
AIP Backup and Restore

1 Background & Overview
1.1 How does this differ from traditional DSpace Backups? Which Backup route is better?
1.2 How does this help backup your DSpace to remote storage or cloud services (like DuraCloud)?
1.3 AIPs are Archival Information Packages
1.4 AIP Structure / Format

2 Running the Code
2.1 Exporting AIPs

2.1.1 Export Modes & Options
2.1.2 Exporting just a single AIP
2.1.3 Exporting AIP Hierarchy

2.1.3.1 Exporting Entire Site
2.2 Ingesting / Restoring AIPs

2.2.1 Ingestion Modes & Options
2.2.1.1 The difference between "Submit" and "Restore/Replace" modes

2.2.2 Submitting AIP(s) to create a new object
2.2.2.1 Submitting a Single AIP
2.2.2.2 Submitting an AIP Hierarchy
2.2.2.3 Submitting AIP(s) while skipping any Collection Approval Workflows

2.2.3 Restoring/Replacing using AIP(s)
2.2.3.1 Default Restore Mode
2.2.3.2 Restore, Keep Existing Mode
2.2.3.3 Force Replace Mode
2.2.3.4 Restoring Entire Site

2.3 Cleaning up from a failed import
2.4 Performance considerations
2.5 Disable User Interaction for Cron

3 Command Line Reference
3.1 Additional Packager Options

3.1.1 How to use additional options
4 Configuration in 'dspace.cfg'

4.1 AIP Metadata Dissemination Configurations
4.2 AIP Ingestion Metadata Crosswalk Configurations
4.3 AIP Ingestion EPerson Configurations
4.4 AIP Configurations To Improve Ingestion Speed while Validating

5 Common Issues or Error Messages

Background & Overview
AIP Backup & Restore doesn't yet work for Configurable Entities

Configurable Entities are not fully supported by AIP Backup & Restore. Since Entities are Items, their metadata and files can be exported/imported via
AIPs. However, their relationships to other Entities cannot yet be exported (or imported) via AIPs. Therefore, restoring Entities via AIP Backup &

 (namely loss of relationships). See for more information.Restore may result in accidental data loss https://github.com/DSpace/DSpace/issues/2882
AIP Backup & Restore functionality only works with the Latest Version of Items

If you are using the functionality (disabled by default), you must be aware that this "Item Level Versioning" feature is Item Level Versioning not yet
 with AIP Backup & Restore. Currently the AIPs that DSpace generates only store compatible Using them together may result in accidental data loss.

the of an Item. Therefore, past versions of Items will always be lost when you perform a restore / replace using AIP tools.latest version
Additional background information available in the Open Repositories 2010 Presentation entitled Improving DSpace Backups, Restores & Migrations

DSpace can backup and restore all of its contents as a set of . This includes all Communities, Collections, Items, Groups and People in the AIP Files
system.

This feature came out of a requirement for DSpace to better integrate with , and other backup storage systems. One of these requirements is to DuraCloud
be able to essentially "backup" local DSpace contents into the cloud (as a type of offsite backup), and "restore" those contents at a later time.

Essentially, this means DSpace can export the entire hierarchy (i.e. bitstreams, metadata and relationships between Communities/Collections/Items) into a
relatively standard format (a METS-based,). This entire hierarchy can also be re-imported into DSpace in the same format (essentially a restore AIP format
of that content in the same or different DSpace installation).

Benefits for the DSpace community:

Allows one to more easily move entire Communities or Collections between DSpace instances.
Allows for a potentially more consistent backup of this hierarchy (e.g. to DuraCloud, or just to your own local backup system), rather than relying
on synchronizing a backup of your Database (stores metadata/relationships) and assetstore (stores files/bitstreams).
Provides a way for people to more easily get their data out of DSpace (whatever the purpose may be).
Provides a relatively standard format for people to migrate entire hierarchies (Communities/Collections) from one DSpace to another (or from
another system into DSpace).

How does this differ from traditional DSpace Backups? Which Backup route is better?

Traditionally, it has always been recommended to backup and restore DSpace's database and files (also known as the "assetstore") separately. This is
described in more detail in the section of the DSpace System Documentation. The traditional backup and restore route is still a Storage Layer
recommended and supported option.

https://github.com/DSpace/DSpace/issues/2882
https://wiki.lyrasis.org/display/DSDOC7x/Item+Level+Versioning
http://www.slideshare.net/tdonohue/improving-dspace-backups-restores-migrations
https://wiki.lyrasis.org/display/DSDOC7x/DSpace+AIP+Format
http://www.duracloud.org
https://wiki.lyrasis.org/display/DSDOC7x/DSpace+AIP+Format
https://wiki.lyrasis.org/display/DSDOC7x/Storage+Layer

However, the new AIP Backup & Restore option seeks to try and resolve many of the complexities of a traditional backup and restore. The below table
details some of the differences between these two valid Backup and Restore options.

Traditional Backup & Restore
(Database and Files)

AIP Backup & Restore

Supported Backup
/Restore Types

Can Backup & Restore all
DSpace Content easily

Yes (Requires two backups/restores –
one for Database and one for Files)

Yes (Though, will not backup/restore items which are not officially "in archive")

Can Backup & Restore a
Single Community
/Collection/Item easily

No (It is possible, but requires a strong
understanding of DSpace database
structure & folder organization in order
to only backup & restore metadata/files
belonging to that single object)

Yes

Backups can be used to
move one or more
Community/Collection
/Items to another DSpace
system easily.

No (Again, it is possible, but requires a
strong understanding of DSpace
database structure & folder organization
in order to only move metadata/files
belonging to that object)

Yes

Can Backup & Restore Item
Versions

Yes (Requires two backups/restores –
one for Database and one for Files)

No (Currently, AIP Backup & Restore is not fully compatible with Item Level
. AIP Backup & Restore can only backup/restore the Versioning latest version

of an Item)

Can Backup & Restore Conf
igurable Entities

Yes (Requires two backups/restores –
one for Database and one for Files)

No (Currently, AIP Backup & Restore is not fully compatible with Configurable
Entities. AIP Backup & Restore can only backup/restore the metadata & files
of the Entity, but cannot backup/restore relationships to other Entities)

Supported Object
Types During Backup &
Restore

Supports backup/restore of
all Communities/Collections
/Items (including metadata,
files, logos, etc.)

Yes Yes

Supports backup/restore of
all People/Groups
/Permissions

Yes Yes

Supports backup/restore of
all Collection-specific Item
Templates

Yes Yes

Supports backup/restore of
all Collection Harvesting
settings (only for
Collections which pull in all
Items via OAI-PMH or OAI-
ORE)

Yes No (This is a known issue. All previously harvested Items will be restored, but
the OAI-PMH/OAI-ORE harvesting settings will be lost during the restore
process.)

