSpace Directory: Create the directory for the DSpace backend installation (i.e.). As (or a user with appropriate permissions), [dspace] root
run:

mkdir [dspace]
chown dspace [dspace]

(Assuming the UNIX username.)dspace
Build the Installation Package: As the UNIX user, generate the DSpace installation package.dspace

cd [dspace-source]
mvn package

Building with Oracle Database Support (UNSUPPORTED AS OF 7.6)

Without any extra arguments, the DSpace installation package is initialized for PostgreSQL. If you want to use Oracle instead, you should build
the DSpace installation package as follows:
mvn - =oracle packageDdb.name
Install DSpace Backend: As the UNIX user, install DSpace to :dspace [dspace]

cd [dspace-source]/dspace/target/dspace-installer
ant fresh_install

To see a complete list of build targets, run: ant help The most likely thing to go wrong here is the test of your database connection. See the Co
. mmon Installation Issues Section below for more details

Initialize your Database: While this step is optional (as the DSpace database should auto-initialize itself on first startup), it's always good to
verify one last time that your database connection is working properly. To initialize the database run:

[dspace]/bin/dspace database migrate

After running this script, it's a good idea to run "./dspace database info" to check that your database has been fully initialized. A fully
initialized database should list the state of all migrations as either "Success" or "Out of Order". If any migrations have failed or are still
listed as "Pending", then you need to check your "dspace.log" for possible "ERROR" messages. If any errors appeared, you will need to
resolve them before continuing.

Deploy Server web application: The DSpace backend consists of a single "server" webapp (in). You need to [dspace]/webapps/server
deploy this webapp into your Servlet Container (e.g. Tomcat). Generally, there are two options (or techniques) which you could use...either
configure Tomcat to find the DSpace "server" webapp, or copy the "server" webapp into Tomcat's own webapps folder.

Technique A. Tell your Tomcat/Jetty/Resin installation where to find your DSpace web application(s). As an example, in the directory [to
 you could add files similar to the following (but replace with your installation location):mcat]/conf/Catalina/localhost [dspace]

https://wiki.lyrasis.org/display/DSDOC7x/Configuration+Reference
http://Ddb.name

11.

12.

13.

a.

b.

c.

i.

14.

15.
a.
b.
c.

16.

17.

a.

b.
i.
ii.

1.

iii.

DEFINE A CONTEXT PATH FOR DSpace Server webapp: server.xml

<?xml version='1.0'?>
<Context
 docBase="[dspace]/webapps/server"/>

The name of the file (not including the suffix ".xml") will be the name of the context, so for example defines the context at server.xml h
. To define the (), name that context's file . Optionally, you ttp://host:8080/server root context http://host:8080/ ROOT.xml

can also choose to install the old, deprecated "rest" webapp if you
Technique B. Simple and complete. You copy only (or all) of the DSpace Web application(s) you wish to use from the [dspace]/webapps
directory to the appropriate directory in your Tomcat/Jetty/Resin installation. For example:

 (This will copy all the web applications to Tomcat). cp -R [dspace]/webapps/* [tomcat]/webapps
 (This will copy only the Server web application to Tomcat.)cp -R [dspace]/webapps/server [tomcat]/webapps

To define the (), name that context's directory .root context http://host:8080/ ROOT
Optionally, also install the deprecated DSpace 6.x REST API web application. If you previously used the DSpace 6.x REST API, for
backwards compatibility the old, deprecated "rest" webapp is still available to install (in). It is NOT used by the [dspace]/webapps/rest
DSpace frontend. So, most users should skip this step.
Copy Solr cores: DSpace installation creates a set of four empty Solr cores already configured.

Copy them from /solr to the place where your Solr instance will discover them. For example:[dspace]

[solr] is the location where Solr is installed.
NOTE: On Debian systems the configsets may be under /var/solr/data/configsets
cp -R [dspace]/solr/* [solr]/server/solr/configsets

Make sure everything is owned by the system user who owns Solr
Usually this is a 'solr' user account
See https://solr.apache.org/guide/8_1/taking-solr-to-production.html#create-the-solr-user
chown -R solr:solr [solr]/server/solr/configsets

Start (or re-start) Solr. For example:

[solr]/bin/solr restart

You can check the status of Solr and your new DSpace cores by using its administrative web interface. Browse to (e.${solr.server}
g. to see if Solr is running well, then look at the cores by selecting (on the left) Core Admin or http://localhost:8983/solr/)
using the Core Selector drop list.

For example, to test that your "search" core is setup properly, try accessing the URL ${solr.server}/search/select. It sh
ould run an empty query against the "search" core, returning an empty JSON result. If it returns an error, then that means your
"search" core is missing or not installed properly.

Create an Administrator Account: Create an initial administrator account from the command line:

[dspace]/bin/dspace create-administrator

Initial Startup! Now the moment of truth! Start up (or restart) Tomcat/Jetty/Resin.
REST API Interface - (e.g.) http://dspace.myu.edu:8080/server/
OAI-PMH Interface - (e.g.) http://dspace.myu.edu:8080/server/oai/request?verb=Identify
For an example of what the default backend looks like, visit the Demo Backend: https://demo.dspace.org/server/

Setup scheduled tasks for behind-the-scenes processes: For all features of DSpace to work properly, there are some scheduled tasks you
MUST setup to run on a regular basis. Some examples are tasks that help create thumbnails (for images), do full-text indexing (of textual content)
and send out subscription emails. See the for more details.Scheduled Tasks via Cron
Production Installation (adding HTTPS support): Running the DSpace Backend on HTTP & port 8080 is only usable for local development

 environments (where you are running the UI and REST API from the same machine, and only accessing them via localhost URLs). If you want
 (otherwise logins will not work outside of your local domain).to run DSpace in Production, you MUST run the backend with HTTPS support

For HTTPS support, we recommend installing either or , configuring SSL at that level, and proxying all requests to Apache HTTPD Nginx
your Tomcat installation. Keep in mind, if you want to host both the DSpace Backend and Frontend on the same server, you can use
one installation of Apache HTTPD or NGinx to manage HTTPS/SSL and proxy to both.
Apache HTTPD: These instructions are specific to Apache HTTPD, but a similar setup can be achieved with NGinx (see below)

Install , e.g. Apache HTTPD sudo apt install apache2
Install , and (or mod_proxy_http) modules, e.g. mod_headers mod_proxy mod_proxy_ajp sudo a2enmod headers; sudo
a2enmod proxy; sudo a2enmod proxy_ajp

Alternatively, you can choose to use to create an http proxy. A separate example is commented out mod_proxy_http
below

For mod_proxy_ajp to communicate with Tomcat, you'll need to enable Tomcat's AJP connector in your Tomcat's server.xml:

http://host:8080/server
http://host:8080/server
http://host:8080/
http://host:8080/
http://dspace.myu.edu:8080/server/
http://dspace.myu.edu:8080/server/oai/request?verb=Identify
https://demo.dspace.org/server/
https://wiki.lyrasis.org/display/DSDOC7x/Scheduled+Tasks+via+Cron
https://httpd.apache.org/
https://www.nginx.com/
https://httpd.apache.org/
https://httpd.apache.org/docs/current/mod/mod_headers.html
https://httpd.apache.org/docs/current/mod/mod_proxy.html
https://httpd.apache.org/docs/current/mod/mod_proxy_ajp.html
https://httpd.apache.org/docs/current/mod/mod_proxy_http.html

17.

b.

iii.

iv.
v.

vi.

c.
i.
ii.

