
GSOC10 - DSpace REST API
Further development

This is the page describing GSoC 2010 project ended officially in August 2010. The REST API project is continued after official GSoC date. The new
address of wiki page is located at . Please bookmark this page as all further development will be https://wiki.duraspace.org/display/DSPACE/REST+API
described there. Current GSoC page stays here for historical/documentation purposes.

DSpace REST API - Bojan Suzic

Integration, testing, documentation and further development of DSpace REST services for 1.x and 2.0 versions. - Bojan Suzic

1 DSpace REST API - Bojan Suzic
2 Details

2.1 Project description
3 Detailed activities

3.1 REST API Endpoints
3.1.1 Repository browsing

3.1.1.1 Optional parameters
3.1.1.2 Sorting fields:
3.1.1.3 Controlling results
3.1.1.4 Response codes

3.1.2 Authentication/Authorization
3.1.3 Repository manipulation
3.1.4 Content searching
3.1.5 Statistical info
3.1.6 Relationships interface

3.1.6.1 Mandatory parameters
3.1.7 Visitors' suggestions or wishes

3.2 Integration in the system
3.3 Documentation tasks

4 Information for developers

Details

Project Title: DSpace REST API

Student: Bojan Suzic, University of Technology Graz

Mentors: Aaron Zeckoski, Mark Diggory

Contacting author: AT - using subject line bojan.suzic gmail _DOT _com DSpace

SCM Location for
Project:

http://scm.dspace.org/svn/repo/modules/rest

Project description

The REST approach promotes simplification and decoupling of software architecture, enabling further scalability, portability, granularity and simplified
interaction of software systems and components.
The aim of this project is to provide DSpace with REST capable API and underlying component, which will enable developers and end-users to exploit the
advantages of such approach.

Some of uses this module is intended to provide could be, for instance:

interaction between DSpace systems and/or other repositories
automation of different activities, e.g. submission of packages
integrating repositories in process workflows of other applications or systems
interaction with many kinds of systems or web applications, such as CMS, LMS, LCMS, VLS, AMS etc
providing of other approaches to UI, such as client based/run UI
crawling of repositories, exposing information in structural way

This project is continuation of last year's activities, supported by Google as part of . In the first stage the basic support for REST for DSpace is GSoC 2009
provided, exposing many parts of DSpace functionality to the clients.

https://wiki.duraspace.org/display/DSPACE/REST+API
http://scm.dspace.org/svn/repo/modules/rest
http://wiki.dspace.org/confluence/display/DSPACE/Google+Summer+of+Code+2009+DSpace+REST+Webapp

In this year's GSoC the following activities should be primarily addressed:

integration of existing code in the system
alignment of REST API with currently available DSpace features/functionality, e.g. adding of new features
extending of existing code, in order to provide better handling of management and injection functions
providing more detailed documentation and examples for end users
testing activities, e.g. cooperation/coordination with other GSoC 10 project Unit testing
promotion of DSpace REST interaction (by taking part in integration with other systems)

Detailed activities

In the following sections main activities are elaborated in detail.

REST API Endpoints

In the following section listed are supported endpoints on the application level. The items marked with dot (in C column) are in phase of
implementation, while other items are considered already working.

Please note that additional tests should be made in order to ensure proper stability of the whole application.

The sorting of the fields / output results is currently partially supported. This part of the application is implemented independently of the endpoints and will
be worked on after the most of endpoints are completed.

Naming convention for endpoints

DSpace 1.x and 2.x are treating the resources on different way. 2.x is more generalized, suggesting the use of RDF-like interrelation notations.

Repository browsing

Earlier Implementation Description - GSoC09

C Verb URL Description Mandatory
parameters

Optional
parameters

Sorting
fields

Response Data Formats Response
codes

 GET /communities Returns a list of all communities on the system
or return just top level communities.