Supports backup/restore of
all Withdrawn (but not
deleted) Items

Yes Yes

Supports backup/restore of
Item Mappings between
Collections

Yes Yes (During restore, the AIP Ingester may throw a false "Could not find a
parent DSpaceObject" error (see), if it Common Issues or Error Messages
tries to restore an Item Mapping to a Collection that it hasn't yet restored. But
this error can be safely bypassed using the 'skipIfParentMissing' flag (see Add

 for more details).itional Packager Options

Supports backup/restore of
all in-process, uncompleted
Submissions (or those
currently in an approval
workflow)

Yes No (AIPs are only generated for objects which are completed and considered
"in archive")

Supports backup/restore of
Items using custom
Metadata Schemas & Fields

Yes Yes (Custom Metadata Fields will be automatically recreated. Custom
Metadata Schemas must be manually created first, in order for DSpace to be
able to recreate custom fields belonging to that schema. See Common Issues

 for more details.)or Error Messages

https://wiki.lyrasis.org/display/DSDOC7x/Item+Level+Versioning
https://wiki.lyrasis.org/display/DSDOC7x/Item+Level+Versioning
https://wiki.lyrasis.org/display/DSDOC7x/Item+Level+Versioning
https://wiki.lyrasis.org/display/DSDOC7x/Item+Level+Versioning
https://wiki.lyrasis.org/display/DSDOC7x/Configurable+Entities
https://wiki.lyrasis.org/display/DSDOC7x/Configurable+Entities

Supports backup/restore of
all local DSpace
Configurations and
Customizations

Yes (if you backup your DSpace entire
directory as part of backing up your files)

Not by default (unless you also backup parts of your DSpace directory – note,
you wouldn't need to backup the '[dspace]/assetstore' folder again, as those
files are already included in AIPs)

Based on your local institutions needs, you will want to choose the backup & restore process which is most appropriate to you. You may also find it
beneficial to use both types of backups on different time schedules, in order to keep to a minimum the likelihood of losing your DSpace installation settings
or its contents. For example, you may choose to perform a Traditional Backup once per week (to backup your local system configurations and
customizations) and an AIP Backup on a daily basis. Alternatively, you may choose to perform daily Traditional Backups and only use the AIP Backup as a
"permanent archives" option (perhaps performed on a weekly or monthly basis).

Don't Forget to Backup your Configurations and Customizations

If you choose to use the AIP Backup and Restore option, do not forget to also backup your local DSpace configurations and customizations. Depending on
how you manage your own local DSpace, these configurations and customizations are likely in one or more of the following locations:

[dspace] - The DSpace installation directory (Please note, if you also use the AIP Backup & Restore option, you do need to backup your not [d
 directory, as those files already exist in your AIPs).space]/assetstore

[dspace-source] - The DSpace source directory

How does this help backup your DSpace to remote storage or cloud services (like DuraCloud)?

While AIP Backup and Restore is primarily a way to export your DSpace content objects to a local filesystem (or mounted drive), it can also be used as the
basis for ensuring your content is safely backed up in a remote location (e.g. or other cloud backup services).DuraCloud

Simply put, these AIPs can be generated and then replicated off to remote storage or a cloud backup service for safe keeping. You can then pull them
down either as an entire set, or individually, in order to restore one or more objects into your DSpace instance. While you could simply backup your entire
DSpace database and "assetstore" to a cloud service, you'd have to download the database backup again in order to restore any content. With entire
AIPs, you can instead just download the individual AIP files you need (which can decrease your I/O costs, if any exist) for that restoration.

This upload/download of your AIPs to a backup location can be managed in a manual fashion (e.g. via your own custom code or shell scripts), or you can
use a DSpace add-on to help ease this processReplication Task Suite

The Replication Task Suite add-on for DSpace allows you the ability to backup and restore DSpace contents to
/from AIPs via the DSpace Administrative Web Interface. It also includes "connectors" to the API, DuraCloud
so you can configure it to automatically backup/retrieve your AIPs to/from DuraCloud. Installing this add-on
means you can now easily backup and restore DSpace to DuraCloud (or other systems) simply via the
DSpace Administrative Web Interface. More information on installing and configuring this add-on can be
found on the page.Replication Task Suite

Makeup and Definition of AIPs

AIPs are Archival Information Packages

AIP is a package describing in DSpace.one archival object
The may be a single , , , or (Site AIPs contain site-wide information). Bitstreams are archival object Item Collection Community Site
included in an Item's AIP.
Each AIP is logically self-contained, can be restored without rest of the archive. (So you could restore a single Item, Collection or
Community)
Collection or Community AIPs do include all child objects (e.g. Items in those Collections or Communities), as each AIP only not
describes object. However, these container AIPs do contain references (links) to all child objects. These references can be used by one
DSpace to automatically restore all referenced AIPs when restoring a Collection or Community.
AIPs are only generated for objects which are currently in the "in archive" state in DSpace. This means that in-progress, uncompleted
submissions are not described in AIPs and cannot be restored after a disaster. Permanently removed objects will also no longer be
exported as AIPs after their removal. However, withdrawn objects will continue to be exported as AIPs, since they are still considered
under the "in archive" status.
AIPs with identical contents will always have identical . This provides a basic means of validating whether the contents within checksums
an AIP have changed. For example, if a Collection's AIP has the same checksum at two different points in time, it means that Collection
has not changed during that time period.
AIP profile favors completeness and accuracy rather than presenting the semantics of an object in a standard format. It conforms to the
quirks of DSpace's internal object model rather than attempting to produce a universally understandable representation of the object.
When possible, an AIP tries to use common standards to express objects.
An AIP serve as a DIP (Dissemination Information Package) or SIP (Submission Information Package), especially when transferring can
custody of objects to another DSpace implementation.
In contrast to SIP or DIP, the AIP should include all available DSpace structural and administrative metadata, and basic provenance
information. AIPs also describe some basic system level information (e.g. Groups and People).

AIP Structure / Format

Generally speaking, an AIP is an Zip file containing a METS manifest and all related content bitstreams.

http://www.duracloud.org/
#
http://www.duracloud.org/
#
http://en.wikipedia.org/wiki/Checksum

For more specific details of AIP format / structure, along with examples, please see .DSpace AIP Format

Running the Code

Exporting AIPs

Export Modes & Options

All AIP Exports are done by using the Dissemination Mode (option) of the command.-d packager

There are two types of AIP Dissemination you can perform:

Single AIP (default, using option) - Exports just an AIP describing a single DSpace object. So, if you ran it in this default mode for a Collection, -d
you'd just end up with a single Collection AIP (which would not include AIPs for all its child Items)
Hierarchy of AIPs (using the or option) - Exports the requested AIP describing an object, plus the AIP for all child objects. -d --all -d -a
Some examples follow:

For a Site - this would export Communities, Collections & Items within the site into AIP files (in a provided directory)all
For a Community - this would export that Community and all SubCommunities, Collections and Items into AIP files (in a provided
directory)
For a Collection - this would export that Collection and all contained Items into AIP files (in a provided directory)
For an Item – this just exports the Item into an AIP as normal (as it already contains its Bitstreams/Bundles by default)

Exporting just a single AIP

To export in single AIP mode (default), use this "packager" command template:

 [dspace]/bin/dspace packager -d -t AIP -e <eperson> -i <handle> <file-path>

for example:

 [dspace]/bin/dspace packager -d -t AIP -e admin@myu.edu -i 4321/4567 aip4567.zip

The above code will export the object of the given handle (4321/4567) into an AIP file named "aip4567.zip". This will include any child objects for not
Communities or Collections.

Exporting AIP Hierarchy

To export an AIP hierarchy, use the (or) package parameter.-a --all

For example, use this 'packager' command template:

 [dspace]/bin/dspace packager -d -a -t AIP -e <eperson> -i <handle> <file-path>

for example:

 [dspace]/bin/dspace packager -d -a -t AIP -e admin@myu.edu -i 4321/4567 aip4567.zip

The above code will export the object of the given handle (4321/4567) into an AIP file named "aip4567.zip". In addition it would export all children objects
to the same directory as the "aip4567.zip" file. The child AIP files are all named using the following format:

File Name Format: <Obj-Type>@<Handle-with-dashes>.zip
e.g. COMMUNITY@123456789-1.zip, COLLECTION@123456789-2.zip, ITEM@123456789-200.zip
This general file naming convention ensures that you can easily locate an object to restore by its name (assuming you know its Object
Type and Handle).

