
Writing a controller for a secured page

Concepts
A secured page
How is a page secured?
Who may view a secured page?
What happens if the user is not authorized?
What happens when a user logs out?

Requested Actions
The most common case

The steps
Decide on a permission and requested action
Write the controller to require the requested action
Grant the permission to the desired users.

A more complex example

Concepts

A secured page

A secured page in VIVO is one that can not be viewed by the general public. If an unauthorized user attempts to view a secured page, even by entering 
the URL directly into a browser, the attempt should fail.

How is a page secured?

To secure a page, the controller code requests authorization to perform a particular  . If the user is not authorized to perform that RequestedAction
action, the controller rejects the request. For example, the   checks to see whether the user is authorized for the RevisionInfoController SEE_REVISI

. If the user is not authorized for that action, they will not see the Revision Info page.ON_INFO.ACTION

Other controllers use more complicated tests to determine whether a user is authorized. For example, the   permits ManageProxiesAjaxController
access by any user who is authorized for either the   or the  .MANAGE_PROXIES.ACTION MANAGE_OWN_PROXIES.ACTION

Who may view a secured page?

A secured page can never be viewed by someone who is not logged in to VIVO. Since we don't know who the user is, we can't know whether they are 
authorized to view the page.

If a user is logged in, there is a list of s associated with their account. The  s are pieces of information about that user, including Identifier Identifier
their account URI, the URI of their profile page, their assigned role, any proxy permissions, and more. When a secured page is requested, these Identifi

s are passed to the list of active   objects. Each   applies its own logic to determine whether the user may view the secured page.er Policy Policy

What happens if the user is not authorized?

If the user is logged in, but does not have authorization to view the secured page, the browser will be redirected to the VIVO home page. A 
message at the top of the page will state that the user is not authorized to view the page he requested.
If the user is not logged in, the browser will be redirected to the VIVO login page. When the user logs in, the browser will be redirected to the 
secured page, and the test is repeated.

If the user is authorized, the secured page will be displayed.
If the user is not authorized, the home page will be displayed, as previously described.

What happens when a user logs out?

If a user is viewing an unsecured page, and clicks on the "Log out" link, the page will be refreshed. For some pages, particularly profile pages, the contents 
of the page may have changed. Many people appreciate this feature when editing their own profiles. Log in, and you can edit. Log out, and you can see 
what your page looks like to the public.

If a user is viewing a secured page and clicks on the "Log out" link, the browser will be redirected to the VIVO home page.

Requested Actions
Requested actions are usually quite simple. For example, the   requests permission to display the revision info page. The RevisionInfoController
user either has that permission or they do not.



On the other hand, Requested actions can be quite detailed. For example, the   requests permission to add or modify a ImageUploadController
particular triple in the data model. If the user is logged in as root or admin, they have permission. However, if the user is logged in as a self-editor, a 
complex algorithm is performed to determine whether they are authorized to add or modify the triple in question. They may be authorized because the 
subject of the triple is the URI of their own profile page, or because they have been given proxy rights to edit the page in question, or several other 
possibilities.

The most common case
The most common scenario for a secured page is when a simple, unparameterized action is requested, and the user either

has a permission that provides authorization, or
does not have that permission and is not authorized.

The steps

Decide on a permission and requested action

Simple permissions like this are usually implemented by the   class, which also provides an implementation for the corresponding SimplePermission Req
.uestedAction

In some cases, it makes sense to re-use an existing instance of  . So for example, SimplePermission SimplePermission.
 authorizes the user for any and all of the RDF ingest/export pages. In other cases, it makes more sense to create USE_ADVANCED_DATA_TOOLS_PAGES

a new instance. So   stands alone with only one usage.SimplePermission.MANAGE_PROXIES

For this example, we will look at  , which has only one usage.SimplePermission.SEE_REVISION_INFO

Write the controller to require the requested action

If the controller extends  , override the   method, like this:FreemarkerHttpServlet requiredActions()

@Override
protected Actions requiredActions(VitroRequest vreq) {
    return SimplePermission.SEE_REVISION_INFO.ACTIONS;
}

If the controller exends   (but not  ), add a test to the   and   methods, like this:VitroHttpServlet FreemarkerHttpServlet doGet() doPost()

@Override
public void doPost(HttpServletRequest req, HttpServletResponse resp) {
    if (!isAuthorizedToDisplayPage(req, resp, 
            SimplePermission.SEE_REVISION_INFO.ACTIONS)) {
        return;
    }
...

Both of these examples take advantage of the fact that each instance of   defines its own  , as well as its own SimplePermission RequestedAction Act
 set.ions

Grant the permission to the desired users.

Each , simple or otherwise, can be assigned to s within VIVO. Each user account is associated with a  , Permission PermissionSet PermissionSet
and may use the  s associated with it. The assignment of  s to  s occurs in the file calledPermission Permission PermissionSet

[vitro]/webapp/rdf/auth/everytime/permission_config.n3

By inspecting the RDF in this file, we can see that the   permission is assigned to  ,  , and    s.SEE_REVISION_INFO ADMIN CURATOR EDITOR PermissionSet
Here is an excerpt of the file with the relevent RDF:



@prefix auth: <http://vitro.mannlib.cornell.edu/ns/vitro/authorization#> .
@prefix simplePermission: <java:edu.cornell.mannlib.vitro.webapp.auth.permissions.SimplePermission#> .

auth:ADMIN auth:hasPermission simplePermission:SeeRevisionInfo .
auth:CURATOR auth:hasPermission simplePermission:SeeRevisionInfo .
auth:ADMIN auth:hasPermission simplePermission:SeeRevisionInfo .

In future versions of VIVO, the   framework may be extended to permit multiple s per user, with GUI-Permission/PermissionSet PermissionSet
based configuration.

A more complex example
TBD

It's all about the action that your controller is requesting, and whether your user has authorization to do it.
Actions can be parameterized (modify this statement) or not (see the revision info page)
Authorization can come from a policy, or from a permission
Permissions can be simple, or as complex as a policy

Look at the simplest case: RevisionInfoController
Not parameterized: SimplePermission.something.ACTION

Code in HttpServlet, FreemarkerServlet, JSP
Look at a complex case: ImageUploadController

Also ManageProxiesAjaxController
In some cases, it isn't a question of whether your controller will run, but what it will do:

BaseIndividualTemplateModel
    public boolean isEditable() {

        AddDataPropertyStatement adps = new AddDataPropertyStatement(

                vreq.getJenaOntModel(), individual.getURI(),

                RequestActionConstants.SOME_URI);

        AddObjectPropertyStatement aops = new AddObjectPropertyStatement(

                vreq.getJenaOntModel(), individual.getURI(),

                RequestActionConstants.SOME_URI,

                RequestActionConstants.SOME_URI);

        return PolicyHelper.isAuthorizedForActions(vreq, new Actions(adps).or(aops));

    }
LoginRedirector

    private boolean canSeeSiteAdminPage() {

        return PolicyHelper.isAuthorizedForActions(request,

                SimplePermission.SEE_SITE_ADMIN_PAGE.ACTIONS);

    }
BaseSiteAdminController

        if (PolicyHelper.isAuthorizedForActions(vreq, SimplePermission.MANAGE_USER_ACCOUNTS.
ACTIONS)) {

            data.put("userAccounts", UrlBuilder.getUrl("/accountsAdmin"));

        }


	Writing a controller for a secured page