- DSPACE:topLeve
lOnly=true
DSPACE:
idOnly=false

 DSPACE:id

DSPACE:
 name

DSPACE:
countitems

The list of communities containing
 . DSPACE:respective fields

Response code details:
 - if there are no communities 204

on the system

 json
xml

DSPACE:200,
204, 400, 500

 GET /communities/
{id}

Return detailed information about id
community.

id idOnly=false - describing DSPACE:Fields
community.

 json
xml

DSPACE:200,
400, 404, 500

 GET /communities/
}{id}/{element

Return a particular data field found in the
community id

Fields supported (for): element
 - entity identifier, internal to the system id

 - entity name name
 - number of items under countItems

community
 - handle of the community (unique handle

persistent resource identifier)
 - entity type (object type in the system) type

 - collections contained in the collections
community, ordered by id

 - states user persmission on the canedit
community (editing)

 - anchestors of the community anchestor
 - subcommunities, ordered by id children

 - group administrators, administrators
ordered by id

 - recent items in the community recent
 - short description shortDescription

 - copyright text copyrightText
 - sidebar text sidebarText

 - introductory text introductoryText

id DSPACE:
 idOnly=false

DSPACE:
immediateOnly=
true

 DSPACE:id
DSPACE:

 name
DSPACE:
countitems

Respective field info json
xml

DSPACE:200,
204, 400, 500

 GET /communities/
{id}/logo

Return a community logo id - - Contains community logo
(bitstream)

binary DSPACE:200,
400

 GET /collections Return a list of all collections in the system. - DSPACE:
 idOnly=false

DSPACE:
isAuthorized=f
alse

DSPACE:id

DSPACE:
 name

DSPACE:
countitems

The list of the collections
containing DSPACE:respective

. fields

Response code details:
 - if there are no communities 204

on the system

 json
xml

DSPACE:200,
204, 400, 500

 GET /collections/
}{id

Return detailed information about id
collection

id DSPACE:
idOnly=false

 DSPACE:id
DSPACE:

 name
DSPACE:
countitems

 of the collection DSPACE:Fields
entity.

 json
xml

DSPACE:200,
204, 400, 500

http://fedora-commons.org/confluence/display/DSPACE/GSOC10+-+Add+Unit+Testing+to+Dspace
https://wiki.lyrasis.org/display/GSOC/Earlier+Implementation+Description+-+GSoC09

 GET /collections/
} {id}/{element

Return a particular data field found in the
collection . id

Fields supported (for): element
 - entity identifier, internal to the system id

 - collection name name
 - collection licence licence

 - items contained in collection items
 - handle of the collection (unique handle

persistent resource identifier)
 - states user permission on the canedit

collection (edit)
 - communities collection is a communities

part of
 - number of the items in the countItems

collection
 - entity type (object type in the system) type

 - short description of the shortDescription
collection

 - introductory text for the introText
collection

 - copyright text for the copyrightText
collection

 - sidebar text for the collection sidebarText
 - provenance provenance

id DSPACE:
 idOnly=false

DSPACE:
immediateOnly=

 true

 DSPACE:id

DSPACE:
 name

DSPACE:
countitems

Respective field info json
xml

DSPACE:200,
204, 400, 500

 GET /items Return a list of the items in the system - - - The list of the items containing DSP
 . ACE:related fields

Response code details:
 - if there are no communities 204

on the system

 GET }/items/{id Return detailed information about an item. id - id
 name

lastmodif
 ied

submitter

 of the item entity.DSPACE:Fields json
xml

200, 204, 400,
500

 GET /items/{id}/
} {element

Return a particular data field fould in the item id

Fields supported (for): element
 - item metadata metadata

 - submitter group submitter
 - archival status of the item isArchived

 - states if the item is withdrawn isWithdrawn
 - owning collection of owningCollection

the item
 - last modified time lastModified

 - collections the item appears collections
in

 - communities the item communities
appears is

 - name of the item name
 - bitstreams related to the item bitstreams

 - item handle (unique identified) handle
 - states can user edit the item canedit

 - item id id
 - element type type

 - bundles related to the item bundles

, id element - - Respective field info json
xml

200, 204, 400,
500

 GET } /bitstream/{id Return bitstream object - usually the library
item file.

id - - of the bitstream DSPACE:Fields
entity.

, json xml 200, 400, 401,
403, 404, 500

 GET /bitstream/{id}
/{element

Return a particular data field found in
bitstream . id

Supported fields (for): element
 - mime type of file mimeType

 - bundles the bitstream is a part of bundles
 - checksum of the file checkSum

 - checksum algorithm checkSumAlgorithm
used

 - bitstream description description
 - file format description formatDescription

 - sequence id of the file sequenceId
 - size of the file size

 - source (typically filename with path source
information)

 - asset store number where storeNumber
the bitstream is stored

 - user's format userFormatDescription
description

 - bitstream name name
 - unique id of the bitstream handle

 - internal id of the bitstream id
 - type of the entity (referring to type

bitstream)

, id element - - Respective field info , json xml 200, 400, 401,
403, 404, 500

 GET /bitstream/{id}
 /receive

Return bitstream id - - Return bitstream binary 200, 400, 401,
403, 404, 500

 GET /groups Return a list of the groups in the system - - - The list of the groups containing
related . DSPACE:fields

 if there are no groups in the 204
system.