Alternatively, if object doesn't have a Handle, it uses this File Name Format: (e.g. <Obj-Type>@internal-id-<DSpace-ID>.zip
ITEM@internal-id-234.zip)

AIPs are only generated for objects which are currently in the "in archive" state in DSpace. This means that in-progress, uncompleted submissions are not
described in AIPs and cannot be restored after a disaster.

Exporting Entire Site

To export an entire DSpace Site, pass the packager the Handle . For example, if your site prefix is "4321", you'd run a <site-handle-prefix>/0
command similar to the following:

https://wiki.lyrasis.org/display/DSDOC7x/DSpace+AIP+Format

1.

2.

3.

 [dspace]/bin/dspace packager -d -a -t AIP -e admin@myu.edu -i 4321/0 sitewide-aip.zip

Again, this would export the DSpace Site AIP into the file "sitewide-aip.zip", and export AIPs for Communities, Collections and Items into the same all
directory as the Site AIP.

Ingesting / Restoring AIPs

Ingestion Modes & Options

Ingestion of AIPs is a bit more complex than Dissemination, as there are several different "modes" available:

Submit/Ingest Mode (option, default) – submit AIP(s) to DSpace in order to create a new object(s) (i.e. AIP is treated like a SIP – Submission -s
Information Package)
Restore Mode (option) – restore pre-existing object(s) in DSpace based on AIP(s). This also attempts to restore all handles and relationships -r
(parent/child objects). This is a specialized type of "submit", where the object is created with a known Handle, known UUID and known
relationships.
Replace Mode (option) – replace existing object(s) in DSpace based on AIP(s). This also attempts to restore all handles and relationships -r -f
(parent/child objects). This is a specialized type of "restore" where the contents of existing object(s) is replaced by the contents in the AIP(s). By
default, if a normal "restore" finds the object already exists, it will back out (i.e. rollback all changes) and report which object already exists.

Again, like export, there are two types of AIP Ingestion you can perform (using any of the above modes):

Single AIP (default) - Ingests just an AIP describing a single DSpace object. So, if you ran it in this default mode for a Collection AIP, you'd just
create a DSpace Collection from the AIP (but not ingest any of its child objects)
Hierarchy of AIPs (by including the or option after the mode) - Ingests the requested AIP describing an object, plus the AIP for all child --all -a
objects. Some examples follow:

For a Site - this would ingest Communities, Collections & Items based on the located AIP filesall
For a Community - this would ingest that Community and all SubCommunities, Collections and Items based on the located AIP files
For a Collection - this would ingest that Collection and all contained Items based on the located AIP files
For an Item – this just ingest the Item (including all Bitstreams & Bundles) based on the AIP file.

The difference between "Submit" and "Restore/Replace" modes

It's worth understanding the primary differences between a Submission (specified by parameter) and a Restore (specified by parameter).-s -r

Submission Mode (mode) - creates a new object (AIP is treated like a SIP)-s
By default, a new Handle is always assigned

However, you can force it to use the handle specified in the AIP by specifying as one of your -o ignoreHandle=false
parameters

By default, a new Parent object be specified (using the parameter). This is the location where the new object will be created.must -p
However, you can force it to use the parent object specified in the AIP by specifying as one of your -o ignoreParent=false
parameters

By default, will respect a Collection's Workflow process when you submit an Item to a Collection
However, you can specifically any workflow approval processes by specifying parameter.skip -w

Always adds a new Deposit License to Items
Always adds new DSpace System metadata to Items (includes new "dc.date.accessioned", "dc.date.available", "dc.date.issued" and "dc.
description.provenance" entries)
WARNING: Submission mode may not be able to maintain Item Mappings between Collections. Because these mappings are recorded
via the Collection Handles, mappings may be restored improperly if the Collection handle has changed when moving content from one
DSpace instance to another.

Restore / Replace Mode (mode) - restores a previously existing object (as if from a backup)-r
By default, the Handle specified in the AIP is restored

However, for restores, you can force a new handle to be generated by specifying as one of your -o ignoreHandle=true
parameters. (NOTE: Doesn't work for mode as the new object always retains the handle of the replaced object)replace

 Restore/Replace restores Handles as well as UUIDs. ()NOTE: UUID restoration only possible in 7.1 or above
By default, the object is restored under the Parent specified in the AIP

However, for restores, you can force it to restore under a different parent object by using the parameter. (NOTE: Doesn't -p
work for mode, as the new object always retains the parent of the replaced object)replace

Always skips any Collection workflow approval processes when restoring/replacing an Item in a Collection
Never adds a new Deposit License to Items (rather it restores the previous deposit license, as long as it is stored in the AIP)
Never adds new DSpace System metadata to Items (rather it just restores the metadata as specified in the AIP)

Changing Submission/Restore Behavior

It is possible to change some of the default behaviors of both the Submission and Restore/Replace Modes. Please see the Additional Packager Options
section below for a listing of command-line options that allow you to override some of the default settings described above.

Submitting AIP(s) to create a new object

The Submission mode () always creates a new object with a newly assigned handle. In addition by default it respects all existing Collection approval -s
workflows (so items may require approval unless the workflow is skipped by using the option). For information about how the "Submission Mode" differs -w
from the "Replace / Restore mode", see above.The difference between "Submit" and "Restore/Replace" modes

1.
2.

Submitting a Single AIP
AIPs treated as SIPs

This option allows you to essentially use an AIP as a SIP (Submission Information Package). The default settings will create a new DSpace object (with a
new handle and a new parent object, if specified) from your AIP.

To ingest a single AIP and create a new DSpace object under a parent of your choice, specify the (or) package parameter to the command. -p --parent
Also, note that you are running the in (submit) mode.packager -s

NOTE: This only ingests the single AIP specified. It does ingest all children objects.not

 [dspace]/bin/dspace packager -s -t AIP -e <eperson> -p <parent-handle> <file-path>

If you leave out the parameter, the AIP package ingester will attempt to install the AIP under the same parent it had before. As you are also specifying -p
the (submit) parameter, the will assume you want a new Handle to be assigned (as you are effectively specifying that you are submitting a -s packager n

 object). If you want the object to retain the Handle specified in the AIP, you can specify the option to force the packager to ew -o ignoreHandle=false
 ignore the Handle specified in the AIP.not

Submitting an AIP Hierarchy
AIPs treated as SIPs

This option allows you to essentially use a set of AIPs as SIPs (Submission Information Packages). The default settings will create a new DSpace object
(with a new handle and a new parent object, if specified) from each AIP

To ingest an AIP hierarchy from a directory of AIPs, use the (or) package parameter.-a --all

For example, use this 'packager' command template:

 [dspace]/bin/dspace packager -s -a -t AIP -e <eperson> -p <parent-handle> <file-path>

for example:

 [dspace]/bin/dspace packager -s -a -t AIP -e admin@myu.edu -p 4321/12 aip4567.zip

The above command will ingest the package named "aip4567.zip" as a child of the specified Parent Object (handle="4321/12"). The resulting object is
assigned a new Handle (since is specified). In addition, any child AIPs referenced by "aip4567.zip" are also recursively ingested (a new Handle is also -s
assigned for each child AIP).

