
IDE Integration - DSpace and NetBeans
Instructions for DSpace 1.5 and above

These instructions assume you are using DSpace 1.5.x (or higher) in the NetBeans IDE.
DSpace 1.4.x and previous are not covered.

Table of Contents:

1 Video Walkthrough
2 Installing NetBeans
3 Git Plugin / Support
4 Maven Support

4.1 Integrate an External Installation of Maven
5 Checkout DSpace from GitHub

5.1 Git/GitHub Hints & Tips
5.1.1 Fetch & Merge Example via NetBeans

6 Build DSpace from NetBeans
7 Install DSpace normally
8 Run DSpace from NetBeans with Tomcat

8.1 Integrate an External Installation of Tomcat
8.2 Run DSpace WebApp using Tomcat Integration
8.3 Debug DSpace WebApp using Tomcat Integration
8.4 Run DSpace's bundled Solr server from NetBeans

9 Integrate DSpace Javadoc within Netbeans

Video Walkthrough
João Rocha da Silva kindly posted a video walkthrough of setting up DSpace + Netbeans on YouTube:

Installing NetBeans
NetBeans 7.1 (or latest version) is recommended for both performance and features (plus, >7.1 includes Git support out-of-the-box). Download it from http:/

./www.netbeans.org/

Choose either the 'Java SE' or 'Java' version. The 'Java' version has more features (such as editing JSPs), and although the GlassFish / Tomcat runtimes
will be downloaded, you don't have to install them. If you choose the 'Java SE' version, you can always install those extra features later (as plugins).

Now simply run the downloaded installer.

If you are running on Linux/Unix, you will need to make the downloaded script executable (e.g.).chmod +x netbeans-[version]-full-linux.sh

Git Plugin / Support
As long as you are running NetBeans 7.1 or above, Git support comes pre-installed in NetBeans.

However, if you are running NetBeans 7.0, you can install the "Git" plugin by going to " -> " and finding the plugin named "Git" under the list of Tools Plugins
"Available Plugins".

If you plan to also occasionally run Git commands from your command-line, you may wish to install Git on your operating system:

Git Homepage (includes info on downloading & installing on major platforms)

Using a Local Subversion Repository instead?

If your institution plans to instead use a local Subversion repository for your local development, you can do so (you will just need to download the DSpace
Source Code and import into your local subversion repository).
Subversion support is already included in NetBeans. However, it requires that the command line client is installed and available on your local machine.

For most Linux distributions, you should be able to just install the Subversion client available in your distribution's repositories.
For Windows, there is now a 'Bundled Subversion Client for Windows' Plugin which you can install from within NetBeans

Go to -> to install the plugin.Tools Plugins
For Windows/RedHat/Solaris, CollabNet also offers free Subversion downloads that are specifically tested with NetBeans: http://www.collab.net

 (Free to download, but they require that you register first. Registration is also free, but requires a valid email address)/downloads/netbeans/

Maven Support
As long as you are on a recent version of NetBeans (> 6.7), Maven support is included out-of-the-box.

http://www.netbeans.org/
http://www.netbeans.org/
http://git-scm.com/
http://www.collab.net/downloads/netbeans/
http://www.collab.net/downloads/netbeans/

1.

2.

Integrate an External Installation of Maven

Although not required, it is to install an external version of . This will ensure that you are using a version of Maven which recommended Apache Maven
DSpace supports. (You should check the latest pre-requisites if you are using a later version of DSpace) However, if the version of Maven that is bundled
with NetBeans is a supported version, you are welcome to use it.

If you wish to integrate an external install of Maven:

First, install Maven:
For most Linux distributions, you should be able to just install the Maven client available in your distribution's repositories.
For all other operating systems, you can install the latest version from the site.Apache Maven

Configure Netbeans to use your external Maven:
Go to the " " menu, and select " " (on OS/X, this is ->)Tools Options "NetBeans" "Preferences"
Select " " section.Java
Select the " " tab.Maven
Modify the " " field. It's possible that Netbeans will already see your external version of Maven (if it's in your PATH). Maven Home
However, if it says that it is using the "Bundled" Maven, then you'll want to fill out the " " field with the location of your Maven Home
external installation of Maven.
In the middle of this page, you may also need to fill out the location of your " ". This should be the location of the ".m2" Local Repository
directory under your user's home directory.

