
Git Guidelines and Best Practices
This page describes conventions and best practices applicable to the Fedora Git repository.

Overview of the Git Lifecycle
Some useful terms

Line endings
Configuring git to enforce LF normalization

autocrlf property
.gitattributes file
Git 1.7.1 and earlier
Git 1.7.2+

Working with older branches
Commit Messages

Two sample commit messages
Pulling and pushing to master

Development directly in master
Development in a local branch
Development in a local branch with rebase

Two things you should never do in git:

NEVER force a push
If you find yourself in a situation where your changes can't be pushed upstream, something is wrong. Contact another Fedora developer for help
tracking down the problem.

NEVER rebase a branch that you pushed, or that you pulled from another person
Rebasing published branches can lead to duplicate commits in the shared repository.

In general, the preferred workflow is:

create a branch from master, check it out, do your work
test and commit your changes
optionally push your branch up to the remote repository (origin) OR
optionally rebase your branch to master (if your changes are unpublished)
checkout master, make sure it's up-to-date with upstream changes
merge your branch into master
test again (and again)
push your local copy of master up to the remote repository master (origin/master)
delete your branch (and remotely, too, if you published it)

Overview of the Git Lifecycle

Git allows a developer to copy a remote subversion repository to a local instance on their workstation, do all their work and commits in that local repository,
then push the state of that repository back to a central facility ().github

Bearing in mind that you will always being doing your work and commits , a typical session looks like this:locally

git clone git@github.com:fcrepo/fcrepo.git && cd fcrepo
Get a copy of the central storage facility (the repository).

git branch fcrepo-756
Create a branch called "fcrepo-756".local

git checkout fcrepo-756
Create a copy of the branch from if it doesn't exist, make it your active working branch.local master

Now, start creating, editing files, testing. When you're ready to commit your changes:

git add [file]
This tells git that the file(s) should be added to the next commit. You'll need to do this on files you modify, also.

git commit [file]
Commit your changes locally.

Now, the magic:

git push origin fcrepo-756
This command pushes the current state of your local repository, including all commits, up to github. Your work becomes part of the history of the fcrepo-
756 branch on github.

git push is the command that changes the state of the remote code branch. Nothing you do locally will have any affect outside your workstation until you
 your changes.push

git pull is the command that brings your current branch up-to-date with the state of the branch on github. Use this command when you local remote
want to make sure your local branch is all caught up with changes 'ed to the remote branch.push

Some useful terms

master: this is the main code branch, equivalent to in Subversion. Branches are generally created off of .trunk master

origin: the default remote repository that all your branches are 'ed from and 'ed to. This is defined when you execute the initial pull push git clone
command.

unpublished vs. branches: an branch is a branch that only exists on your local workstation, in your local repository. Nobody but published unpublished
you know that branch exists. A branch is one that has been 'ed up to github, and is available for other developers to checkout and work on.published push

fast-forward: the process of bringing a branch up-to-date with another branch, by fast-forwarding the commits in one branch onto the other.

rebase: the process by which you cut off the changes made in your local branch, and graft them onto the end of another branch.

Line endings

All text files in must be normalized so that lines terminate in the unix style (LF). In the past, we have had a mixture of termination styles. Shortly after the
migration to Git the master and maintenance branches were normalized to LF. Please do not commit files that terminate in CRLF!

Configuring git to enforce LF normalization

There are several way to enforce LF normalization. Each method carries some consequences, and the consequences & methods differ between versions
of Git.

autocrlf property

Normalization rules for all text files can be addressed by the 'autocrlf' configuration property. There are two useful values for this property, depending on
your platform

autocrlf = input. Use on unix-like platforms. This will perform no conversion upon checkout, but will normalize any crlf files upon commit.
autocrlf = true. Useful on Windows platforms. This will have the effect of converting all text files into dos-style (CRLF) in the working copy upon
checkout. Upon commit, all files will be normalized to LF on their way into the repository, but remain in CRLF in the local working copy directory.

This property can be set globally for all local git repositories, or locally for a single git repository.