Another example – (by using the Site Handle,):Ingesting a Top-Level Community <site-handle-prefix>/0

 [dspace]/bin/dspace packager -s -a -t AIP -e admin@myu.edu -p 4321/0 community-aip.zip

The above command will ingest the package named "community-aip.zip" as a (i.e. the specified parent is "4321/0" which is a Site top-level community
Handle). Again, the resulting object is assigned a new Handle. In addition, any child AIPs referenced by "community-aip.zip" are also recursively ingested
(a new Handle is also assigned for each child AIP).

May want to skip Collection Approvals Workflows

Please note: If you are submitting a larger amount of content (e.g. multiple Communities/Collections) to your DSpace, you may want to tell the 'packager'
command to skip over any existing Collection approval workflows by using the flag. By default, all Collection approval workflows will be respected. This -w
means if the content you are submitting includes a Collection with an enabled workflow, you may see the following occur:

First, the Collection will be created & its workflow enabled
Second, each Item belonging to that Collection will be created & placed into the workflow approval process

Therefore, if this content has already received some level of approval, you may want to submit it using the flag, which will skip any workflow -w
approval processes. For more information, see .Submitting AIP(s) while skipping any Collection Approval Workflows

1.

2.

3.

1.
2.

3.

Item Mappings may not be maintained when submitting an AIP hierachy

When an Item is mapped to one or more Collections, this mapping is recorded in the AIP using the mapped Collection's handle. Unfortunately, since the
submission mode (-s) assigns to all objects in the hierarchy, this may mean that the mapped Collection's handle will have changed (or even new handles
that a different Collection will be available at the original mapped Collection's handle). DSpace does not have a way to uniquely identify Collections other
than by handle, which means that item mappings are only able to be retained when the Collection handle is also retained.

If you encounter this issue, there are a few possible workarounds:

Use the restore/replace mode (-r) instead, as it will retain existing Collection Handles. Unfortunately though, this may not work if the content is
being moved from a Test DSpace to a Production DSpace, as these existing handles may not be valid.
OR, use the submission mode with the "--o ignoreHandle=false". This will also retain existing Collection Handles. Unfortunately though, this may
not work if the content is being moved from a Test DSpace to a Production DSpace, as these existing handles may not be valid.
OR, remove all existing Item Mappings and re-export AIPs (without Item Mappings). Then, import the hierarchy into the new DSpace instance
(again without Item Mappings). Finally, recreate the necessary Item Mappings using a different tool, e.g. the tool supports Batch Metadata Editing
bulk editing of Collection memberships/mappings.

Missing Groups or EPeople cannot be created when submitting an individual Community or Collection AIP

Please note, if you are using AIPs to move an entire Community or Collection from one DSpace to another, there is a known issue (see https://github.com
) that the new DSpace instance will be unable to (re-)create any DSpace Groups or EPeople which are referenced by a /DSpace/DSpace/issues/4477

Community or Collection AIP. The reason is that the Community or Collection AIP itself doesn't contain enough information to create those Groups or
EPeople (rather that info is stored in the SITE AIP, for usage during). Full Site Restores

However, there are two possible ways to get around this known issue:

EITHER, you can manually recreate all referenced Groups/EPeople in the new DSpace that you are submitting the Community or Collection AIP
into.
OR, you can temporarily disable the import of Group/EPeople information when submitting the Community or Collection AIP to the new DSpace.
This would mean that after you submit the AIP to the new DSpace, you'd have to manually go in and add in any special permissions (as needed).
To disable the import of Group/EPeople information, add these settings to your file, and re-run the submission of the AIP with these dspace.cfg
settings in place:

mets.dspaceAIP.ingest.crosswalk.METSRIGHTS = NIL
mets.dspaceAIP.ingest.crosswalk.DSPACE-ROLES = NIL

Don't forget to remove these settings after you import your Community or Collection AIP. Leaving them in place will mean that every time
you import an AIP, all of its Group/EPeople/Permissions would be ignored.

Submitting AIP(s) while skipping any Collection Approval Workflows

By default, the Submission mode () always respects existing Colleciton approval workflows. So, if a Collection has a workflow, then a newly submitted -s
Item will be placed into that workflow process (rather than immediately appearing in DSpace).

However, if you'd like to skip all workflow approval processes you can use the flag to do so. For example, the following command will skip any -w
Collection approval workflows and immediately add the Item to a Collection.

 [dspace]/bin/dspace packager -s -w -t AIP -e <eperson> -p <parent-handle> <file-path>

This flag may also be used when . For example, if you are migrating one or more Collections/Communities from one -w Submitting an AIP Hierarchy
DSpace to another, you may choose to submit those AIPs with the option enabled. This will ensure that, if a Collection has a workflow approval process -w
enabled, all its Items are available immediately rather than being all placed into the workflow approval process.

Restoring/Replacing using AIP(s)

Restoring is slightly different than just . When restoring, we make every attempt to restore the object as it (including its handle, submitting used to be
parent object, etc.). For more information about how the "Replace/Restore Mode" differs from the "Submit mode", see The difference between "Submit"

 above.and "Restore/Replace" modes

There are currently three restore modes:

Default Restore Mode () = Attempt to restore object (and optionally children). Rollback all changes if any object is found to already exist.-r
Restore, Keep Existing Mode () = Attempt to restore object (and optionally children). If an object is found to already exist, skip over it (and -r -k
all children objects), and continue to restore all other non-existing objects.
Force Replace Mode () = Restore an object (and optionally children) and any existing objects in DSpace. Therefore, if an object -r -f overwrite
is found to already exist in DSpace, its contents are replaced by the contents of the AIP. WARNING: This mode is potentially dangerous as it will
permanently destroy any object contents that do not currently exist in the AIP. You may want to perform a secondary backup, unless you are sure
you know what you are doing!

Default Restore Mode

By default, the restore mode (option) will throw an error and rollback all changes if any object is found to already exist. The user will be informed if -r
which object already exists within their DSpace installation.

https://wiki.lyrasis.org/display/DSDOC7x/Batch+Metadata+Editing
https://github.com/DSpace/DSpace/issues/4477
https://github.com/DSpace/DSpace/issues/4477

Restore a Single AIP: Use this 'packager' command template to restore a single object from an AIP (not including any child objects):

 [dspace]/bin/dspace packager -r -t AIP -e <eperson> <AIP-file-path>

Restore a Hierarchy of AIPs: Use this 'packager' command template to restore an object from an AIP along with all child objects (from their AIPs):

 [dspace]/bin/dspace packager -r -a -t AIP -e <eperson> <AIP-file-path>

For example:

 [dspace]/bin/dspace packager -r -a -t AIP -e admin@myu.edu aip4567.zip

Notice that unlike -s option (for submission/ingesting), the -r option does not require the Parent Object (-p option) to be specified if it can be determined
from the package itself.