,json xml 200, 204, 400,
500

 GET }/groups/{id Return a group object id - - of the group DSPACE:Fields
entity.

,json xml 200, 204, 400,
500

 GET /groups/{id}/
}{element

Return a particular data field found in the
group entity . id

Supported fields (for): element
 - unique id (external) handle

 - internal id of the gruop id
 - is the group empty isEmpty
 - group members (as users) members

 - group members (as groups) memberGroups
 - group name name
 - entity type (referring to group) type

, id element - - Respective field info ,json xml 200, 204, 400,
500

 GET /users Return a list of the users in the system - - - The list of the users containing
related .DSPACE:fields

,json xml 200,204,400,50
0

 GET }/users/{id Return a user info id - - of the user entity.DSPACE:Fields ,json xml 200,204,400,50
0

 GET /users/{id}/
}{element

Return a particular data field found in the user
. id

Supported fields (for): element
 - user's email email

 - first name firstName
 - full name fullName

 - handle (unique, external) handle
 - internal id of the user id

 - preferred language language
 - last name lastName

 - name name
 - network id netId

 - requires certificate requireCertificate
to login

 - is user self registered selfRegistered
 - type of the objecttype

,id element - - Respective field info ,json xml 200,204,400,50
0

Note: modifier is referred only to first layer of the results. For all other layers (e.g. nested results) only ids are returned in some cases, due to idOnly
possible loops. Example: for community containing collections, on second level the response contains only ids for some elements where multiple loops
may be created (community->has_collection->has_community....). Other data is modified according to flag.idOnly

Optional parameters

Parameter Description

topLevelOnly returns only top level communities

idOnly if true return only the identifiers for the record

 immediateOnly return only direct parent community

isAuthorized return only collections user has permission to work
on

inArchive return archived items for respective collection

Sorting fields:
Not completed!

The sorting of the fields / output results is currently partially supported. This part of the application is implemented independently of the endpoints and will
be worked on after the most of endpoints are completed.

Parameter Description Ordering
supported

id sort results by entity id | asc ascending
 | desc descending

name sort results by entity name | asc ascending
 | desc descending

countitems sort results by number of items contained | asc ascending
 | desc descending

lastmodified sort results by date of last item
modification

 | asc ascending
 | desc descending

 submitterName sort results by submitter name | asc ascending
 | desc descending

submitterId sort results by submitter id | asc ascending
 | desc descending

Controlling results

Parameter Description Default Example

_start position of the first entity to return 0 (first) to list 6th item and onwards_start=5

_page page of data to display 0 (first) , to display second page with query _page=2
results

_perpage number of results to show on each
page

0 (all) to display 10 results per page_perpage=10

_limit maximum number of entities to return 0 (all) _limit=50

_sort the sort order to return entities in
should be comma separated list of field names
suffix determines ordering
suffixes: , , , _asc _ascending _desc _descending

ascending default

 sort=name
_sort=name,email_desc,lastname_desc

Response codes

Code Description

200 OK

201 Created

204 No content

400 Bad request

401 Unauthorized

403 Forbidden

404 Not found

405 Method not
allowed

500 Internal server
error

503 Service
unavailable

Authentication/Authorization

Currently only standard authentication is supported. The authentication data is provided in the request or header body.

Example:

/rest/communities.json?user=user@email.com&pass=userpassword

The same elements and are used for header based authentication.user pass

Authorization is done on underlying api level; in the case of error the proper message and error code are returned to the user.

Repository manipulation

C Verb URL Description Mandatory
parameters

Optional
parameters

Response Data Formats Response
codes

 POST /communities Action to be done under community id, adding
new content or values.

Supported actions:
createAdministrators
createCollection
createSubcommunity

 id, action

-
 name

name

- Id of newly created entity, depending
on the action selected:
id of group of administrators
id of collection
id of subcommunity

json
xml

200, 400, 401,
403, 500

 PUT /communities/{id}/{element} Update the field of the community . element id

Supported fields:
 - change name name

 - change short description shortDescription
 - change copyright text copyrightText

 - change sidebar text sidebarText
 - change introductory text introductoryText

 - add existing collection collections
 - add existing subcommunitychildren

 id

 value
 value
 value
 value
 value

 cid
cid

- Response code 200, 400, 401,
403, 500

 PUT /communities/{id}
/logo

Set the logo for community id id - Response code binary 200, 400, 401,
403, 500

• DELETE }/communities/{id Delete community from the system id - Response code json
xml

200, 400, 401,
403, 500

• DELETE /communities/{id}/
} {element}/{eid

Remove attribute/value of element eid element
from the community . id

Suported elements:
 collections

 children
administrators

 id, eid

 cid
 cid

-

- Response code json
xml

POST /collections Action to be done under collection , adding id
new content or values.