<Connector protocol="AJP/1.3" port="8009" redirectPort="8443" URIEncoding="UTF-8" />

Restart Apache to enable these modules
Obtain an SSL certificate for HTTPS support. If you don't have one yet, you can use Let's Encrypt (for free) using the "certbot"
tool: https://certbot.eff.org/
Now, setup a new VirtualHost for your site (using HTTPS / port 443) which proxies all requests to Tomcat's AJP connector
(running on port 8009)

<VirtualHost _default_:443>
 # Add your domain here. We've added "my.dspace.edu" as an example
 ServerName my.dspace.edu
 .. setup your host how you want, including log settings... .. setup your host how
you want, including log settings...

 # Most installs will need these options enabled to ensure DSpace knows its hostname and
scheme (http or https)
 # Also required to ensure correct sitemap URLs appear in /robots.txt for User Interface.
 ProxyPreserveHost On
 RequestHeader set X-Forwarded-Proto https

 SSLEngine on
 SSLCertificateFile [full-path-to-PEM-cert]
 SSLCertificateKeyFile [full-path-to-cert-KEY]
 # LetsEncrypt certificates (and possibly others) may require a chain file be specified
 # in order for the UI / Node.js to validate the HTTPS connection.
 #SSLCertificateChainFile [full-path-to-chain-file]

 # Proxy all HTTPS requests to "/server" from Apache to Tomcat via AJP connector
 ProxyPass /server ajp://localhost:8009/server
 ProxyPassReverse /server ajp://localhost:8009/server

 # If you would rather use mod_proxy_http as an http proxy to port 8080
 # then use these settings instead
 #ProxyPass /server http://localhost:8080/server
 #ProxyPassReverse /server http://localhost:8080/server
</VirtualHost>

NGinx: These instructions are specific to NGinx.
Install/Setup NGinx
Sample NGinx "server block" configuration. Keep in mind we are only providing basic example settings.

https://certbot.eff.org/
https://www.nginx.com/

17.

c.

ii.

d.

Setup HTTP to redirect to HTTPS
server {
 listen 80;
 # Add your domain here. We've added "my.dspace.edu" as an example
 server_name my.dspace.edu;
 rewrite ^ https://my.dspace.edu permanent;
}

Setup HTTPS access
server {
 listen 443 ssl;
 # Add your domain here. We've added "my.dspace.edu" as an example
 server_name my.dspace.edu;

 # Add your SSL certificate/key path here
 # NOTE: For LetsEncrypt, the certificate should be the full certificate chain file
 ssl_certificate my.dspace.edu.crt (or PEM);
 ssl_certificate_key my.dspace.edu.key;

 # Proxy all HTTPS requests to "/server" from NGinx to Tomcat on port 8080
 location /server {
 proxy_set_header X-Forwarded-Proto https;
 proxy_set_header X-Forwarded-Host $host;
 proxy_pass http://localhost:8080/server;
 }
}

After switching to HTTPS, make sure to go back and update the URLs (primarily) in your local.cfg to match the dspace.server.url
new URL of your backend (REST API). This will require briefly rebooting Tomcat.

Installing the Frontend (User Interface)
Below instructions are specific to 7.2 (or later)

The Frontend Instructions below are specific to 7.2 or later. For Frontend Installation instructions for 7.0 or 7.1, see 7.0-7.1 Frontend Installation

Frontend Requirements

UNIX-like OS or Microsoft Windows
Node.js (v16.x or v18.x)
Yarn (v1.x)
PM2 (or another Process Manager for Node.js apps) (optional, but recommended for Production)
DSpace 7.x Backend (see above)

UNIX-like OS or Microsoft Windows

UNIX-like operating system (Linux, HP/UX, Mac OSX, etc.) : Many distributions of Linux/Unix come with some of the dependencies below pre-
installed or easily installed via updates. You should consult your particular distribution's documentation or local system administrators to
determine what is already available.
Microsoft Windows: While DSpace can be run on Windows servers, most institutions tend to run it on a UNIX-like operating system.

Node.js (v16.x or v18.x)
At this time, the DSpace 7 frontend has build issues with Node v20.x. See this bug ticket for more details: https://github.com/DSpace/dspace-angular
/issues/2290

Node.js can be found at . It may be available through your Linux distribution's package manager. We recommend running a https://nodejs.org/ Lo
 (even numbered releases). Non-LTS versions (odd numbered releases) are not recommended.ng Term Support (LTS) version

Node.js is a Javascript runtime that also provides (Node Package Manager). It is used to both build and run the frontend.npm
NOTE: Node v14 also should work. However, that version is nearing . We recommend updating to Node 16 or 18.end-of-life

Yarn (v1.x)

Yarn v1.x is available at . It can usually be install via NPM (or through your Linux distribution's package manager). https://classic.yarnpkg.com/ W
e do NOT currently support Yarn v2.

You may need to run this command using "sudo" if you don't have proper privileges
npm install --global yarn

https://wiki.lyrasis.org/display/DSDOC7x/7.0-7.1+Frontend+Installation
https://github.com/DSpace/dspace-angular/issues/2290
https://github.com/DSpace/dspace-angular/issues/2290
https://nodejs.org/
https://nodejs.org/en/about/releases/
https://nodejs.org/en/about/releases/
https://www.npmjs.com/
https://nodejs.org/en/about/releases/
https://classic.yarnpkg.com/

1.

a.
2.

3.

a.

4.

a.

b.

Yarn is used to build the frontend.

PM2 (or another Process Manager for Node.js apps) ()optional, but recommended for Production

In Production scenarios, we starting/stopping the User Interface using a Node.js process manager. There are several highly recommend
available, but our current favorite is . The rest of this installation guide assumes you are using PM2.PM2
PM2 is very easily installed via NPM

You may need to run this command using "sudo" if you don't have proper privileges
npm install --global pm2

DSpace 7.x Backend (see above)

The DSpace User Interface (Frontend) cannot function without an installed DSpace Backend. Follow the instructions above.
The Frontend and Backend . They may be installed on separate machines as long as the do not need to be installed on the same machine/server
two machines can connect to one another via HTTP or HTTPS.