On Linux and OS/X, it should be located at ~/.m2/
On Windows, it should be located at (Windows XP) or C:\Documents and Settings\username\.m2 C:

 (Windows 7)\Users\username\.m2
All the other Maven settings should be fine as their defaults. Press " " to save your changes.OK

Checkout DSpace from GitHub
NetBeans Git Guide

For more generic information about working with Git/GitHub in NetBeans, see the NetBeans Git Guide
Need a tutorial on Git/GitHub?

If you need help/tips/resources on DSpace development with Git/GitHub, or just tutorials on Git in general, you may want to check out our DSpace
 page.Development with Git

NetBeans makes the checkout and configure process easy, as it does nearly everything for you.

Under the ' ' menu, go to ' ' -> ' '. (In Git terminology, "clone" just means you are downloading an exact copy of the remote code Team Git Clone
repository to your local machine.) Enter the URL for the DSpace Repository in GitHub which you wish to work with (e.g. https://github.com/DSpace

OR if you have your own fork: https://github.com/\[your-username\]/DSpace.git), optionally enter in a GitHub username/password, and /DSpace.git
click on the "Next" button.

IMPORTANT NOTE: If you plan to do a larger amount of DSpace development or local changes, you may wish to first the DSpace "fork"
GitHub Repository () to your own GitHub account. This will create your own copy of the DSpace https://github.com/DSpace/DSpace
source code under your GitHub account (e.g. https://github.com/\[your-username\]/DSpace). You can then checkout your own forked
repository to work from and commit local changes to (push changes to). For more information, see the GitHub help page on "Forking a

.Repo"
Next, select the "Remote Branch" you wish to develop on. A few hints:

Branches named "dspace-#_#_x" (e.g. dspace-1_8_x) are Bug Fix / Maintenance branches. So, the latest code in that bug-fix or
maintenance release will be available on that branch. This code tends to be more stable overall. As such, we recommend most
developers use the appropriate Bug Fix / Maintenance branch for their local development.
The branch named is roughly equivalent to the old SVN Trunk. As such, it may not be as stable, but it includes the latest & master
greatest code which is being prepared for the next major release. Unless you know what you are doing, we do NOT recommend running
this code in Production. It is essentially "unsupported" until it is officially released.
If you wish to work from a "tagged" (official release) version of DSpace (e.g. 1.8.2), you can download those releases as Tarballs/Zips
from: You could then use that Tarball/Zip to import it into your own Git/GitHub or SVN repository https://github.com/DSpace/DSpace/tags
as you see fit.

Next, choose a local parent folder to use and the "Clone Name" (actual folder name for the source code), and leave the 'Scan for NetBeans
projects after Clone' option selected, and click on 'Finish'. (All other options you should be able to leave as their default values.)
When NetBeans completes the clone, it will pop-up a dialog telling you that it found a number of DSpace projects (Maven projects) during the
checkout. Choose 'Open Project' from the dialog. Select all the projects (and/or subprojects) that you wish to open (hold down or to ctrl shift
select multiple), and click the "Open" button. (Don't worry you can always Open or Close projects later if you notice you opened up too few or too
many)

After the clone has completed, you'll notice NetBeans considers each DSpace Maven "module" to be a separate project. So, you'll see separate projects
for "DSpace XML-UI" and "DSpace JSP-UI", even though these are all cloned from the same source code.

Git/GitHub Hints & Tips

The following are a few hints/tips which you may want to utilize to ease your development processes with NetBeans and GitHub. Much more info about
DSpace + GitHub development at .Development with Git

Fork your own Repo to store your local changes: As recommended above, you really should think about forking your own copy of the DSpace
GitHub repository. As GitHub describes in their guide, forking lets you create your own personal copy of the codebase. It not only "Fork a Repo"
provides you a place to put your local customizations. It also provides an easier way to contribute your work back to the DSpace community (via a
GitHub).Pull Request

http://maven.apache.org/
http://maven.apache.org/
http://netbeans.org/kb/docs/ide/git.html
https://wiki.lyrasis.org/display/DSPACE/Development+with+Git
https://wiki.lyrasis.org/display/DSPACE/Development+with+Git
https://github.com/DSpace/DSpace.git
https://github.com/DSpace/DSpace.git
http://help.github.com/fork-a-repo/
https://github.com/DSpace/DSpace
http://help.github.com/fork-a-repo/
http://help.github.com/fork-a-repo/
https://github.com/DSpace/DSpace/tags
https://wiki.lyrasis.org/display/DSPACE/Development+with+Git
http://help.github.com/fork-a-repo/
http://help.github.com/send-pull-requests

2.