Supported actions:
 createAdministrators

 createSubmitters
 createTemplateItem

 createWorkflowGroup

 id, action

-
-
-
step

- Id ow newly created element json
xml

200, 400, 401,
403, 500

PUT /collections/{id}/
}{element

Update field of the collection . element id

Supported elements:
 - short description shortDescription

 - introductory text introText
 - copyright text copyrightText

 - sidebar text sidebarText
 - provenance provenance

 - collection licence licence
 - collection namename

 id

 value
 value
 value
 value
 value
 value

value

- Response code json
xml

200, 400, 401,
403, 500

• DELETE }/collections/{id Delete collection from the system - - Response code json
xml

200, 400, 401,
403, 500

• DELETE /collections/{id}/
}{element}/{cid

Remove attribute/value from collection cid id
Supported attributes:

 administrators
 item

 submitters
templateItem

id, cid - Response code json
xml

200,400,401,40
3,500

• PUT /collections/{id}
/logo

Set the logo for collection id id Response code binary 200,400,401,40
3,500

• POST /items Action to be done under item , adding content id
or value.

Supported actions:
 createBundle

 createBitstream

, id action

 name
, name input

 Id of newly created element , , json xml b
inary

200,400,401,40
3,500

• PUT }/items/{id}/{element Update field of the item element id

Supported fields:
 isArchived

 isWithdrawn
 owningCollection

 submitter

,id element - Response code ,json xml 200,400,401,40
3,500

• DELETE }/items/{id Delete item from the system id - Response code ,json xml 200,400,401,40
3,500

• DELETE /items/{id}/{element}
}/{eid

Delete element/attribute from the item eid id

Supported fields for : element
 bundle

 licences

, ,id element eid - Response code ,json xml 200,400,401,40
3,500

Content searching

C Verb URL Description Mandatory
parameters

Optional parameters Sorting
fields

Response Data Formats Response
codes

 GET /search Return a list of all objects found by searching
criteria.
Notice: community and collection are mutually
exclusive options.

- modifiers{{query= }}&query
(community= or id

}} collection={{id
idOnly=false

 id
 name

lastmodif
 ied

submitter

Item info with basic metadata for
the search results. Additionally
return only
identifiers when is idOnly=true
used.

 json
xml

200, 204, 400,
500

 GET /harvest Return a list of all objects that have been
created, modified or withdrawn within
specified time range.

- startdate
{enddate}}

 community
 collection

 idOnly=false
 withdrawn=false

Notice: community and
collection are mutually
exclusive options

- Contains item info including id,
name, handle, metadata,
bitstreams according to
the defined requirements.
Additionally when idOnly=true
only identifiers of
results are returned. If the date is
in incompatible format, error 400
is returned.

 json
xml

200, 204, 400,
500

Statistical info

C Verb URL Description Mandatory
parameters

Optional
parameters

Sorting
fields

Response Data Formats Response
codes

 GET /stats Return general
statistics.

- - - Cummulative list of statistics data for the system
currently available.

 json
xml

200, 400, 500

Relationships interface

Experimental feature

This is considered as a experimental feature in the phase of being considered for compability with future versions of DSpace. Consider not important
section; the status of the feature for upcoming release yet to be determined.

C Verb URL Description Mandatory
parameters

Optional
parameters

Sorting
fields

Response Data Formats Response
codes

• GET /resource/
{handle}
/relations

Return entities according to
relation and parameters
specified

handle
DSPACE:

 property

 DSPACE:rtype
rfield

- ontains entities selected and sorted in conformance to
request parameters. For more details see description of rtype
 andrfield.

json
xml

DSPACE:200,
204, 400, 401,
403, 500

Mandatory parameters

Parameter Description Values Example

property Return entities satisfying requested property relation Structural properties
ds:isPartOfSite
ds:isPartOfCommunity
ds:isPartOfCollection
ds:isPartOfItem
ds:isPartOfBundle
ds:hasCommunity
ds:hasCollection
ds:hasItem
ds:hasBundle
ds:hasBitstream
ds:hasBitstreamFormat