Frontend Installation
Below instructions are specific to 7.2 (or later)

The Frontend Instructions below are specific to 7.2 or later. For Frontend Installation instructions for 7.0 or 7.1, see 7.0-7.1 Frontend Installation

Download Code (to [dspace-angular]): Download the from the DSpace GitHub repository. You can choose to latest dspace-angular release
either download the zip or tar.gz file provided by GitHub, or you can use "git" to checkout the appropriate tag (e.g.) or branch.dspace-7.2

NOTE: For the rest of these instructions, we'll refer to the source code location as [dspace-angular].
Install Dependencies: Install all required local dependencies by running the following from within the unzipped directory[dspace-angular]

change directory to our repo
cd [dspace-angular]

install the local dependencies
yarn install

NOTE: Some dependencies occasionally get overly strict over exact versions of Node & Yarn.
If you are running a supported version of Node & Yarn, but see a message like
`The engine "node" is incompatible with this module.`, you can disregard it using this flag:
yarn install --ignore-engines

 Build the User Interface for Production. This builds source code (under Build/Compile: [dspace-angular]/src/) to create a compiled
version of the User Interface in the folder. This folder is what we will deploy & run to start the UI.[dspace-angular]/dist /dist

yarn build:prod

You only need to rebuild the UI application if you change source code (under). Simply changing the [dspace-angular]/src/
configurations (e.g. config.prod.yml, see below) do not require a rebuild, but only require restarting the UI.

Choose/Create a directory on your server where you wish to Deployment (to [dspace-ui-deploy]): (Only recommended for Production setups)
run the compiled User Interface. We'll call this [dspace-ui-deploy].

[dspace-ui-deploy] vs [dspace-angular]

[dspace-angular] is the directory where you've downloaded and built the UI source code (per the instructions above). For deployment
/running the UI, we recommend creating an entirely separate directory. This keeps your running, production User [dspace-ui-deploy]
Interface separate from your source code directory and also minimizes downtime when rebuilding your UI. You may even choose to deploy to a [

directory on a different server (and copy the directory over via FTP or similar).dspace-ui-deploy] /dist

If you are installing the UI for the first time, or just want a simple setup, you can choose to have [dspace-ui-deploy] and [dspace-angular] be the sa
This would mean you don't have to copy your /dist folder to another location. However, the downside is that your running site will me directory.

become unresponsive whenever you do a re-build/re-compile (i.e. rerun "yarn build:prod") as this build process will first delete the [dspace-
 directory before rebuilding it.angular]/dist

Copy the entire [dspace-angular]/dist/ folder to this location. For example:

cp -r [dspace-angular]/dist [dspace-ui-deploy]

WARNING: At this time, you MUST copy the entire "dist" folder and make sure NOT to rename it. Therefore, the directory structure
should look like this:

https://pm2.keymetrics.io/
https://pm2.keymetrics.io/
https://wiki.lyrasis.org/display/DSDOC7x/7.0-7.1+Frontend+Installation
https://github.com/DSpace/dspace-angular/releases

4.

b.

c.

5.

a.

b.

Contents of [dspace-ui-deploy] folder

[dspace-ui-deploy]
 /dist
 /browser (compiled client-side code)
 /server (compiled server-side code, including "main.js")
 /config (Optionally created in the "Configuration" step below)
 /config.prod.yml (Optionally created in the "Configuration" step below)

NOTE: the OS account which runs the UI via Node.js (see below) MUST have write privileges to the directory [dspace-ui-deploy]
(because on startup, the runtime configuration is written to)[dspace-ui-deploy]/dist/browser/assets/config.json

You have two options for , Environment Variables or YAML-based configuration ()Configuration: User Interface Configuration config.prod.yml
. Choose one!

 Create a "config.prod.yml" at . You may wish to use the YAML configuration: [dspace-ui-deploy]/config/config.prod.yml [ds
as a starting point. This file can be used to override any of pace-angular]/config/config.example.yml config.prod.yml

the default configurations listed in the (in that same directory). this file MUST include a "rest" config.example.yml At a minimum
section (and may also include a "ui" section), similar to the following (keep in mind, you only need to include settings that you need to
modify).

Example config.prod.yml

The "ui" section defines where you want Node.js to run/respond. It often is a *localhost* (non-
public) URL, especially if you are using a Proxy.
In this example, we are setting up our UI to just use localhost, port 4000.
This is a common setup for when you want to use Apache or Nginx to handle HTTPS and proxy
requests to Node on port 4000
ui:
 ssl: false
 host: localhost
 port: 4000
 nameSpace: /

This example is valid if your Backend is publicly available at https://api.mydspace.edu/server/
The REST settings MUST correspond to the primary/public URL of the backend. Usually, this means
they must be kept in sync
with the value of "dspace.server.url" in the backend's local.cfg
rest:
 ssl: true
 host: api.mydspace.edu
 port: 443
 nameSpace: /server

Every configuration in the UI may be specified via an Environment Variable. See in the Environment variables: Configuration Override Us
 documentation for more details. For example, the below environment variables provide the same setup as the er Interface Configuration

config.prod.yml example above.

https://wiki.lyrasis.org/display/DSDOC7x/User+Interface+Configuration
https://wiki.lyrasis.org/display/DSDOC7x/User+Interface+Configuration#UserInterfaceConfiguration-ConfigurationOverride
https://wiki.lyrasis.org/display/DSDOC7x/User+Interface+Configuration
https://wiki.lyrasis.org/display/DSDOC7x/User+Interface+Configuration

5.

b.

i.

c.
i.
ii.

iii.

1.

2.

3.
4.

6.

a.

b.

i.

Example Environment Variables

All environment variables MUST
(1) be prefixed with "DSPACE_"
(2) use underscores as separators (no dots allowed), and
(3) use all uppercase

"ui" section
DSPACE_UI_SSL = false
DSPACE_UI_HOST = localhost
DSPACE_UI_PORT = 4000
DSPACE_UI_NAMESPACE = /

"rest" section
DSPACE_REST_SSL = true
DSPACE_REST_HOST = api.mydspace.edu
DSPACE_REST_PORT = 443
DSPACE_REST_NAMESPACE = /server

NOTE: When using PM2, some may find it easier to use Environment variables, as it allows you to specify DSpace UI configs
within your PM2 configuration. See PM2 instructions below.

Configuration Hints:
See the documentation for a list of all available configurations.User Interface Configuration
In the "ui" section above, you may wish to start with "ssl: false" and "port: 4000" just to be certain that everything else is working
properly adding HTTPS support. KEEP IN MIND, we highly recommend always using HTTPS for Production. (See before
section on HTTPS below)
(Optionally) This is not required, but it can Test the connection to your REST API from the UI from the command-line.
sometimes help you discover immediate configuration issues if the test fails.

If you are using YAML configs, copy your config.prod.yml back into your source code folder at [dspace-angular]
/config/config.prod.yml
From , run This script will attempt a basic Node.js connection to the REST [dspace-angular] yarn test:rest
API that is configured in your "config.prod.yml" file and validate the response.
A successful connection should return a 200 Response and all JSON validation checks should return "true"
If you receive a connection error or different response code, you MUST fix your REST API before the UI will be able to
work. See also the " " below. If you receive an SSL error, see "Common Installation Issues Using a Self-Signed SSL

"Certificate causes the Frontend to not be able to access the Backend
Start up the User Interface: The compiled User Interface only requires to run. However, most users may want to use (or a similar Node.js PM2
Node.js process manager) in Production to provide easier logging and restart tools.