In the above example, the package "aip4567.zip" is restored to the DSpace installation with the Handle provided within the package itself (and added as a
child of the parent object specified within the package itself). In addition, any child AIPs referenced by "aip4567.zip" are also recursively ingested (the -a
option specifies to also restore all child AIPs). They are also restored with the Handles & Parent Objects provided with their package. If any object is found
to already exist, all changes are rolled back (i.e. nothing is restored to DSpace)

Highly Recommended to Update Database Sequences after a Large Restore

In some cases, when you restore a large amount of content to your DSpace, the internal database counts (called "sequences") may get out of sync with
the Handles of the content you just restored. As a best practice, it is re-run the "update-sequences" script on your highly recommended to always
DSpace database after a larger scale restore. This database script should be run while DSpace is stopped (you may either stop Tomcat or just the DSpace
webapps). Simply run:PostgreSQL/Oracle must be running.
[dspace]/bin/dspace database update-sequences
More Information on using Default Restore Mode with Community/Collection AIPs

Using the Default Restore Mode without the option, will only restore the for that specific Community or Collection. No child objects -a metadata
will be restored.
Using the Default Restore Mode with the option, will only successfully restore a Community or Collection if that object along with any child -a
objects (Sub-Communities, Collections or Items) do not already exist. In other words, if any objects belonging to that Community or Collection
already exist in DSpace, the Default Restore Mode will report an error that those object(s) could not be recreated. If you encounter this situation,
you will need to perform the restore using either the the (depending on whether you want to Restore, Keep Existing Mode or Force Replace Mode
keep or replace those existing child objects).

Restore, Keep Existing Mode

When the "Keep Existing" flag (option) is specified, the restore will attempt to skip over any objects found to already exist. It will report to the user that -k
the object was found to exist (and was not modified or changed). It will then continue to restore all objects which do not already exist.

One special case to note: If a Collection or Community is found to already exist, its child objects are also skipped over. So, this mode will not auto-restore
items to an existing Collection.

Restore a Hierarchy of AIPs: Use this 'packager' command template to restore an object from an AIP along with all child objects (from their AIPs):

 [dspace]/bin/dspace packager -r -a -k -t AIP -e <eperson> <AIP-file-path>

For example:

 [dspace]/bin/dspace packager -r -a -k -t AIP -e admin@myu.edu aip4567.zip

In the above example, the package "aip4567.zip" is restored to the DSpace installation with the Handle provided within the package itself (and added as a
child of the parent object specified within the package itself). In addition, any child AIPs referenced by "aip4567.zip" are also recursively restored (the -a
option specifies to also restore all child AIPs). They are also restored with the Handles & Parent Objects provided with their package. If any object is found
to already exist, it is skipped over (child objects are also skipped). All non-existing objects are restored.

Force Replace Mode

When the "Force Replace" flag (option) is specified, the restore will any objects found to already exist in DSpace. In other words, existing -f overwrite
content is deleted and then replaced by the contents of the AIP(s).

1.

2.

a.

May also be useful in some specific restoration scenarios

This mode may also be used to restore missing objects which refer to existing objects. For example, if you are restoring a missing Collection which had
existing Items linked to it, you can use this mode to auto-restore the Collection and update those existing Items so that they again link back to the newly
restored Collection.
Potential for Data Loss

Because this mode actually existing content in DSpace, it is potentially dangerous and may result in data loss! You may wish to perform a destroys
secondary full backup (assetstore files & database) before attempting to replace any existing object(s) in DSpace.

Replace using a Single AIP: Use this 'packager' command template to replace a single object from an AIP (not including any child objects):

 [dspace]/bin/dspace packager -r -f -t AIP -e <eperson> <AIP-file-path>

Replace using a Hierarchy of AIPs: Use this 'packager' command template to replace an object from an AIP along with all child objects (from their AIPs):

 [dspace]/bin/dspace packager -r -a -f -t AIP -e <eperson> <AIP-file-path>

For example:

 [dspace]/bin/dspace packager -r -a -f -t AIP -e admin@myu.edu aip4567.zip

In the above example, the package "aip4567.zip" is restored to the DSpace installation with the Handle provided within the package itself (and added as a
child of the parent object specified within the package itself). In addition, any child AIPs referenced by "aip4567.zip" are also recursively ingested. They are
also restored with the Handles & Parent Objects provided with their package. If any object is found to already exist, its contents are replaced by the
contents of the appropriate AIP.

If any error occurs, the script attempts to rollback the entire replacement process.

Restoring Entire Site

In order to restore an entire Site from a set of AIPs, you must do the following:

Install a completely "fresh" version of DSpace by following the Installation instructions in the DSpace Manual
At this point, you should have a completely empty, but fully-functional DSpace installation. You will need to create an initial Administrator
user in order to perform this restore (as a full-restore can only be performed by a DSpace Administrator).

Once DSpace is installed, run the following command to restore all its contents from AIPs

 [dspace]/bin/dspace packager -r -a -f -t AIP -e <eperson> -i <site-handle-prefix>/0 -o
skipIfParentMissing=true /full/path/to/your/site-aip.zip

While the " " flag is optional, it is often necessary whenever you are performing a large hierarchical -o skipIfParentMissing=true
site restoration. Please see the section below.Additional Packager Options

Please note the following about the above restore command:

Notice that you are running this command in "Force Replace" mode (). This is necessary as your empty DSpace install will already include -r -f
a few default groups (Administrators and Anonymous) and your initial administrative user. You need to replace these groups in order to restore
your prior DSpace contents completely.
<eperson> should be replaced with the Email Address of the initial Administrator (who you created when you reinstalled DSpace).
<site-handle-prefix> should be replaced with your DSpace site's assigned Handle Prefix. This is equivalent to the setting handle.prefix
in your dspace.cfg
/full/path/to/your/site-aip.zip is the full path to the AIP file which represents your DSpace SITE. This file will be named whatever you
named it when you actually . All other AIPs are assumed to be referenced from this SITE AIP (in most cases, they should exported your entire site
be in the same directory as that SITE AIP).

Highly Recommended to Update Database Sequences after a Large Restore

In some cases, when you restore a large amount of content to your DSpace, the internal database counts (called "sequences") may get out of sync with
the Handles of the content you just restored. As a best practice, it is highly recommended to always re-run the "update-sequences" script on your
DSpace database after a larger scale restore. This database script should be run while DSpace is stopped (you may either stop Tomcat or just the DSpace
webapps). PostgreSQL/Oracle must be running. Simply run:
 [dspace]/bin/dspace database update-sequences

Cleaning up from a failed import

#

Sometimes your packager import of AIP packages can fail, due to lack of memory (see below for advice on better performance, please use JAVA_OPTS to
set your memory higher than the default). If that happens, DSpace by design will leave the bitstreams it import sucessfully, but they will be oprphaned, did
and will just occupy space in your assetstore. The standard DSpace cleanup cron job will clean up these orphaned bitstreams, however, you can also
clean them up manually by running the following command:

Clean up after a failed import

[dspace]/bin/dspace cleanup -v

Performance considerations

When importing large structures like the whole site or a large collection/community, keep in mind that this can require a lot of memory, more than the
default amount of heap allocated to the command-line launcher (256 Mb:). This memory must be JAVA_OPTS="-Xmx256m -Dfile.encoding=UTF-8"
allocated in addition to the normal amount of memory allocated to Tomcat. For example, a site of 2500 fulltext items (2 Gb altogether) requires 5 Gb of
maximum heap space and takes around 1 hour, including import and indexing.