Communities and collections
ds:logo

Bistream format
ds:support
ds:fileExtension
ds:mimeType

Bitstream
ds:messageDigest
ds:messageDigestAlgorithm
ds:messageDigestOriginator
ds:size

Eperson
ds:language

property=ds:hasCommunity - return subcommunities of a
community
property=ds:isPartOfCommunity - return communities current
community is part of (children)
property=ds:hasCollection - return collections belonging to
community
property=ds:hasItem - return Items belonging to community

rtype restriction on type - only entity with specifed type(s)
would be returned

ds:Bitstream
ds:Bundle
ds:Collection
ds:Community
ds:EPerson
ds:Group
ds:Item
ds:DSpaceObject
ds:Policy
ds:Site
ds:BitstreamFormat|

rtype=ds:Collection - return entities of Collection type

rfield restriction on fields - return only selected fields; by
default all fields are returned

id
name
countitems
metadata
subcommunities
ancestors
owner
other (depending on object type, will be
documented later)

rfield=id,name - return only entity id and name in response

Note: incomplete/orientative properties, for more info check [Vocabularies|http://code.google.com/p/dspace-sandbox/source/browse/#svn/modules/dspace-
rdf/tags/dspace-rdf-1.5.1/src/main/java/org/dspace/adapters/rdf/vocabularies].

Visitors' suggestions or wishes

Here the visitors and stakeholders can insert their suggestions or describe the needs for their applications in detail.

Comment: In this case it is not clear how to treat recent part of endpoint. If we stick to semantic mapping, then it should look like /resource/id
 /mapping, but recent in this case obviously do not represent a mapping, but the property.

 Semantic mapping presented in this case should be probably hardcoded for 1.x branch, but on abstraction level which enables easy Comment #2:
replacement with some auto-discovery method prepared for 2.x and eventually backported to 1.x. This way we would be able to call something similar to /c

 or in order to get supported mappings (amongst other data).ommunities/id communities/id/capabilities

Suggesting new options:

Instead of changing wiki contents visitors can enter their suggestions as a comments.

1) suggested adding of the new feature related to HTTP Basic Auth. Ok, I will investigate how it could be done and Kevin S. Clarke and Tim Donhue
included here. More info comming.

Integration in the system

It is planned to consult two external subjects for cooperation and the assistance during integration process (LMS and national library internal automation
process). More information coming soon - awaiting approval of other parties.

Documentation tasks

Although provided software module exposes basic documentation automatically to the end user, in order to make it easier for other developers and users
the documentation in the following forms is additionaly to be provided:

Confluence pages, current location
integrated documentation in PDF form (manual)
short slides containing technology overview, advocacy/facts, configuration and usage guideliens and examples
code will be additionally commented

Example of usage

At the end of the current stage of this project as a bonus task (if time constraints allow) the examples of usage will be provided for several languages, the
use-cases will be presented (example of integration in other software, e.g. LMS) and optionally simple client system demonstrating UI customization will be
demonstrated (e.g. Flex or JavaFX like).

Information for developers
In this section the main sections of the software will be briefly explained in order to ease update or extension of the components.

The REST API for DSpace uses Aaron Zeckoski's and DSpace standard libraries, as dspace-api.EntityBus

There are two main packages: and . Providers are responsible for serving content/feeds to the users. org.dspace.rest.providers org.dspace.rest.entities
They usually prepare entities or particular entity and/or handle update/delete/create functions. The main class there is , which is AbstractBaseProvider
extended by other providers.

In the providers, at the constructor level created are mappings between particular endpoints (e.g. /rest/items/1/collections) and related functions in entities
(org.dspace.entities.items.getCollections). Thus, for each GET, PUT, POST or DELETE function in the entity provider's constructor defined are such
mappings between URL endpoints and functions. After the client makes specific call, the provider prepares answer and in this phase calls mapped function
and prepare results for display.

So, if you want to extend currently available endpoints for already present providers and entities, it is necessary to define mapping at provider level and
prepare corresponding function at the entity level (based on the template). The system then calls this function and provides necessary arguments for its
successfully handling.

If you want to develop a new provider, it is usually necessary to create new provider class in org.dspace.rest.providers and then create related entity in org.
dspace.rest.entities. The currently available providers are good example how to do that.

http://code.google.com/p/entitybus/

	GSOC10 - DSpace REST API