To quickly startup / test the User Interface, you can just use Node.js. This is only recommended for quickly testing the UI is Quick Start:
working, as no logs are available.

You MUST start the UI from within the deployment directory
cd [dspace-ui-deploy]

Run the "server/main.js" file to startup the User Interface
node ./dist/server/main.js

Stop the UI by killing it via Ctrl+C

 Using PM2 (or a different Node.js process manager) is highly recommended for Production scenarios. Here's an example Run via PM2:
of a Production setup of PM2.

First you need to create a PM2 JSON configuration file which will run the User Interface. This file can be named anything &
placed where ever you like, but you may want to save it to your deployment directory (e.g. [dspace-ui-deploy]/dspace-

). ui.json

https://wiki.lyrasis.org/display/DSDOC7x/User+Interface+Configuration
https://wiki.lyrasis.org/display/DSDOC7x/Installing+DSpace#InstallingDSpace-CommonInstallationIssues
https://wiki.lyrasis.org/display/DSDOC7x/Installing+DSpace#InstallingDSpace-UsingaSelf-SignedSSLCertificatecausestheFrontendtonotbeabletoaccesstheBackend
https://wiki.lyrasis.org/display/DSDOC7x/Installing+DSpace#InstallingDSpace-UsingaSelf-SignedSSLCertificatecausestheFrontendtonotbeabletoaccesstheBackend
https://nodejs.org/en/
https://pm2.keymetrics.io/

6.

b.

i.

1.
2.

3.

4.

ii.

dspace-ui.json

{
 "apps": [
 {
 "name": "dspace-ui",
 "cwd": "/full/path/to/dspace-ui-deploy",
 "script": "dist/server/main.js",
 "instances": "max",
 "exec_mode": "cluster",
 "env": {
 "NODE_ENV": "production"
 }
 }
]
}

NOTE: The "cwd" setting MUST correspond to your folder path.[dspace-ui-deploy]
NOTE #2: The "exec_mode" and "instances" settings are optional but highly recommended. Setting "exec_mode" to
"cluster" enable's . This will provide better performance in production as it allows PM2 to scale PM2's cluster mode
your site across multiple CPUs. The "instances" setting tells PM2 how many CPUs to scale across ("max" means all
CPUs, but you can also specify a number.)
NOTE #3: If you wanted to configure your UI using Environment Variables, specify those Environment Variables under
the "env" section. For example:

Configuration via Environment Variables

"env": {
 "NODE_ENV": "production",
 "DSPACE_REST_SSL": "true",
 "DSPACE_REST_HOST": "demo.dspace.org",
 "DSPACE_REST_PORT": "443",
 "DSPACE_REST_NAMESPACE": "/server"
}

NOTE #4: If you are using Windows, there are two other rules to keep in mind in this JSON configuration. First, all
(e.g. "C:\\dspace-ui-deploy"). Second, "cluster" mode is . Here's an paths must include double backslashes required

example configuration for Windows:

dspace-ui.json (for Windows)

{
 "apps": [
 {
 "name": "dspace-ui",
 "cwd": "C:\\full\\path\\to\\dspace-ui-deploy",
 "script": "dist\\server\\main.js",
 "instances": "max",
 "exec_mode": "cluster",
 "env": {
 "NODE_ENV": "production"
 }
 }
]
}

Now, start the application using PM2 using the configuration file you created in the previous step

https://pm2.keymetrics.io/docs/usage/cluster-mode/

6.

b.

ii.

iii.
iv.
v.

vi.

7.
a.
b.

c.

8.
a.

i.

1.
2.
3.
4.

ii.

1.

In this example, we are assuming the config is named "dspace-ui.json"
pm2 start dspace-ui.json

To see the logs, you'd run
pm2 logs

To stop it, you'd run
pm2 stop dspace-ui.json

If you need to change your PM2 configs, delete the old config and restart
pm2 delete dspace-ui.json

For more PM2 commands see https://pm2.keymetrics.io/docs/usage/quick-start/
HINT: You may also want to install/configure to ensure that PM2's log folder doesn't fill up over time.pm2-logrotate
Did PM2 It's likely that something in your UI installation or configuration is not work or throw an immediate error?
incorrect. Check the PM2 logs ("pm2 logs") first for errors. If the problem is not obvious, try to see if you can run the UI using
the "Quick Start" method (using just Node.js) instead. Once "Quick Start" is working, try PM2 again.
If neither PM2 nor the "Quick Start" method works for you: then see the "User Interface never appears (no content appears)"
section in the belowCommons Installation Issues

 At this point, the User Interface should be available at the URL you configured!Test it out:
For an example of what the default frontend looks like, visit the Demo Frontend: https://demo.dspace.org/
If the UI fails to start or throws errors, it's likely a configuration issue. See below for common error Commons Installation Issues
messages you may see and how to resolve them.
If you have an especially difficult issue to debug, you may wish to PM2. Instead, try running the UI via the "Quick Start" method stop
(using just Node.js). This command might provide a more specific error message to you, if PM2 is not giving enough information back.

Add HTTPS support: For HTTPS (port 443) support, you have two options
(Recommended) Install either or to act as a "reverse proxy" for the frontend (and backend). This allows you to Apache HTTPD Nginx
manage HTTPS (SSL certificates) in either Apache HTTPD or Nginx, and proxy all requests to the frontend (running on port 4000) and
backend (running on port 8080). This is our current recommended approach. These instructions are specific to Apache, but a similar
setup can be achieved with Nginx.

If you already have Apache / Nginx installed for the backend, you can use the same Apache / Nginx. You can also choose to
install a separate one (either approach is fine).

Install , e.g. Apache HTTPD sudo apt install apache2
Install the and modules, e.g. mod_proxy mod_proxy_http sudo a proxy; sudo a2enmod proxy_http2enmod
Restart Apache to enable
Obtain an SSL certificate for HTTPS support. If you don't have one yet, you can use Let's Encrypt (for free) using the
"certbot" tool: https://certbot.eff.org/

Apache HTTPD sample configuration:

Now, setup (or update) the new for your UI site (preferably using HTTPS / port 443) which proxies all VirtualHost
requests to PM2 running on port 4000.

https://pm2.keymetrics.io/docs/usage/quick-start/
https://github.com/keymetrics/pm2-logrotate
https://demo.dspace.org/
https://httpd.apache.org/
https://www.nginx.com/
https://httpd.apache.org/
https://httpd.apache.org/docs/current/mod/mod_proxy.html
https://httpd.apache.org/docs/current/mod/mod_proxy_http.html
https://certbot.eff.org/
https://httpd.apache.org/docs/2.4/vhosts/name-based.html

8.
a.

ii.

1.

iii.
1.

<VirtualHost _default_:443>
 # Add your domain here. We've added "my.dspace.edu" as an example
 ServerName my.dspace.edu
 .. setup your host how you want, including log settings...