You can raise the limit for a single run of the packager command by specifying memory options in the JAVA_OPTS environment variable, e.g.:

JAVA_OPTS="-Xmx4096m -Dfile.encoding=UTF-8" /dspace/bin/dspace packager -u -r -a -f -t AIP -e dspace@example.
com -i 123456789/0 sitewide-aip.zip

If the importer runs out of heap memory, it will crash either with "java.lang.OutOfMemoryError: GC overhead limit exceeded", which can be suppressed by
adding "-XX:-UseGCOverheadLimit" to JAVA_OPTS, or with " ". You can increase the allocated heap java.lang.OutOfMemoryError: Java heap space
memory and try again, but keep in mind that although no changes were made in the database, the unsuccessfully imported files are still left in the
assetstore (see).https://github.com/DSpace/DSpace/issues/5593

Disable User Interaction for Cron

If you wish to run any of the following commands from a cron job (or similar), then you may wish to using the (disable all user interaction -u --no-user-
) flag. For example, supposing you wanted to perform a full Site Backup (see above) via a cronjob, you could simply interaction Exporting Entire Site

run that command passing it the "-u" flage like this:

Perform a full site backup to AIPs(with user interaction disabled) every Sunday at 1:00AM
NOTE: Make sure to replace "123456789" with your actual Handle Prefix, and "admin@myu.edu" with your
Administrator account email.
0 1 * * * [dspace]/bin/dspace packager -u -d -a -t AIP -e admin@myu.edu -i 123456789/0 [full-path-to-backup-
folder]/sitewide-aip.zip

Command Line Reference

The following flags are valid to pass to the command:[dspace]/bin/dspace packager

Flag Ingest
or
Export

Description / Usage

-a (--all) both
ingest
and
export

For Ingest: recursively ingest all child AIPs (referenced from this AIP).

For Export: recursively export all child objects (referenced from this parent object)

-d (--
disseminat
e)

export-
only

This flag simply triggers the export of AIPs from the system. See Exporting AIPs

-e (–
eperson)
[email-
address]

ingest-
only

The email address of the EPerson who is ingesting the AIPs. Oftentimes this should be an Administrative account.

-f (--
force-
replace)

ingest-
only

Ingest the AIPs in " " (must be specified in conjunction with flag), where existing objects will be Force Replace Mode -r
replaced by the contents of the AIP.

https://github.com/DSpace/DSpace/issues/5593

-h (--
help)

both
ingest
and
export

Return help information. You should specify with for additional package specific help information-t

-i (--
identifier
) [handle]

both
ingest
and
export

For Ingest: Only valid in " ". In that mode this is the identifier of the object to replace.Force Replace Mode

For Export: The identifier of the object to export to an AIP

-k (--
keep-
existing)

ingest-
only

Specifies to use " " during ingest . In this mode, Restore, Keep Existing Mode (must be specified in conjunction with -r flag)
existing objects in DSpace will NOT be replaced by their AIPs, but missing objects will be restored from AIPs.

-o (--
option)
[setting]=
[value]

both
ingest
and
export

This flag is used to pass to the Packager command. Each type of packager may define its Additional Packager Options
own custom Additional Options. For AIPs, the valid options are documented in the section Additional Packager Options
below. This is repeatable (e.g.)-o [setting1]=[value] -o [setting2]=value

-p (--
parent)
[handle]

ingest
only

Handle(s) of the parent Community or Collection to into which an AIP should be ingested. This may be repeatable.

-r (--
restore)

ingest
only

Specifies that this ingest is either " " (when standalone), " " (when used with Restore Mode Restore, Keep Existing Mode -k
flag) or " " (when used with flag)Force Replace Mode -f

-s (--
submit)

ingest
only

Specifies that this ingest is in " " where an AIP is treated as a object and assigned a new HandleSubmit Mode new
/Identifier, etc.

-t (--
type)
[package-
type]

both
ingest
and
export

Specifies the type of package which is being ingested or exported. This controls which Ingester or Disseminator class is
called. For AIPs, this is set to " "always -t AIP

-u (--no-
user-
interactio
n)

both
ingest
and
export

Skips over all user interaction (e.g. question prompts). This flag can be used when running the packager from a script or
cron job to bypass all user interaction. See also Disable User Interaction for Cron

Additional Packager Options

In additional to the various "modes" settings described under " " above, the AIP Packager supports the following packager options. These Running the Code
options allow you to better tweak how your AIPs are processed (especially during ingests/restores/replaces).

Option Ingest
or
Export

Default
Value

Description

createM
etadata
Fields=
[value]

ingest-
only

true Tells the AIP ingester to automatically create any metadata fields which are found to be from the DSpace Metadata missing
Registry. When 'true', this means as each AIP is ingested, new fields may be added to the DSpace Metadata Registry if they don't
already exist. When 'false', an AIP ingest will fail if it encounters a metadata field that doesn't exist in the DSpace Metadata
Registry. (NOTE: This will create missing DSpace Metadata . If a schema is found to be missing, the ingest will not Schemas
always fail.)

filterB
undles=
[value]

export-
only

defaults to
exporting
all Bundles

This option can be used to limit the Bundles which are exported to AIPs for each DSpace Item. By default, all file Bundles will be
exported into Item AIPs. You could use this option to limit the size of AIPs by only exporting certain Bundles. WARNING: any

 This option can be run in two ways:bundles not included in AIPs will obviously be unable to be restored.

Exclude Bundles: By default, you can provide a comma-separated list of bundles to be excluded from AIPs (e.g. "TEXT,
THUMBNAIL")
Include Bundles: If you prepend the list with the "+" symbol, then the list specifies the bundles to be in AIPs (e.g. included
"+ORIGINAL,LICENSE" would only include those two bundles). This second option is identical to using "includeBundles"
option described below.

(NOTE: If you choose to no longer export LICENSE or CC_LICENSE bundles, you will also need to disable the License
Dissemination Crosswalks in the configuration for the changes to take affect)aip.disseminate.rightsMD

ignoreH
andle=
[value]

ingest-
only

Restore
/Replace
Mode
defaults to
'false',
Submit
Mode
defaults to
'true'

If 'true', the AIP ingester will ignore any Handle specified in the AIP itself, and instead create a new Handle during the ingest
process (this is the default when running in Submit mode, using the flag). If 'false', the AIP ingester attempts to restore the -s
Handles specified in the AIP (this is the default when running in Restore/replace mode, using the flag).-r

ignoreP
arent=
[value]

ingest-
only

Restore
/Replace
Mode
defaults to
'false',
Submit
Mode
defaults to
'true'

If 'true', the AIP ingester will ignore any Parent object specified in the AIP itself, and instead ingest under a new Parent object (this
is the default when running in Submit mode, using the flag). The new Parent object must be specified via the flag (run -s -p dspac

 for more help). If 'false', the AIP ingester attempts to restore the object directly under its old Parent (this is the e packager -h
default when running in Restore/replace mode, using the flag).-r

include
Bundles
=
[value]

export-
only

defaults to
"all"

This option can be used to limit the Bundles which are exported to AIPs for each DSpace Item. By default, all file Bundles will be
exported into Item AIPs. You could use this option to limit the size of AIPs by only exporting certain Bundles. WARNING: any

 This option expects a comma separated list of bundle names bundles not included in AIPs will obviously be unable to be restored.
(e.g. "ORIGINAL,LICENSE,CC_LICENSE,METADATA"), or "all" if all bundles should be included.

(See "filterBundles" option above if you wish to exclude particular Bundles. However, this "includeBundles" option be used cannot
at the same time as "filterBundles".)

