
PledgePolicyPrototype
Contents

1 Policy Storage Prototype
1.1 Introduction

1.1.1 What do we mean by Policy?
1.1.2 A Policy Repository

1.2 Implementation Details
1.2.1 Binding of Policies to DSpace Objects

1.3 Installation
1.3.1 Prerequisites
1.3.2 Download and Install

1.4 Usage
1.4.1 Adding Policies to Objects
1.4.2 Examining Policies
1.4.3 Make an AIP that includes Policies

1.5 Future Work
1.5.1 Next Steps

Policy Storage Prototype
This page describes the that was created forPolicy Repository
the , an add-on-stylePLEDGE Project
extension to DSpace 1.5.

Introduction

What do we mean by Policy?

In this context, refers to the general definition of thePolicy
word rather than the specific meaning it has acquired in the authorization
area of the DSpace data model (e.g. around the ResourcePolicy
and PolicySet classes).
On this page, a is typically either a rule describing (or prescribing) thepolicy
interactions of actions that take place within the archive, or a constraint
determining when and by whom an action may be taken.

For example, a policy could demand that every Item being submitted include
an approved deposit license. Another policy might demand that every
Bitstream in the asset store be checked for content integrity
(i.e. checksum recomputed and compared with the checksum on record) at
least once in every six moths.

A Policy Repository

Since one of the goals of the PLEDGE project was to develop a
machine-readable encoding of policies, we needed a place to put them.
Policies may be associated with all types of data model objects: Items,
Collections, Communities, etc. It would have required database changes
to manage this within the existing object model.

However, the data we have to store is in RDF, and
 includes anHistory System Prototype

RDF triple-store that can associate RDF statements with instances of DSpace
objects, all outside of the DSpace data model.
The

RDFRepository

class from the History system
is easily subclassed to serve as a policy store as well.

Implementation Details

http://pledge.mit.edu/
https://wiki.lyrasis.org/display/DSArchive/HistorySystemPrototype

1.
2.
3.

1.
2.

Policies are written in the ,Rei language
which is based on RDF and OWL. A policy is thus a collection of
RDF statements. See the Rei examples in these

.samples of policy expressions

Binding of Policies to DSpace Objects

The

PolicyRepository

class lets you store RDF statements
keyed to a DSpace object, so they can be retrieved later in the context
of the object. An object thus accumulates policies bound to it.

The policy information model assumes that the policies of an object
also apply (when relevant) to objects below it in the "ownership" hierarchy.
For example, a policy dictating replication terms at the Community level
would also apply to each Collection and Subcommunity under that Community,
and to the Items, etc, belonging to them.

In practice, this "inheritance" behavior would be implemented by a policy
enforcement engine, but that has not even been designed yet. It is sufficient
for the policy repository to retrieve the policies related to one DSpace
object; a policy engine or other application can use the data model API
to find other related objects (e.g. ancestors) and retrieve their policies.

As an example, the class

PolicyStackStreamDisseminationCrosswalk

exports all of the policies belonging to an object to its "stack"and
of owner/ancestors – its owner, its owner's owner, etc. on up to the Site.
This was done so that possibly-relevant policies can be put intoall
a Dissemination Information Package (DIP) which is sent to a policy-aware
storage repository such as .the SDSC's iRODS

Installation

Prerequisites

Latest DSpace 1.5 development source
Install , which requires, in order:History System Prototype

Install the Event System prototype
Install the AIP prototype patch
Install History System Prototype

Download and Install

Download and <tt>unzip</tt> it in your DSpace install (source) directory.Policy-new-files.zip
Download and apply to <tt> /config/dspace.cfg</tt> with the <tt>patch</tt> utility. Note that you must update Policy-dspace_cfg_diff.mht dspace
the config file used by the running DSpace instance.

1. To install, rebuild and install <tt>dspace.jar</tt> with the command: (There is no need to rebuild the WARs since the UIs never call the policy repository.)

ant install_code

2. Also, be sure the configuration changes are installed in the DSpace
configuration file: <tt> /config/dspace.cfg</tt> .dspace

3. Finally, create the directory mentioned in the configuration
as the value of <tt>policy.dir</tt>, e.g. <tt> /policy</tt> .dspace
Be sure it is writable by the user who runs DSpace.