 # Most installs will need these options enabled to ensure DSpace knows its
hostname and scheme (http or https)
 # Also required to ensure correct sitemap URLs appear in /robots.txt for User
Interface.
 ProxyPreserveHost On
 RequestHeader set X-Forwarded-Proto https

 # These SSL settings are identical to those for the backend installation (see
above)
 # If you already have the backend running HTTPS, just add the new Proxy settings
below.
 SSLEngine on
 SSLCertificateFile [full-path-to-PEM-cert]
 SSLCertificateKeyFile [full-path-to-cert-KEY]
 # LetsEncrypt certificates (and possibly others) may require a chain file be
specified
 # in order for the UI / Node.js to validate the HTTPS connection.
 #SSLCertificateChainFile [full-path-to-chain-file]

 # These Proxy settings are for the backend. They are described in the backend
installation (see above)
 # If you already have the backend running HTTPS, just append the new Proxy
settings below.
 # Proxy all HTTPS requests to "/server" from Apache to Tomcat via AJP connector
 # (In this example: https://my.dspace.edu/server/ will display the REST API)
 ProxyPass /server ajp://localhost:8009/server
 ProxyPassReverse /server ajp://localhost:8009/server

 # [NEW FOR UI:] Proxy all HTTPS requests from Apache to PM2 on localhost, port
4000
 # NOTE that this proxy URL must match the "ui" settings in your config.prod.yml
 # (In this example: https://my.dspace.edu/ will display the User Interface)
 ProxyPass / http://localhost:4000/
 ProxyPassReverse / http://localhost:4000/
</VirtualHost>

NGinx sample configuration
Sample NGinx "server block" configuration. Keep in mind we are only providing basic example settings.

8.
a.

iii.
1.

iv.

v.

vi.

b.

i.

ii.
1.
2.

a.

iii.
iv.

Setup HTTPS access
server {
 listen 443 ssl;
 # Add your domain here. We've added "my.dspace.edu" as an example
 server_name my.dspace.edu;

 # Add your SSL certificate/key path here
 # NOTE: For LetsEncrypt, the certificate should be the full certificate chain file
 # These SSL settings are identical to those for the backend installation (see
above)
 # If you already have the backend running HTTPS, just add the new Proxy settings
below.
 ssl_certificate my.dspace.edu.crt (or PEM);
 ssl_certificate_key my.dspace.edu.key;

 # Proxy all HTTPS requests to "/server" from NGinx to Tomcat on port 8080
 # These Proxy settings are for the backend. They are described in the backend
installation (see above)
 location /server {
 proxy_set_header X-Forwarded-Proto https;
 proxy_set_header X-Forwarded-Host $host;
 proxy_pass http://localhost:8080/server;
 }

 # [NEW FOR UI:] Proxy all HTTPS requests from NGinx to PM2 on localhost, port 4000
 # NOTE that this proxy URL must match the "ui" settings in your config.prod.yml
 # (In this example: https://my.dspace.edu/ will display the User Interface)
 location / {
 proxy_set_header X-Forwarded-Proto https;
 proxy_set_header X-Forwarded-Host $host;
 proxy_pass http://localhost:4000/;
 }
}

HINT#1: Because you are using a proxy for HTTPS support, in your , your "ui" settings will still User Interface Configuration
have "ssl: false" and "port: 4000". This is perfectly OK!
HINT#2: to force the UI to connect to the backend using HTTPS, you should verify your "rest" settings in your User Interface

 the "dspace.server.url" in your backend's "local.cfg" and both use the HTTPS URL. So, if your backend Configuration match
(REST API) is proxied to both those settings should specify that HTTPS URL.https://my.dspace.edu/server/,
HINT#3: to force the backend to recognize the HTTPS UI, make sure to update your "dspace.ui.url" in your backend's "local.
cfg" is updated to use the new HTTPS UI URL (e.g. https://my.dspace.edu).

(Alternatively) You can use the basic HTTPS support built into our UI and Node server. (This may currently be better for non-Production
environments as it has not been well tested)

Create a folder and add a and to that folder (they must have [dspace-ui-deploy]/config/ssl/ key.pem cert.pem
those exact names)
In your , go back and update the following:User Interface Configuration

Set "ui > ssl" to true
Update "ui > port" to be 443

In order to run Node/PM2 on port 443, you also will likely need to provide node with special permissions, like i
.n this example

Restart the UI
Keep in mind, while this setup is simple, you may not have the same level of detailed, Production logs as you would with
Apache HTTPD or Nginx

What Next?

After a successful installation, you may want to take a closer look at

Performance Tuning DSpace: If you are noticing any slowness in your Production site, we have a guide for how you might speed things up.
User Interface Customization: Documentation on customizing the User Interface with your own branding / theme(s)
User Interface Configuration: Additional configurations available in the User Interface.
Submission User Interface: Options to configure/customize the default Submission (deposit) process
Configurable Workflow: Options to configure/customize the default Workflow approval process
Scheduled Tasks via Cron : Several DSpace features that a command-line script is run regularly via cron.require
Configuration Reference : Details on the configuration options available to the Backend
Handle Server installation: Optionally, you may wish to enable persistent URLs for your DSpace site using CRNI's Handle.Net Registry
Statistics and Metrics: Optionally, you may wish to configuration one (or more) Statistics options within DSpace, including and Google Analytics
(internal) Solr Statistics
Multilingual Support: Optionally, you may wish to enable multilingual support in your DSpace site.
Using DSpace : Various other pages which describe usage and additional configurations related to other DSpace features.
System Administration: Various other pages which describe additional backend installation options/configurations.

https://wiki.lyrasis.org/display/DSDOC7x/User+Interface+Configuration
https://wiki.lyrasis.org/display/DSDOC7x/User+Interface+Configuration
https://wiki.lyrasis.org/display/DSDOC7x/User+Interface+Configuration
https://my.dspace.edu/server/,
https://wiki.lyrasis.org/display/DSDOC7x/User+Interface+Configuration
https://levelup.gitconnected.com/tws-004-how-to-configure-nodejs-to-use-port-443-86f1ca801c5f
https://levelup.gitconnected.com/tws-004-how-to-configure-nodejs-to-use-port-443-86f1ca801c5f
https://wiki.lyrasis.org/display/DSDOC7x/Performance+Tuning+DSpace
https://wiki.lyrasis.org/display/DSDOC7x/User+Interface+Customization
https://wiki.lyrasis.org/display/DSDOC7x/User+Interface+Configuration
https://wiki.lyrasis.org/display/DSDOC7x/Submission+User+Interface
https://wiki.lyrasis.org/display/DSDOC7x/Configurable+Workflow
https://wiki.lyrasis.org/display/DSDOC7x/Scheduled+Tasks+via+Cron
https://wiki.lyrasis.org/display/DSDOC7x/Configuration+Reference
https://wiki.lyrasis.org/display/DSDOC7x/Handle.Net+Registry+Support
https://wiki.lyrasis.org/display/DSDOC7x/Statistics+and+Metrics
https://wiki.lyrasis.org/display/DSDOC7x/DSpace+Google+Analytics+Statistics
https://wiki.lyrasis.org/display/DSDOC7x/SOLR+Statistics
https://wiki.lyrasis.org/display/DSDOC7x/Multilingual+Support
https://wiki.lyrasis.org/display/DSDOC7x/Using+DSpace
https://wiki.lyrasis.org/display/DSDOC7x/System+Administration

1.