(NOTE: If you choose to no longer export LICENSE or CC_LICENSE bundles, you will also need to disable the License
Dissemination Crosswalks in the configuration for the changes to take affect)aip.disseminate.rightsMD

manifes
tOnly=
[value]

both
ingest
and
export

false If 'true', the AIP Disseminator will only import/export a METS Manifest XML file (i.e. result will be an unzipped 'mets.xml' file),
instead of a full AIP. This METS Manifest contains URI references to all content files, but does not contain any content files. This
option is experimental and is meant for debugging purposes only. It should never be set to 'true' if you want to be able to
restore content files. Again, please note that when you use this option, the final result will be an XML file, NOT the normal ZIP-
based AIP format.

passwor
ds=
[value]

export-
only

false If 'true' (and the 'DSPACE-ROLES' crosswalk is enabled, see), then the AIP #AIP Metadata Dissemination Configurations
Disseminator will export user password hashes (i.e. encrypted passwords) into Site AIP's METS Manifest. This would allow you to
restore user's passwords from Site AIP. If 'false', then user password hashes are not stored in Site AIP, and passwords cannot be
restored at a later time.

skipIfP
arentMi
ssing=
[value]

ingest-
only

false If 'true', ingestion will skip over any "Could not find a parent DSpaceObject" errors that are encountered during the ingestion
process (Note: those errors will still be logged as "warning" messages in your DSpace log file). If you are performing a full site
restore (or a restore of a larger Community/Collection hierarchy), you may encounter these errors if you have a larger number of
Item mappings between Collections (i.e. Items which are mapped into several collections at once). When you are performing a
recursive ingest, skipping these errors should not cause any problems. Once the missing parent object is ingested it will
automatically restore the Item mapping that caused the error. For more information on this "Could not find a parent DSpaceObject"
error see .Common Issues or Error Messages

unautho
rized=
[value]

export-
only

unspecified If 'skip', the AIP Disseminator will skip over any unauthorized Bundle or Bitstream encountered (i.e. it will not be added to the AIP).
If 'zero', the AIP Disseminator will add a Zero-length "placeholder" file to the AIP when it encounters an unauthorized Bitstream. If
unspecified (the default value), the AIP Disseminator will throw an error if an unauthorized Bundle or Bitstream is encountered.

updated
After=
[value]

export-
only

unspecified This option works as a basic form of "incremental backup". This option requires that an is specified. When specified, ISO-8601 date
the AIP Disseminator will only export Item AIPs which have a last-modified date the specified ISO-8601 date. This option has after
no affect on the export of Site, Community or Collection AIPs as DSpace does not record a last-modified date for Sites,
Communities or Collections. For example, when this option is specified during a full-site export, the AIP Disseminator will export
the Site AIP, all Community AIPs, all Collection AIPs, and only Item AIPs modified after that date and time.

validate
=
[value]

both
ingest
and
export

Export
defaults to
'true',
Ingest
defaults to
'false'

If 'true', every METS file in AIP will be validated before ingesting or exporting. By default, DSpace will validate everything on export,
but will skip validation during import. Validation on export will ensure that all exported AIPs properly conform to the METS profile
(and will throw errors if any do not). Validation on import will ensure every METS file in every AIP is first validated before importing
into DSpace (this will cause the ingestion processing to take longer, but tips on speeding it up can be found in the "AIP

" section below). Configurations To Improve Ingestion Speed while Validating DSpace recommends minimally validating AIPs on
export. Ideally, you should validate both on export and import, but import validation is disabled by default in order to increase the
speed of AIP restores.

How to use additional options

These options can be passed in two main ways:

From the Command Line

From the command-line, you can add the option to your command by using the or parameter.-o --option

 [dspace]/bin/dspace packager -r -a -t AIP -o [option1]=[value] -o [option2]=[value] -e admin@myu.edu aip4567.
zip

For example:

 [dspace]/bin/dspace packager -r -a -t AIP -o ignoreParent=false -o createMetadataFields=false -e admin@myu.edu
aip4567.zip

Via the Java API call

If you are programmatically calling the from your own custom script, you can specify these org.dspace.content.packager.DSpaceAIPIngester
options via the class.org.dspace.content.packager.PackageParameters

As a basic example:

http://en.wikipedia.org/wiki/ISO_8601

PackageParameters params = new PackageParameters;
params.addProperty("createMetadataFields", "false");
params.addProperty("ignoreParent", "true");

Configuration in 'dspace.cfg'

The following new configurations relate to AIPs:

AIP Metadata Dissemination Configurations

The following configurations allow you to specify what metadata is stored within each METS-based AIP. In 'dspace.cfg', the general format for each of
these settings is:

aip.disseminate.<setting> = <mdType>:<DSpace-crosswalk-name> [, ...]
<setting> is the setting name (see below for the full list of valid settings)
<mdType> is optional. It allows you to specify the value of the @MDTYPE or @OTHERMDTYPE attribute in the corresponding METS
element.
<DSpace-crosswalk-name> is required. It specifies the name of the DSpace Crosswalk which should be used to generate this metadata.
Zero or more may be specified for each setting<label-for-METS>:<DSpace-crosswalk-name>

AIP Metadata Recommendations

It is recommended to use the default settings when generating AIPs. DSpace can only restore information that is included within an AIP. minimally
Therefore, if you choose to no longer include some information in an AIP, DSpace will no longer be able to restore that information from an AIP backup

The default settings in 'dspace.cfg' are:

aip.disseminate.techMD - Lists the DSpace Crosswalks (by name) which should be called to populate the section of the METS <techMD>
file within the AIP (Default:)PREMIS, DSPACE-ROLES

The crosswalk generates PREMIS metadata for the object specified by the AIPPREMIS
The crosswalk exports DSpace Group / EPerson information into AIPs in a DSpace-specific XML format. Using this DSPACE-ROLES
crosswalk means that AIPs can be used to recreated Groups & People within the system. (NOTE: The crosswalk should DSPACE-ROLES
be used alongside the crosswalk if you also wish to restore the that Groups/People have within the System. METSRights permissions
See below for more info on the crosswalk.)METSRights

aip.disseminate.sourceMD - Lists the DSpace Crosswalks (by name) which should be called to populate the section of the <sourceMD>
METS file within the AIP (Default:)AIP-TECHMD

The AIP-TECHMD Crosswalk generates technical metadata (in DIM format) for the object specified by the AIP
aip.disseminate.digiprovMD - Lists the DSpace Crosswalks (by name) which should be called to populate the section of <digiprovMD>
the METS file within the AIP (Default:)None
aip.disseminate.rightsMD - Lists the DSpace Crosswalks (by name) which should be called to populate the section of the <rightsMD>
METS file within the AIP (Default: DSpaceDepositLicense:DSPACE_DEPLICENSE, CreativeCommonsRDF:DSPACE_CCRDF,

)CreativeCommonsText:DSPACE_CCTEXT, METSRights
The crosswalk ensures the DSpace Deposit License is referenced/stored in AIPDSPACE_DEPLICENSE
The crosswalk ensures any Creative Commons RDF Licenses are reference/stored in AIPDSPACE_CCRDF
The crosswalk ensures any Creative Commons Textual Licenses are referenced/stored in AIPDSPACE_CCTEXT
The crosswalk ensures that Permissions/Rights on DSpace Objects (Communities, Collections, Items or Bitstreams) are METSRights
referenced/stored in AIP. Using this crosswalk means that AIPs can be used to restore permissions that a particular Group or Person
had on a DSpace Object. (NOTE: The crosswalk should always be used in conjunction with the crosswalk METSRights DSPACE-ROLES
(see above) or a similar crosswalk. The crosswalk can only restore permissions, and cannot re-create Groups or EPeople METSRights
in the system. The can actually re-create the Groups or EPeople as needed.)DSPACE-ROLES

aip.disseminate.dmd - Lists the DSpace Crosswalks (by name) which should be called to populate the section of the METS file <dmdSec>
within the AIP (Default: MODS, DIM)

The MODS crosswalk translates the DSpace descriptive metadata (for this object) into MODS. As MODS is a relatively "standard"
metadata schema, it may be useful to include a copy of MODS metadata in your AIPs if you should ever want to import them into
another (non-DSpace) system.
The DIM crosswalk just translates the DSpace internal descriptive metadata into an XML format. This XML format is proprietary to
DSpace, but stores the metadata in a format similar to Qualified Dublin Core.