1.

2.

3.

4.

1.
2.

For easier Fetch/Merge, setup an "upstream" repository location: This is only really relevant if you have your own personal "fork" (see #1). If
you have forked the DSpace GitHub repository, then you may want to setup an "upstream" remote that points at the central DSpace GitHub
repository. This is described in more detail in the GitHub guide. Perform the following:"Fork a Repo"

On the command-line, change directory to your local machines' cloned DSpace git repository, which is also your DSpace source
directory (e.g.)cd [dspace-src]
Run the following 'git' command from that directory:

git remote add upstream git://github.com/DSpace/DSpace.git

(Technically you can name it something other than "upstream". But, "upstream" is just the GitHub recommended naming convention).
For more information about how this comes in handy, see the section below on " ".#Fetch & Merge Example via NetBeans

Fetch & Merge Example via NetBeans
This assumes you've followed the listed above, and have forked your own personal copy of DSpace's GitHub as well as setup an #Git/GitHub Hints & Tips
"upstream" remote link. This is just one example of how you can perform these tasks.

Fetch changes from DSpace Main GitHub:You fetch (and later merge) changes that have occurred in the central DSpace GitHub Repository:
From NetBeans: Right-click on the "DSpace Parent Project" (root project) and then select: -> -> . This will pop up a Git Remote Fetch
window that will allow you to easily select the "upstream" configured repository to fetch the latest changes from, and allow you to choose
the "master" branch to apply them to. Once you click "Finish", a new "upstream/master" branch will be created locally with the latest
changes to be merged.
From Command-line in your DSpace source directory (e.g.): cd [dspace-src] git fetch upstream

Merge changes into your Local Git Repo:Remember, "fetching" changes just brings them into your local-machine's copy of the Git repository.
You'll then need to merge those changes with yours and push the changes back to your personal public GitHub repository.

From NetBeans: Right-click on the "DSpace Parent Project" (root project) and then select: -> . This will pop up a Git Merge Revision
window to let you select which "branch" to merge into your currently checked out code. If press "Select", you'll see a new branch called
"upstream/master" under "Branches -> Remote". Selecting that branch will merge the latest code from "upstream/master" into whatever
branch you currently are working with (e.g. "master").
From Command-line in that same directory: git merge upstream/master

Quick Status of Local Git Repo:If you want to see what happened, you can look at the "Status" information:
From NetBeans: Right-click on the "DSpace Parent Project" (root project) and then select: -> . Click the "Search" button Git Show History
(without entering any search info). It will bring back results that will show you where the HEAD pointer is (latest commit in your local
machine's git repo) versus where the 'origin/master' is (latest commit in your personal GitHub repo).
From Command-line in that same directory: (will tell you how many "commits ahead" of 'origin/master' you now are)git status

Push Merged Code up to your Personal GitHub Repo:Finally, assuming all went well, you can push your changes back up to GitHub into your
public personal repository:

From NetBeans: Right-click on the "DSpace Parent Project" (root project) and then select: -> -> . This will pop up a Git Remote Push
window that will allow you to select the "origin" repository (your personal fork in GitHub), and allow you to choose the "master" branch to
push to.
From Command-line in that same directory: git push origin master

Build DSpace from NetBeans
Two Ways to Build DSpace

As of DSpace 1.8, there are now two options to building DSpace Source Code as detailed in the Documentation. They are as Advanced Customisation
follows:

Full Build: Running from the root directory (Or run "Build" on the "DSpace Parent Project" in NetBeans). This mvn package [dspace-src]
option will rebuild all DSpace modules from their Java Source code, then apply any Maven WAR Overlays. In other words, all subdirectories of [d

 are recompiled/rebuilt.space-src]
Quick Build: Running from the directory (Or run "Build" on the "DSpace Assembly and Configuration" mvn package [dspace-src]/dspace/
project in NetBeans). This option performs a "quick build". It does not recompile/rebuild all DSpace modules. All it does is rebuild and re-apply any
Maven WAR Overlays to the previously compiled source code. In other words, the ONLY code that will be recompiled/rebuilt is code that exists in

 (the Maven WAR Overlay directories)[dspace-src]/dspace/modules/*

As described in the note above, as of DSpace 1.8, there are two options to build DSpace. Traditionally (before 1.8), you could only build DSpace from the d
 sub-folder (e.g.). In NetBeans, this project is named "DSpace Assembly and Configuration", based on the name specified space [dspace-src]/dspace

in its Maven configuration file (pom.xml).

If you do not see the proper project opened (NetBeans may not have opened it by default), then open it manually:

Right click in your "Projects" window
Select "Open Project", and browse to either the OR directory (based on the build option you wish to [dspace-src] [dspace-src]/dspace/
use). You should see the Project Name (on the right) specified as either "DSpace Parent Project" or "DSpace Assembly and Configuration",
respectively.
Click the "Open Project" button.

Once that project is opened, you can build DSpace by doing the following:

Right-click on the project
Select the "Build" option (alternatively you may select "Clean & Build" to first clean out previous builds).
You should be able to watch the status in the "Output" window at the bottom of NetBeans. The end result is that DSpace is built into the [dspace

 directory (you can verify this from the "Files" window in NetBeans, if you wish).-src]/dspace/target/dspace-[version]-build.dir/

http://help.github.com/fork-a-repo/
https://wiki.lyrasis.org/display/DSDOC18/Advanced+Customisation

1.
2.
3.
4.
5.
6.
7.
8.

1.
2.
3.
4.
5.

1.

2.

After building DSpace for the first time, you may still see red exclamation point icons (!) next to some projects. In most cases, this is caused by NetBeans
being unable to locate some of the DSpace third-party dependencies on your local file system. To fix this problem, do the follow for which each project
has a red icon next to it:

Right click on the project
Select "Show and Resolve Problems..." (near bottom of pop-up menu)
Click on "Download Libraries" (assuming the problem is that "Some dependency artifacts are not in the local repository").
NetBeans should then use Maven to find all the DSpace dependencies and download them to your local Maven repository (in your user's ~/.m2/
folder)

By default NetBeans builds using "mvn install" instead of "mvn package"

By default, NetBeans builds all Maven-based projects using instead of (which DSpace recommends). The resulting build is mvn install mvn package
identical, except that the "install" command will take longer as it also attempts to verify that all source file headers match our DSpace license. If you'd like
to speed up your NetBeans build & avoid these license checks you can do the following:

Right click on the project you are attempting to Build (e.g. "DSpace Assembly and Configuration"), and select "Properties"
Go to the "Actions" category on the left
Select the "Build project" action.
In the "Execute goals" change "install" to "package"
Now select the "Clean and Build Project" action
In the "Execute goals" change "clean install" to "clean package"
Finally, select the "Build with Dependencies" action
In the "Execute goals" change "install" to "package"
Now, for that project, each time you run any of the 3 build commands (Build, Clean & Build, or Build with Dependencies) NetBeans will use the
Maven 'package' command instead of the 'install' command. You'd have to do this customization for any NetBeans project that you want to build
using those commands.

As an alternative, you could also create your own custom NetBeans commands (which can be run across any/all projects) by doing the following:

Right click on project.any
Select "Custom -> Goals..."
In the "Goals:" field type "package"
Select "Remember as:" (at bottom) and enter in "Package" (or some name you will remember)
Click OK
Now, you can right click on any project, and go to "Custom -> Package" to run a Maven "package" of that project. You can use this new custom
command instead of the default "Build" command.

Install DSpace normally
After building DSpace, we need to use to install it. Unfortunately, this is an area where NetBeans is not very helpful (as we built DSpace using Apache Ant
Maven, it will continue to assume all of our projects are Maven-based projects).