2.

3.
4.

If you've run into installation problems, you may want to...

Visit the guide for tips on locating the cause of the errorTroubleshoot an error
Review (see below)Commons Installation Issues
Ask for via one of the support options documented on that pageSupport

Common Installation Issues

Troubleshoot an error or find detailed error messages

See the guide, look for the section on "DSpace 7.x". This will provide you hints on locating error messages both in the User Troubleshoot an error
Interface (frontend) and in the REST API (backend)

User Interface never appears (no content appears) or "Proxy server received an invalid response"

Chances are your User Interface (UI) is throwing a severe error or not starting properly. The best way to debug this issue would be to start the User
Interface in development mode to see if it can give you a more descriptive error.

First, create a configuration file for development. This file supports the same configs as [dspace-ui-deploy]/config/config.dev.yml
your existing config.prod.yml. So, you can copy over any settings you want to test out.
Start the UI in development mode (this doesn't require a proxy like Apache or Nginx)

yarn start:dev

This will boot up the User Interface on whatever port you specified in "config.dev.yml"
At this point, attempt to access the UI from your web browser. Even if it isn't fully working, you should be able to still get more information from
your browser's DevTools regarding the underlying error. See the page, look for the section on "DSpace 7.x". It has a guide Troubleshoot an error
for locating UI error messages in your browser's Developer Tools.

Once you've found the underlying error, it may be one of the "common installation issues" listed below.

User Interface partially load but then spins (never fully loads or some content doesn't load)

Chances are your User Interface (UI) is throwing an error or receiving an unexpected response from the REST API backend. Since the UI is Javascript
based, it runs entirely in your browser. That means the error it's hitting is most easily viewed in your browser (and in fact the error may never appear in log
files).

See the page, look for the section on "DSpace 7.x". It has a guide for locating UI error messages in your browser's Developer Tools.Troubleshoot an error

"500 Service Unavailable" from the User Interface

This error is saying that the frontend is working, but it is unable to communicate with your backend. It's the same as the "No _links section found at..." error
described in the next section. Please follow the troubleshooting details in that section.

"No _links section found at..." error from User Interface

When starting up the User Interface for the first time, you may see an error that looks similar to this...

No _links section found at [rest-api-url]
ERROR Error: undefined doesn't contain the link sites
 at MapSubscriber.project

This error means that the UI is unable to contact the REST API listed at and/or the response from that is [rest-api-url] [rest-api-url]
unexpected (as it doesn't contain the "_links" to the endpoints available at that REST API). A valid DSpace will respond with JSON [rest-api-url]
similar to our demo API at https://demo.dspace.org/server/api

First, test the connection to your REST API from the UI from the command-line.

This script will attempt a basic Node.js connection to the REST API
configured in your "[dspace-angular]/config/config.prod.yml" and
validate the response.(NOTE: config.prod.yml MUST be copied to
to [dspace-angular]/config/ for this script to find it!)
yarn test:rest

In DSpace 7.1 a different command was needed
yarn config:check:rest

https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error
https://wiki.lyrasis.org/display/DSPACE/Support
https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error
https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error
https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error
https://demo.dspace.org/server/api

A successful connection should return a 200 Response and all JSON validation checks should return "true".
If you receive a connection error or different response code, you MUST fix your REST API before the UI will be able to work (see additional hints
below for likely causes).

Usually, the core problem is caused by one of the following scenarios:

A possible configuration issue in the frontend or backend.
Check the "rest" section of your config.*.yml (or for 7.1 or 7.0)environment.*.ts configuration file for the User Interface. That
configuration section defines which REST API the UI will attempt to use. If the settings do NOT map to a valid DSpace REST API, then
you will see this "No _links section found.." error. Keep in mind, (the only exception is if both the the REST API must use HTTPS
frontend and backend are running on "localhost"-based URLs)
Check the "dspace.ui.url" configuration of your backend & verify it corresponds to the public URL of the User Interface (i.e. the exact
same URL you use in your browser)
Verify the backend "trusts" the frontend via the "rest.cors.allowed-origins" configuration (in rest.cfg or local.cfg). This setting must list all
web-based clients which are trusted by the backend (REST API). By default, "dspace.ui.url" should be listed... but you should verify it
has not been modified.

. A possible SSL certificate issue This issue may also appear if the REST API's SSL Certificate is either untrusted (by the frontend) or expired.
If you are using a style certificate, you may need to modify your backend's Apache settings to also provide a Chain File as Let's Encrypt
follows:

For example: /etc/letsencrypt/live/[domain]/cert.pem
SSLCertificateFile [full-path-to-PEM-cert]
For example: /etc/letsencrypt/live/[domain]/privkey.pem
SSLCertificateKeyFile [full-path-to-cert-KEY]
For example: /etc/letsencrypt/live/[domain]/chain.pem
SSLCertificateChainFile [full-path-to-chain-file]

Per the , you can also use the SSLCertificateFile setting to specify intermediate CA certificates along with the main cert.Apache docs
For self-signed certs, see also "Using a Self-Signed SSL Certificate causes the Frontend to not be able to access the Backend" common
issue listed below.

 This may be a proxy issue, a firewall issue, or something else generally blocking the port (e.g. port Something blocking access to the REST API.
443 for SSL).

Verify that you can access the REST API from the machine where Node.js is running (i.e. your UI is running). For example try a simple
"wget" or "curl" to verify the REST API is returning expected JSON similar to our demo API at https://demo.dspace.org/server/api

Attempt to access the REST API via HTTPS from command-line on the machine where Node.js is
running.
If this fails or throws a SSL cert error, you must fix it.
wget https://[rest.host]/server/api

 , unless you are guaranteed that all your In most production scenarios, your REST API should be publicly accessible on the web
DSpace users will access the site behind a VPN or similar. So, this "No _links section found" error may also occur if you are accessing
the UI from a client computer/web browser which is unable to access the REST API.

If none of the above suggestions helped, you may want to look closer at the request logs in your browser (using browser's Dev Tools) and server-side logs,
to be sure that the requests from your UI are going where you expect, and see if they appear also on the backend. Tips for finding these logs can be
found in the "DSpace 7.x" section of our guide.Troubleshoot an error

"RangeError: Maximum call stack size exceeded"

When starting up the User Interface for the first time, you may see an error that looks similar to this...

ERROR RangeError: Maximum call stack size exceeded

This error means that the UI is trying to contact your REST API, but is having issues doing so (possibly because either a proxy or an HTTPHTTPS redirect
is causing issues or a redirect loop).