AIP Ingestion Metadata Crosswalk Configurations

The following configurations allow you to specify what DSpace Crosswalks are used during the ingestion/restoration of AIPs. These configurations also
allow you to ignore areas of the METS file (in the AIP) if you do not want that area to be restored.

In , the general format for each of these settings is:dspace.cfg

mets.dspaceAIP.ingest.crosswalk.<mdType> = <DSpace-crosswalk-name>
<mdType> is the type of metadata as specified in the METS file. This corresponds to the value of the @MDTYPE attribute (of that
metadata section in the METS). When the @MDTYPE attribute is "OTHER", then the <mdType> corresponds to the @OTHERMDTYPE
attribute value.
<DSpace-crosswalk-name> specifies the name of the DSpace Crosswalk which should be used to ingest this metadata into DSpace.
You can specify the "NULLSTREAM" crosswalk if you specifically want this metadata to be ignored (and skipped over during ingestion).

By default, the settings in are:dspace.cfg

mets.dspaceAIP.ingest.crosswalk.DSpaceDepositLicense = NULLSTREAM
mets.dspaceAIP.ingest.crosswalk.CreativeCommonsRDF = NULLSTREAM
mets.dspaceAIP.ingest.crosswalk.CreativeCommonsText = NULLSTREAM

The above settings tell the ingester to any metadata sections which reference DSpace Deposit Licenses or Creative Commons Licenses. These ignore
metadata sections can be safely ignored as long as the "LICENSE" and "CC_LICENSE" bundles are included in AIPs (which is the default setting). As the
Licenses are included in those Bundles, they will already be restored when restoring the bundle contents.

More Info on Default Crosswalks used

If unspecified in the above settings, the AIP ingester will automatically use the Crosswalk which is named the same as the @MDTYPE or
@OTHERMDTYPE attribute for the metadata section. For example, a metadata section with an @MDTYPE="PREMIS" will be processed by the DSpace
Crosswalk named "PREMIS".

AIP Ingestion EPerson Configurations

The following setting determines whether the AIP Ingester should create an EPerson (if necessary) when attempting to restore or ingest an Item whose
Submitter cannot be located in the system. By default it is set to "false", as for AIPs the creation of EPeople (and Groups) is generally handled by the DSPA

 crosswalk (see for more info on crosswalk.)CE-ROLES #AIP Metadata Dissemination Configurations DSPACE-ROLES

mets.dspaceAIP.ingest.createSubmitter = false

AIP Configurations To Improve Ingestion Speed while Validating

It is recommended to validate all AIPs on ingestion (when possible). But validation can be extremely slow, as each validation request first must download
all referenced Schema documents from various locations on the web (sometimes as many as 10 schemas may be necessary to download in order to
validate a single METS file). To make matters worse, the same schema will be re-downloaded each time it is used (i.e. it is not cached locally). So, if you
are validating just 20 METS files which each reference 10 schemas, that results in 200 download requests.

In order to perform validations in a speedy fashion, you can pull down a local copy of schemas. Validation will then use this local cache, which can all
sometimes increase the speed up to 10 x.

To use a local cache of XML schemas when validating, use the following settings in 'dspace.cfg'. The general format is:

mets.xsd.<abbreviation> = <namespace> <local-file-name>
<abbreviation> is a unique abbreviation (of your choice) for this schema
<namespace> is the Schema namespace
<local-file-name> the full name of the cached schema file (which should reside in your directory, [dspace]/config/schemas/
by default this directory does not exist – you will need to create it)

The default settings are all commented out. But, they provide a full listing of all schemas currently used during validation of AIPs. In order to utilize them,
uncomment the settings, download the appropriate schema file, and save it to your directory (by default this directory [dspace]/config/schemas/
does not exist – you will need to create it) using the specified file name:

#mets.xsd.mets = http://www.loc.gov/METS/ mets.xsd
#mets.xsd.xlink = http://www.w3.org/1999/xlink xlink.xsd
#mets.xsd.mods = http://www.loc.gov/mods/v3 mods.xsd
#mets.xsd.xml = http://www.w3.org/XML/1998/namespace xml.xsd
#mets.xsd.dc = http://purl.org/dc/elements/1.1/ dc.xsd
#mets.xsd.dcterms = http://purl.org/dc/terms/ dcterms.xsd
#mets.xsd.premis = http://www.loc.gov/standards/premis PREMIS.xsd
#mets.xsd.premisObject = http://www.loc.gov/standards/premis PREMIS-Object.xsd
#mets.xsd.premisEvent = http://www.loc.gov/standards/premis PREMIS-Event.xsd
#mets.xsd.premisAgent = http://www.loc.gov/standards/premis PREMIS-Agent.xsd
#mets.xsd.premisRights = http://www.loc.gov/standards/premis PREMIS-Rights.xsd

Common Issues or Error Messages

The below table lists common fixes to issues you may encounter when backing up or restoring objects using AIP Backup and Restore.

Issue /
Error
Message

How to Fix this Problem

Ingest
/Restore
Error:
"Group
Administrator
already
exists"

If you receive this problem, you are likely attempting to , but are not running the command in Force Replace Mode Restore an Entire Site
(). Please see the section on for more details on the flags you should be using.-r -f Restoring an Entire Site

Ingest
/Restore
Error:
"Unknown
Metadata
Schema
encountered
(mycustomsc
hema)"

If you receive this problem, one or more of your Items is using a custom metadata schema which DSpace is currently not aware of (in
the example, the schema is named "mycustomschema"). Because DSpace AIPs do not contain enough details to recreate the missing
Metadata Schema, you must create it manually via the DSpace Admin UI. Please note that you only need to create the Schema.
You do not need to manually create all the fields belonging to that schema, as DSpace will do that for you as it restores each

 Once the schema is created in DSpace, re-run your restore command. DSpace will automatically re-create all fields belonging to AIP.
that custom metadata schema as it restores each Item that uses that schema.

Ingest Error:
"Could not
find a parent
DSpaceObje
ct
referenced
as 'xxx/xxx'"

When you encounter this error message it means that an object could not be ingested/restored as it belongs to a object which parent
doesn't currently exist in your DSpace instance. During a full restore process, this error can be skipped over and treated as a warning by
specifying the ' ' option (see). If you have a larger number of Items -o skipIfParentMissing=true Additional Packager Options
which are mapped to multiple Collections, the AIP Ingester will sometimes attempt to restore an item mapping before the Collection

 has been restored (thus throwing this error). Luckily, this is not anything to be concerned about. As soon as the Collection is itself
restored, the Item Mapping which caused the error will also be automatically restored. So, if you encounter this error during a full
restore, it is safe to bypass this error message using the ' ' option. All your Item Mappings should -o skipIfParentMissing=true
still be restored correctly.

Submit
Error:
PSQLExcepti
on: ERROR:
duplicate
key value
violates
unique
constraint
"handle_han
dle_key"

This error means that while submitting one or more AIPs, DSpace encountered a Handle conflict. This is a general error the may occur
in DSpace if your Handle sequence has somehow become out-of-date. However, it's easy to fix. Just run the [dspace]/bin/dspace
database update-sequences

	AIP Backup and Restore