You have two options here:

The easiest way to install DSpace may be to just follow the normal installation procedure in the . NetBeans DSpace System Documentation
doesn't seem to have an efficient way to perform this installation, so it's easiest to just do it from the command line, as normal.
Alternatively, you can use NetBeans to run the command as follows: (You need to create a database and a database ant fresh_install
owner first.)

Go to your start browser, open pgAdmin (Assuming you install PostGreSQL)
Connect to PostGreSQL 9.0
Right click login roles, select new login role
Type dspace for the following fields: Role name/ password/ password again
Click Ok
Right click database, select new database
Type dspace in the following field: Name. Select dspace from dspace owner field
Click Ok
Return to project folder in Netbeans
Click over to the "Files" tab in the left hand window
Browse under the "DSpace Assembly and Configuration" project. You are looking for the target/dspace-[version]-build.dir

 Ant configuration file./build.xml
Right click on the file and select "Run Target" => "fresh_install"build.xml

The above command will perform a fresh install of DSpace based on the settings specified in your target/dspace-
 file.[version]-build.dir/config/dspace.cfg

The default installation url is C:\dspace.
After installation, open cmd
Navigate to your installation folder\bin. Default is C:\dspace. Example command: cd C:\dspace\bin
Type the following command: dspace.bat create-administrator
Key in the information specified by the command prompt instructions

Run DSpace from NetBeans with Tomcat
Once you have DSpace installed, you can run any DSpace web application (XMLUI, JSPUI, SWORD, LNI, etc.) from NetBeans after you integrate
NetBeans with .Apache Tomcat

http://ant.apache.org/
https://wiki.lyrasis.org/display/DSDOC17/Installation
http://tomcat.apache.org/

Integrate an External Installation of Tomcat

If you have Tomcat installed separately from NetBeans, you'll need to tell NetBeans where it's located.

First, you'll need to install the " " plugin for NetBeans, if it isn't already installed.Tomcat
Go to the " " menu and select " ".Tools Plugins
Select the " " tab. This should list an entry for " " or "Java Web Applications"Available Plugins Tomcat
Check the box next to it, and click on 'install'.
Restart NetBeans

You'll now want to tell NetBeans where your Tomcat installation is located.
Go to the " " menu and select " ".Tools Servers
Click the "Add Server.." button to add a new server
Select the type of Server (e.g. Tomcat 6.0/7.0) and click "Next >"
NetBeans will ask you for the " " location of this Tomcat Server. This is the location where Tomcat is installed (e.g. On Catalina Home
Windows it may be "C:\Program Files\Apache Software Foundation\Tomcat-6.0"). You'll also need to give NetBeans your credentials for
the "manager" role in Tomcat (which can be configured in the tomcat-users.xml configuration file).

After configuring your Tomcat 6.0 server, you may want to reconfigure a few default settings.
Go to the " " menu and select " ".Tools Servers
Select your " " server.Tomcat 6.0
On the " " tab, you may wish to enable the optionConnection HTTP Monitor

This will start up HTTP Monitoring (in a new tab) in NetBeans, whenever you start this server. HTTP Monitoring may be useful
to developers who wish to view all HTTP requests/responses that occur during their development process.

Run DSpace WebApp using Tomcat Integration

Once NetBeans knows about Tomcat, you can run your DSpace webapps through this Tomcat integration and even perform debugging of your DSpace
web application. To do this, we'll need to perform some basic configuration of the web application project in NetBeans.

Select the project for the Web Application you wish to run through Tomcat (e.g. " " for the XMLUI). This project be DSpace XML-UI (Manakin) must
a " " based project, as Tomcat only runs WAR files.war
Right click on your selected project and click " "Properties
From the Properties window, select the " " category.Run

From these Run settings, you'll want to specify the Server which this application should run on. Select your newly configured Tomcat
server.
Also, specify a " ". This should be the ending path on the URL. For example, specifying "/xmlui" will mean your web Context Path
application will be available from "http://localhost:8080/xmlui"

Now, click over to the " " category on the left.Actions
You'll see a list of Actions on the right. Click on the " " action (as this is the one used to run your web application).Run Project
In that Action's " " section, add a property to point it to your DSpace installation. The following is an example on Windows, Set Properties
assuming that you've installed DSpace to " ":C:/dspace

For DSpace 3.0 or above, set the property: (make sure to include this entire line – also, do NOT dspace.dir=C:/dspace
include quotes around the file path)
For DSpace 1.8.x or lower, set the property: (make sure to include this dspace.config=C:/dspace/config/dspace.cfg
entire line – also, do NOT include quotes around the file path)

Finally, click " " at the bottom to save all your new project settings.OK

Now, test it out!