Double check your " " setting in your local.cfg on the backend. Is it the same URL you use in your browser to access the backend? dspace.server.url
Keep in mind the mode (http vs https), domain, port, and subpath(s) all must match, and it must not end in a trailing slash.

Also double check the "rest" section of your config.*.yml (or for 7.1 or 7.0)environment.*.ts configuration file for the User Interface. Make sure it's
also pointing to the exact same URL as that " " setting. Again, check the mode, domain, port and paths all match exactly. dspace.server.url

"XMLHttpRequest.. has been blocked by CORS policy" or "CORS error" or "Invalid CORS request"

If you are seeing a CORS error in your browser, this means that you are accessing the REST API via an "untrusted" client application. To fix this error,
you must change your REST API / Backend configuration to trust the application.

By default, the DSpace REST API / Backend will only trust the application at . Therefore, you should first verify that your dspace.ui.url dspac
 setting (in your local.cfg) exactly matches the of your User Interface (i.e. the URL you see in the browser). This must be e.ui.url primary URL

an exact match: mode (http vs https), domain, port, and subpath(s) all must match.

https://letsencrypt.org/
https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslcertificatechainfile
https://demo.dspace.org/server/api
https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error

1.

a.

2.

a.

i.

ii.

3.

4.

5.

6.

7.

If you need to trust client applications / URLs, those MUST be added to the configuration. See additional rest.cors.allowed-origins REST
 for details on this configuration.API

Also, check your Tomcat (or servlet container) log files. If Tomcat throws a syntax or other major error, it may return an error response that
triggers a CORS error. In this scenario, the CORS error is only a side effect of a larger error.

If you modify either of the above settings, you will need to restart Tomcat for the changes to take effect.

Cannot login from the User Interface with a password that I know is valid

If you cannot login via the user interface with a valid password, you should check to see what underlying error is being returned by the REST API. The
easiest way to do this is by using your web browser's Dev Tools as described in our guide (see the "Try this first" section for DSpace Troubleshoot an error
7).

If the password is valid, more than likely you'll see the underlying error is "403 Forbidden" error with a message that says "Access is denied. Invalid CSRF
 (see hints on solving this in the very next section)Token"

"403 Forbidden" error with a message that says "Access is denied. Invalid CSRF Token"

First, double check that you are seeing that exact error message. A error may be thrown in a variety of scenarios. For example, a 403 403 Forbidden
may be thrown if a page requires a login, if you have entered an invalid username or password, or even sometimes when there is a CORS error (see
previous installation issue for how to solve that).

If you are seeing the message "Invalid CSRF Token" message (especially on every login), this is usually the result of a configuration / setup issue.

Here's some things you should double check:

If you site had been working, and this error seems random, it is possibly that cookie in your browser just got "out of sync" DSPACE-XSRF-COOKIE
(this can occur if you are logging into the REST API and UI separately in the same browser).

Logout and login & try the same action again. If it works this time, then that cookie was just "out of sync". If it fails a second time, then
there is a likely configuration issue...see suggestions below.

Make sure your backend is running HTTPS! This is the most common cause of this error. The only scenario where you can run the backend
in HTTP is when both the frontend & backend URLs are "localhost"-based URLs.

The reason for this HTTPS requirement is that most modern browsers will automatically block cross-domain cookies when using HTTP.
Cross-domain cookies are for successful authentication. The only is when both the frontend and backend are using required exception
localhost URLs (as in that scenario the cookies no longer need to be sent cross-domain). A more technical description of this behavior is
in the sub-bullets below.

If the REST API Backend is running HTTP, then it will always send the required cookie with a value of DSPACE-XSRF-COOKIE
. This setting means that the cookie will be sent (by your browser) to any other domains. Effectively, this SameSite=Lax not

will block all logins from any domain that is not the same as the REST API (as this cookie will not be sent back to the REST API
as required for CSRF validation). In other words, running the REST API on HTTP is only possible if the User Interface is
running on the exact same domain. For example, running both on 'localhost' with HTTP is a common development setup, and
this will work fine.
In order to allow for cross-domain logins, you MUST enable HTTPS on the REST API. This will result in the DSPACE-XSRF-

 cookie being set to . This setting means the cookie will be sent cross domain, but only for COOKIE SameSite=None; Secure
HTTPS requests. It also allows the user interface (or other client applications) to be on any domain, provided that the domain is
trusted by CORS (see setting in)rest.cors.allowed-origins REST API

Verify that your User Interface's "rest" section matches the value of " " configuration on the Backend. This simply ensures dspace.server.url
your UI is sending requests to the correct REST API. Also pay close attention that both specify HTTPS when necessary (see previous bullet).
Verify that your " " configuration on the Backend matches the primary URL of the REST API (i.e. the URL you see in the dspace.server.url
browser). This must be an exact match: mode (http vs https), domain, port, and subpath(s) all must match, and it must not end in a trailing slash
(e.g. "https://demo.dspace.org/server" is valid, but " /" may cause problems)https://demo.dspace.org/server .
Verify that your " " configuration on the Backend matches the primary URL of your User Interface (i.e. the URL you see in the dspace.ui.url
browser). This must be an exact match: mode (http vs https), domain, port, and subpath(s) all must match, and it (emust not end in a trailing slash
.g. "https://demo.dspace.org" is valid, but " " may cause problems)https://demo.dspace.org/ .
Verify that nothing (e.g. a proxy) is blocking Cookies and HTTP Headers from being passed between the UI and REST API. DSpace's CSRF
protection relies on the client (User Interface) being able to return both a valid cookie and a matching DSPACE-XSRF-COOKIE X-XSRF-TOKEN
header back to the REST API for validation. See our REST Contract for more details https://github.com/DSpace/RestContract/blob/main/csrf-
tokens.md
If you are running a custom application, or accessing the REST API from the command-line (or other third party tool like), you MUST Postman
ensure you are sending the CSRF token on every modifying request. See our REST Contract for more details https://github.com/DSpace
/RestContract/blob/main/csrf-tokens.md

For additional information on how DSpace's CSRF Protection works, see our REST Contract at https://github.com/DSpace/RestContract/blob/main/csrf-
tokens.md

Using a Self-Signed SSL Certificate causes the Frontend to not be able to access the Backend

If you setup the backend to use HTTPS with a self-signed SSL certificate, then Node.js (which the frontend runs on) may not "trust" that certificate by
default. This will result in the Frontend not being able to make requests to the Backend.

One possible workaround (untested as of yet) is to try setting the (which tells Node.js to trust additional NODE_EXTRA_CA_CERTS environment variable
CA certificates).