Usage

These examples assume the following contents in the archive, so substitute
equivalent objects in your archive:

http://rei.umbc.edu/
http://pledge.mit.edu/PolicyExpressions
http://irods.sdsc.edu/
https://wiki.lyrasis.org/display/DSArchive/HistorySystemPrototype
https://wiki.lyrasis.org/display/DSArchive/EventSystemPrototype
https://wiki.lyrasis.org/display/DSArchive/AipPrototype
https://wiki.lyrasis.org/display/DSArchive/HistorySystemPrototype
https://wiki.lyrasis.org/download/attachments/19006409/Policy-new-files.zip?version=1&modificationDate=1290142064862&api=v2
https://wiki.lyrasis.org/download/attachments/19006409/Policy-dspace_cfg_diff.mht?version=1&modificationDate=1290142092383&api=v2
#
#
#

<tt>123456789/8</tt> - an Item
<tt>123456789/7</tt> - a Collection
<tt>123456789/3</tt> - a Community
<tt>123456789/0</tt> - the Site

Run the <tt>PolicyRepository</tt> command-line application with <tt>--help</tt>
to learn about all of its options. It is the same as the
<tt>HistoryRepository</tt> application in the .History System Prototype

dsrun edu.mit.pledge.PolicyRepository --help

Adding Policies to Objects

Add Deposit Agreement policy to Item 123456789/8
<tt>dsrun edu.mit.pledge.PolicyRepository -s 123456789/8 </tt>Policy-cu0006rei.xml
Add Replication policy to Collection 123456789/7
<tt>dsrun edu.mit.pledge.PolicyRepository -s 123456789/7 Policy-tu0011rei.xml
Add Public Availability policy to Community 123456789/3
<tt>dsrun edu.mit.pledge.PolicyRepository -s 123456789/3 Policy-cu0008rei.xml
Add required-metadata policy to the Site (123456789/0)
<tt>dsrun edu.mit.pledge.PolicyRepository -s 123456789/0 Policy-pp0004rei.xml

Examining Policies

This command will "disseminate" all of the policies associated with
an object identified by Handle, in this case the Site:

dsrun edu.mit.pledge.PolicyRepository -d 123456789/0

Add the <tt>-f</tt> option to change the output format to e.g. N3:

dsrun edu.mit.pledge.PolicyRepository -d 123456789/0-f n3

Make an AIP that includes Policies

Be sure your DSpace Configuration includes a line like this:

aip.disseminate.techMD = PREMIS, AllPolicies:POLICY_STACK, ObjectPolicies:POLICY

The following command creates an AIP of the Item 123456789/8

org.dspace.app.packager.Packager -d -t AIP -i 123456789/8 -e policy-aip.zipADMIN-USER

You can download the sample AIP here Policy-aip.zip

Note that the <tt>mets.xml</tt> manifest includes the element:

<techMD ID="techMD_7">
<mdRef LOCTYPE="URL" xlink:type="simple" xlink:href="metadata_69"
MDTYPE="OTHER" OTHERMDTYPE="AllPolicies" MIMETYPE="text/xml"/>
</techMD>

This identifies <tt>metadata_69</tt> as the whole "stack" of policies that
applies to the Item. Another file in the AIP, <tt>metadata_67</tt>,
contains just the policies that are actually bound to the Item itself.

Future Work

This is only an experimental prototype. The
<tt>PolicyRepository</tt> implementation is crude, but it is
adequate to get policy metadata in the archive and into AIPs for
experimenting with other, policy-aware, repositories.

Next Steps

Deploy and use this prototype to test it.
Consider whether there is a need to modify a policy's statements as they are added to the repository, e.g. inserting the identifiers of specific
objects and concrete values to replace variables or placeholders in the RDF.

https://wiki.lyrasis.org/display/DSArchive/HistorySystemPrototype
https://wiki.lyrasis.org/download/attachments/19006409/Policy-cu0006rei.xml?version=3&modificationDate=1290142166427&api=v2
https://wiki.lyrasis.org/download/attachments/19006409/Policy-tu0011rei.xml?version=2&modificationDate=1290142191337&api=v2
https://wiki.lyrasis.org/download/attachments/19006409/Policy-cu0008rei.xml?version=1&modificationDate=1289954715707&api=v2
https://wiki.lyrasis.org/download/attachments/19006409/Policy-pp0004rei.xml?version=2&modificationDate=1290142228745&api=v2
https://wiki.lyrasis.org/download/attachments/19006409/Policy-aip.zip?version=2&modificationDate=1290142301479&api=v2

Editing or removing policies is not implemented. The History System's RDF repository is only concerned with adding statements, and has no
mechanism to group the statements belonging to a policy (i.e. a subset of the statements bound to an object) so they can be removed or replaced
as a group. (Perhaps use RDF reification to implement grouping.)

</html>

	PledgePolicyPrototype