The property can be set via the command line. For example:autocrlf globally

git config --global core.autocrlf input

Executing this command is identical to editing your ~/.gitconfig file and adding:

[core]
 autocrlf=input

The property can also be set for a given git repository, such as the local clone of the fcrepo. For example, from within the local working autocrlf locally
directory:

git config core.autocrlf input

Executing this command is identical to editing the .git/config file within the git working directory and adding:

[core]
 autocrlf=input

.gitattributes file

The presence of a committed file within the code can also be used to apply line-ending rules. This has the benefit of being part of the .gitattributes
managed sources (and this part of a given branch, tag, etc), but is not understood by all versions of git. The fedora master branch has a .gitattributes file
containing , which instructs git to detect text files, and normalize to LF at each commit.* text=auto

Git 1.7.1 and earlier

Earlier versions of git do not understand the necessary directives in file, so is the only way to assure compliance with the LF .gitattributes autocrlf
normanlization. Thus

Unix and mac users should set either globally or locallyautocrlf = input
Windows users should set either globally or locally.autocrlf = auto

These versions of git may apply/detect autocrlf settings to all files in the working copy immediately. Thus, if checking out older branches/tags/commits that
still have crlf files in the repository, these files will be seen as automatically 'modified' when doing a 'git status'. This may have confusing side-
effects. When working with older branches containing a mixture of line endings, you may want to either turn autocrlf off, or just go ahead and convert all
files in the branch to LF.

Git 1.7.2+

These versions of git heed the directive, so it is not strictly necessary to set autocrlf, but it is recommended..gitattributes

These versions of git will apply the autocrlf setting to files - preventing the introduction of non-normalized crlf files into the repository, but ignoring new
existing crlf files.

Working with older branches

Text files were normalized to use LF in commit . Any existing branches/tags that are not normalized may contain a mix of files. Merging changes 5275b..
from a crlf file into a normalized branch may be problematic. In particular, merging any modified crlf file into its normalized counterpart will produce a
conflict with a whole-file diff (i.e. it will appear as the entire file is in conflict). Converting any such files to use LF endings in the originating (old) branch is
a reasonable solution, and will result in merges that behave as expected.

Commit Messages

Commit messages should follow the guidelines described in detail at .http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

In summary:

First line: JIRA issue ID in all caps (if applicable), followed by a brief description (~ 50 characters)
Second line: blank
Following lines: more detailed description, line-wrapped at 72 characters. May contain multiple paragraphs, separated by blank lines. Link to the
JIRA issue, if applicable.

Use the present tense when writing messages, i.e. "Fix bug, apply patch", not "Fixed bug, applied patch."

Two sample commit messages

linked to a JIRA issue:

FCREPO-780: NPE thrown on disseminations

Fix for the following bug: Fedora throws a null pointer exception if
you call a disseminator that fronts a web service whose response does
not contain a "Content-type" header.

https://jira.duraspace.org/browse/FCREPO-780

general issue:

Create .gitattributes file to normalize line feeds

Create .gitattributes file requesting all text files normalised to LF.
Will be ignored by git versions < 1.7.2

See https://wiki.duraspace.org/display/FCREPO/Git+Guidelines+and+Best+Practices
for more information.

Pulling and pushing to master

All or operations from remote/master into the local master branch should be fast-forward. Do not perform development in the master branch, pull merge
periodically update with pull, and then push your local master. Instead, perform local commits in a separate branch, and merge (or rebase and merge) with
master right before pushing it.

git pull -ff-only can be used to assure that a pull is fast-forward only. If a fast-forward pull is not possible, this flag will cause git to exit with an
error, and leave the local branch untouched.

Development directly in master

https://github.com/fcrepo/fcrepo/commit/5275b020ff81044cee61acf0340eb7815fb3c5cc
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

This should be avoided for all but the simplest commits that are immediately pushed. If you have several un-pushed commits, and then use to git pull
merge in remote changes, that pull will be non-fast-forward. In other words, git pull will automatically create a merge commit which merges origin/master
into your local branch. A subsequent will publish your local master to the central repository, and the presence of the merge commit with origin/master push
might make a confusing-looking history. In fact, github 'network view' of github will make it appear that commits that were merged in with came git pull
from another branch!

As an example, suppose there are three active developers working simultaneously - Tom, Dick, and Harry. Harry develops directly in master for some time
before pushing his changes.

Tom commits his changes to master, and pushes immediately. His commits are {1,2,3,4,5}
Dick commits changes to a local, unpublished branch. His commits are {a,b}. After he is done developing locally, he merges his branch into
master and pushes immediately, resulting in commit 6.
Harry commits his changes to his local master branch. His commits are {A, B} Periodically, he uses to bring in changes from the git pull
remote master branch, resulting in auto-generated merge commits {P1, P2, and P3}. At the end, he pushes his changes to the repository.