Right click on the project, and select " ". This should re-build the project, start-up Tomcat, and open up your application in your default web browser.Run

BONUS: If you haven't already noticed, NetBeans will auto-rebuild your project in real-time while Tomcat is running. This means, if you want to edit a CSS
or XSLT (for the XMLUI), you can edit it and just refresh your web browser. Your changes should show up in the browser almost immediately. (That being
said, there are times when you will still have to restart Tomcat in NetBeans – usually after you haven't restarted it in a long time, or after an update to Java
source code)

Debug DSpace WebApp using Tomcat Integration

Debugging a DSpace web application involves mostly the same setup as running it. The main difference here is that you need to configure the "Debug
" settings (rather than the " " settings). So, similar to above, do the following:Project Run Project

Select the project for the Web Application you wish to run through Tomcat (e.g. " " for the XMLUI). This project be DSpace XML-UI (Manakin) must
a " " based project.war
Right click on your selected project and click " "Properties
From the Properties window, select the " " category on the left.Actions

You'll see a list of Actions on the right. Click on the " " action (as this is the one used to debug your web application).Debug Project
In that Action's " " section, add a property to point it to your DSpace installation. Make sure to keep all existing properties in Set Properties
tact, and just add your new property. The following is an example on Windows, assuming that you've installed DSpace to " ":C:/dspace/

For DSpace 3.0 or above, set the property: (make sure to include this entire line – also, do NOT dspace.dir=C:/dspace
include quotes around the file path)
For DSpace 1.8.x or lower, set the property: (make sure to include this dspace.config=C:/dspace/config/dspace.cfg
entire line – also, do NOT include quotes around the file path)

Finally, click " " at the bottom to save all your new project settings.OK

Now, we'll start our web application in Debug-mode. (Make sure to stop Tomcat first, if it is currently running)

Right click on the project, and select " ". This should re-build the project, start-up Tomcat in debug-mode, and open up your application in Debug
your default web browser. You should see a "Debugger Console" appear.
You can now add breakpoints to areas of your code. The debugger should automatically stop at those points and let you step through your code
line-by-line.
Note: Occasionally, the first time you perform debugging, the debugger doesn't connect properly with your Tomcat Server. If you find it's not
stopping at your breakpoints, you may wish to "Attach" the debugger manually:

From the " " menu, select " "Debug Attach Debugger..
For the " ", specify "SharedMemoryAttach".Connector
For the " ", specify "tomcat_shared_memory_id" (without the quotes).Name
Click " " to save these settingsOK

Finally, verify that Tomcat is specifying this "tomcat_shared_memory_id" field.
Go to the " " menu and select " "Tools Servers
Click on your Tomcat Server, and visit the " " tab.Startup
Make sure the " " setting is selected, and that the value is also "tomcat_shared_memory_id".Shared Memory Name

Run DSpace's bundled Solr server from NetBeans

As noted in the examples above, for most modules you should be running the web application via the main source code directory (e.g. [src]/dspace-
 for XMLUI).xml/

However, for the bundled Solr module to function properly, you need to run the "DSpace SOLR :: Local Customizations" project (i.e. [src]/dspace/modules
/solr/) INSTEAD. You'll still need to customize its "Actions" (like detailed above) to set the property dspace.dir=[installation-directory].

Integrate DSpace Javadoc within Netbeans
This section provides instructions for generating the DSpace javadoc and its integration within Netbeans. Its aim is to allow developers to refer to the
current DSpace Library API calls, and understanding its uses from within the IDE.

Right click on the "DSpace Parent Project" (root project) - If it isn't opened, you may need to open it first.
Select "Generate Javadoc"
Javadoc for DSpace should be available within Netbeans. (It will appear during auto-complete functionality – if you hover over a method, the
Javadocs will be displayed if any exists)

	IDE Integration - DSpace and NetBeans