May be necessary for self-signed certificates.
export NODE_EXTRA_CA_CERTS="/etc/ssl/my.dspace.pem"

https://wiki.lyrasis.org/display/DSDOC7x/REST+API
https://wiki.lyrasis.org/display/DSDOC7x/REST+API
https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error
https://wiki.lyrasis.org/display/DSDOC7x/REST+API
https://github.com/DSpace/RestContract/blob/main/csrf-tokens.md
https://github.com/DSpace/RestContract/blob/main/csrf-tokens.md
https://www.postman.com/
https://github.com/DSpace/RestContract/blob/main/csrf-tokens.md
https://github.com/DSpace/RestContract/blob/main/csrf-tokens.md
https://github.com/DSpace/RestContract/blob/main/csrf-tokens.md
https://github.com/DSpace/RestContract/blob/main/csrf-tokens.md
https://nodejs.org/api/cli.html#cli_node_extra_ca_certs_file

Another option is to avoid using a self-signed SSL certificate. Instead, create a real, issued SSL certificate using something like (or similar Let's Encrypt
free services)

My REST API is running under HTTPS, but some of its "link" URLs are switching to HTTP

This scenario may occur when you are running the REST API behind an HTTP proxy (e.g. Apache HTTPD's , Ngnix's or mod_proxy_http proxy_pass
any other proxy that is forwarding from HTTPS to HTTP).

The fix is to ensure the DSpace REST API is sent the header (by your proxying service), telling it that the forwarded protocol is X-Forwarded-Proto
HTTPS

X-Forwarded-Proto: https

In general, when running behind a proxy, the DSpace REST API depends on accurate X-Forwarded-* headers to be sent by that proxy.

My User Interface's robots.txt has incorrect sitemap URLs

This scenario may occur when you are running the User Interface behind an HTTP proxy (e.g. Apache HTTPD's , Ngnix's mod_proxy_http proxy_pass
or any other proxy that is forwarding from HTTPS to HTTP).

The fix is to ensure the DSpace User Interface (frontend) is sent the correct and (or X-Forwarded-Host) headers to tell it the X-Forwarded-Proto Host
correct hostname and scheme (HTTP or HTTPS)

Apache HTTPD example

ProxyPreserveHost on
RequestHeader set X-Forwarded-Proto https

Cannot upload file from User Interface

If everything seems to be working, but you cannot upload files, it's important to first check your logs for any possible backend errors. See the Troubleshoot
 page.an error

If you are running DSpace on a Debian-based system (e.g. Ubuntu), that it's grant "ReadWrite" access to Apache some users have reported required
Tomcat (where the backend is running) via the service file (e.g. /lib/systemd/system/tomcat9.service). In the section you need to add [Service]
something like this:

Give Tomcat read/write on the DSpace installation
Make sure to update the "/PATH/TO" to be the full path of your DSpace install
ReadWritePaths=/PATH/TO/dspace

NOTE: If you don't want to give Tomcat read/write to all of DSpace,
you could limit this further to just these folders
dspace/assetstore
dspace/solr
dspace/log

Javascript heap out of memory

On some versions of Node.js or some operating systems, sites have reported seeing a "Javascript heap out of memory" error when trying to run the User
Interface (`yarn start:dev`). This does not seem to occur on every system, but the fix is always the same. You should ensure that in development mode
Node.js is given 4GB of memory via the "NODE_OPTIONS" environment variableat least

Set the "NODE_OPTIONS" environment variable on your system. This example will work for Linux/macOS
Ensure the "max-old-space-size" is set to 4GB (4096MB) or greater.
export NODE_OPTIONS=--max-old-space-size=4096

NOTE: More discussion on this issue can be found in It appears to only occur on systems where https://github.com/DSpace/dspace-angular/issues/2259
the default memory allocated for Node isn't sufficient to build DSpace in development mode.

This same setting may also be used in production scenarios to give Node.js more memory to work with. See for more details.Performance Tuning DSpace

Solr responds with "Expected mime type application/octet-stream but got text/html" (404 Not Found)

https://letsencrypt.org/
https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error
https://wiki.lyrasis.org/display/DSPACE/Troubleshoot+an+error
https://groups.google.com/g/dspace-tech/c/r7XfFn7k7ps/m/9CHRvI18AgAJ
https://github.com/DSpace/dspace-angular/issues/2259
https://wiki.lyrasis.org/display/DSDOC7x/Performance+Tuning+DSpace

1.

2.

3.

4.

This error occurs when Solr is either not initialized properly, or your DSpace backend is unable to find/communicate with Solr. Here's a few things you
should double check:

Verify that Solr is running and/or check for errors in its logs. Try to restart it (usually via a command like), and [solr]/bin/solr restart
verify it's accessible via wget or a web browser (usually at a URL like)http://localhost:8983/solr
Verify that your setting (in local.cfg) is correct for your Solr installation. This should correspond to the main URL of your Solr site solr.server
(usually something like). If you use or a browser from the machine running your DSpace backend, you http://localhost:8983/solr wget
should get a response from that URL (it should return the Solr Admin UI).
Verify that the required DSpace Solr cores have been properly installed/configured (per installation instructions above). When properly installed,
you should be able to get a response from them. For example, the URL should run an empty query against ${solr.server}/search/select
the "search" core, returning an empty JSON result.
If Solr is running & you are sure is set properly, double check that nothing else could be blocking the DSpace backend from solr.server
accessing Solr. For instance, if Solr is on a separate machine, verify that there is no firewall or proxy that could be blocking access between the
DSpace backend machine and the Solr machine.

Database errors occur when you run ant fresh_install

There are two common errors that occur.

If your error looks like this:

[java] 2004-03-25 15:17:07,730 INFO
 org.dspace.storage.rdbms.InitializeDatabase @ Initializing Database
[java] 2004-03-25 15:17:08,816 FATAL
 org.dspace.storage.rdbms.InitializeDatabase @ Caught exception:
[java] org.postgresql.util.PSQLException: Connection refused. Check
 that the hostname and port are correct and that the postmaster is
 accepting TCP/IP connections.
[java] at
 org.postgresql.jdbc1.AbstractJdbc1Connection.openConnection(AbstractJd
bc1Connection.java:204)
[java] at org.postgresql.Driver.connect(Driver.java:139)

it usually means you haven't yet added the relevant configuration parameter to your PostgreSQL configuration (see above), or perhaps you
haven't restarted PostgreSQL after making the change. Also, make sure that the and properties are correctly set in db.username db.password [ds

. An easy way to check that your DB is working OK over TCP/IP is to try this on the command line:pace]/config/dspace.cfg

psql -U dspace -W -h localhost

Enter the database password, and you should be dropped into the psql tool with a prompt.dspace dspace=>
Another common error looks like this:

[java] 2004-03-25 16:37:16,757 INFO
 org.dspace.storage.rdbms.InitializeDatabase @ Initializing Database
[java] 2004-03-25 16:37:17,139 WARN
 org.dspace.storage.rdbms.DatabaseManager @ Exception initializing DB
 pool
[java] java.lang.ClassNotFoundException: org.postgresql.Driver
[java] at java.net.URLClassLoader$1.run(URLClassLoader.java:198)
[java] at java.security.AccessController.doPrivileged(Native
 Method)
[java] at
 java.net.URLClassLoader.findClass(URLClassLoader.java:186)

This means that the PostgreSQL JDBC driver is not present in . See above.[dspace]/lib

	Installing DSpace