Harry's practice can cause some unintuitive-looking history graphs. His workflow looks something like:

(master) git pull
(master) git commit -m "A"
(master) (results in a silent, automatic merge commit P1 since this pull is not fast-forward)git pull
(master) (results in another silent, automatic merge commit P2 since this pull is not fast-forward)git pull
(master) git commit -m "B"
(master) (Yet another merge commit P3)git pull
(master) (The repository master now is identical to his local master)git push

In this graph, Harry's local commits and pull merges appear to have occurred in master. Tom's commits (which were always pushed immediately to
master) appear to have occurred in a separate branch. In a way, this is actually an accurate representation of what has occurred. Harry made some
commits in his master branch, merged in changes from a another branch three times, then replaced the repository master with his own.

Development in a local branch

Development in a local branch (even with occasional merges with master) is a valid and recommended development pattern. If parallel commits have been
pushed to master in the meantime, this workflow will represent your local changes as if it indeed were a separate branch.

Let us use the same Tom, Dick, & Harry example, except with Harry performing his development in a local, non-published branch. In this example, Harry's
workflow looks like the following:

(master) git pull
(master) git branch harry_branch origin/master --track
(harry_branch) git commit -m "A"
(harry_branch) (results in a silent, automatic merge commit P1 since this merge is not fast-forward)git pull
(harry_branch) (results in a silent, automatic merge commit P2 since this merge is not fast-forward)git pull
(harry_branch) git commit -m "B"
(master) (Is fast-forward. No merge commit created)git pull
(master) (results in an explicit merge commit P3}git merge harry_branch
(master) (The repository master now is identical to his local master)git push

As is evident, the github history graph is still complex, but perhaps more "intuitive" in the sense that it preserves the fact that commits 1,2,3,4,5 and 6 had
been published in master, and that Harry's commits A and B occurred in some other branch. Harry's pull merges are also preserved - but this time it is
clear that changes (commits 4 and 5) were propagated from master into his own branch during the pull/merge, and that he merged his branch back into
the published master at the end.

With this technique, pushing the local branch (harry_branch) to the repository occasionally would make no difference, and would be safe. This pattern has
an identical end result to maintaining a published fcrepo-XXX feature/bug branch, and merging it with master in the end.

Development in a local branch with rebase

Development in an local branch, and using instead of or to update the local branch with changes to master is unpublished git rebase pull merge
also a valid pattern. This technique results in the elimination of the local branching history, and rather than a final merge applies all local commits in
sequence to the end of the current master. This may be used when the local branch and merge history is unimportant or unnecessary (perhaps bad luck -
while making two trivial local commits, somebody happened to push master in the meantime).

It is important to if you intend on ever pushing that branch again. As a safety, Git will refuse to push a branch that has never rebase a published branch
had its history re-written with rebase. Although it is possible to force the changes through with , never do that!--force

Let us use the same Tom, Dick, & Harry example, except with Harry performing his development in a local, non-published branch, with occasional
rebasing to track the changes in master.

(master) git pull
(master) git branch harry_branch origin/master --track
(harry_branch) git commit -m "A"
(harry_branch) (Modifies Harry's A commit so that it appears to have occurred after all changes git fetch; git rebase origin/master
that have been imported from master)
(harry_branch) (Modifies Harry's A commit so that it appears to have occurred after all changes git fetch; git rebase origin/master
that have been imported from master)
(harry_branch) git commit -m "B"
(harry_branch) (Modifies Harry's A and B commits so that they appear to have occurred after all git fetch; git rebase origin/master
changes that have been imported from master)
(master) (Is fast-forward. No merge commit created)git pull
(master) (fast-forward. Does not result in merge commit)git merge harry_branch
(master) (The repository master now is identical to his local master)git push

This results in a simple history. Since rebase operations result in new commits at the end of a tree, Harry's a and B commits were transformed into A' very
and B', which could be simply applied almost as a patch directly to the end of master in a fast-forward merge. The end result is exactly the same as if Harry
were to the two commits from his harry_branch onto master - they both result in new commits at the tail of a branch.git cherry-pick

	Git Guidelines and Best Practices

