DSpace 7 Ul Optimization Analysis

® Overview
® DSpace 7 Ul Infrastructure Examples
© DSpace 7 Demo Site Ul infrastructure
© DSpace-CRIS 7 Demo Site Ul infrastructure
© TU Berlin DSpace 7 Ul infrastructure
® Optimization Strategies
© Node.js configuration for multi-threading
© Minimize size of main.js
© Page Caching
® Tools
© webpack-bundle-analyzer
© BundlePhobia.com

During the DevMtg on Oct 13, 2022, we began a discussion on improving the performance of the DSpace 7 Ul, especially in terms of initial load. This
pagejis meant to gather information / notes for further analysis

Overview

Goal is to improve the initial load of the Ul per user reports and Google Lighthouse analysis (see screenshot)

A Reduce initial server response time 8.45s ~

Keep the server response time for the main document short because all other requests depend on it. Learn more.

URL Time Spent
https://demo7.dspace.org 8,550 ms
A Reduce unused JavaScript — 2255 A

Reduce unused JavaScript and defer loading scripts until they are required to decrease bytes consumed by network activity. Learn more. (LCP

Potential

URL Transfer Size

Savings
/main.450126ea630540ce.js (demo7.dspace.org) 786.6 KiB 464.2 KiB
Ipolyfills.80b2e5e5d85ef4ee.js (demo7.dspace.org) 59.4 KiB 22.7 KiB

DSpace 7 Ul Infrastructure Examples

DSpace 7 Demo Site Ul infrastructure

TODO: Art Lowel (Atmire) or Atmire provide details on the infrastructure behind https://demo7.dspace.org/ (DSpace 7 Demo Ul), especially in terms of the
Node.js setup/configuration and setup/configuration of proxies.

NOTE: Here's the Google Lighthouse performance as of Oct 13, 2022 (Running DSpace 7.4):

https://wiki.lyrasis.org/display/DSPACE/2022-10-13+DSpace+7+Working+Group+Meeting
https://wiki.lyrasis.org/display/~artlowel
https://demo7.dspace.org/

nttps:/idemoT dspace.org/ome

70 . 83 73
Performance Accessibility Best SEO PWA
Practices
Performance
Values are estimated and may vary. The performance score
is calculated directly from these metrics. See calculator -
A 049 50-89 @ 90-100
METRICS Expand view
® First Contentiul Paint Time to Interactive
08s 3.0s
A Spesd index Toal Blocking Time
44s 200 ms

UPDATE: Here's the Google Lighthouse performance as of Feb 15, 2023 (Running DSpace 7.5, with "page caching" enabled for anonymous users):

B hitpsiidemoT dspace.orgihome

84 83 82
Performance ~ Accessibility Best SEO PWA
Practices

84

Performance

Values are estimated and may vary. The performance score
is calculated directly from these metrics. See calculator

A 040 5089 ® 90-100
METRICS Expand view
® First Contentil Paint Time to Interactive
08s 28s
® Speed ndex Total Blocking Time
12s 260 ms
® Largest Contentiul Paint @ Cumulative Layout Shit
12s 0

DSpace-CRIS 7 Demo Site Ul infrastructure

TODO: Andrea Bollini (4Science) or 4Science provide details on the infrastructure behind https://dspace-cris.4science.cloud/ (DSpace-CRIS 7 Demo Ul),
especially in terms of the Node.js setup/configuration and setup/configuration of proxies.

NOTE: On Oct 13, 2022, DSpace-CRIS 7 demo site has better Performance results from Google Lighthouse than DSpace 7 Demo site:

https://wiki.lyrasis.org/display/DSDOC7x/User+Interface+Configuration#UserInterfaceConfiguration-CacheSettings-ServerSideRendering(SSR)
https://wiki.lyrasis.org/display/~bollini
https://dspace-cris.4science.cloud/

B ntiosiidspace-cris dscience. cioud!

89 78 @ 73

Performance Accessibility Best SEO PWA
Practices
L
89
E——
Performance

Values are estimated and may vary. The performance score i &]
is calculated directly from these metrics. See calculator -

A 049 50-89 ® 90-100
METRICS Expand view
First Contenttul Paint ® Time to Interactive
13s 13s
Spesd Index @ Total Blocking Time
19s 0ms

TU Berlin DSpace 7 Ul infrastructure

Google Lighthouse performance results for https://depositonce.tu-berlin.de on October 14, 10:20am:

T

39 Deposit
Once

Performance

Values are estimated and may vary. The performance score is calculated

directly from these metrics. See calculator.
A 049 50-89 ® 90-100 -

Expand view

METRICS
@ First Contentful Paint Time to Interactive
0.4s 3.5s
A Speed Index A Total Blocking Time
49s 1,410 ms
A Largest Contentful Paint ©® Cumulative Layout Shift
35s 0.03

Our servers run at the university's IT department in an Open Stack environment with these specs:

Server Cores RAM
Backend 16 64GB
Frontend 8 32GB
PostgreSQL 4 16GB
SOLR 2 8GB

This is our PM2 configuration file:

https://depositonce.tu-berlin.de

dspace-ui.json

{
"apps": [
{
"nane": "dspace-ui",
"cwd": "/srv/dspace-ui-deploy",
"script": "dist/server/main.js",
"node_args": "--nmax_ol d_space_si ze=8192",
"env": {
"NODE_ENV': "production",
" DSPACE_REST_SSL": "“true",
" DSPACE_REST_HOST": "api - deposi tonce. tu-berlin. de",
" DSPACE_REST_PORT": "443",
" DSPACE_REST_NAMESPACE": "/server"
}
}
]
}

The frontend runs behind an Apache proxy, as described in the Installing DSpace page.

The backend also runs behind an Apache proxy, as described in the Installing DSpace page. | increased the Java memory significantly:

Envi ronnment =" JAVA_OPTS=- Dj ava. awm . headl ess=true - Xnx8G - Xms2G - Df i | e. encodi ng=UTF- 8"

Update:

We had some success with running more than one instance of the frontend using PM2 Cluster Mode. It made our response times significantly better. But

we are still far from an acceptable performance. This is our new PM2 configuration file:

dspace-ui.json

{
"apps": [
{
"nane": "dspace-ui",
"cwd": "/srv/dspace-ui-deploy",
"script": "dist/server/main.js",
"instances" : 4,
"exec_node" : "cluster",
"node_args": "--max_ol d_space_si ze=4096",
"env": {
"NODE_ENV': "production",
"DSPACE_REST_SSL": "true",
" DSPACE_REST_HOST": "api - deposi tonce. tu-berlin. de",
" DSPACE_REST_PORT": "443",
" DSPACE_REST_NAMESPACE": "/server"
}
}
]
}

Optimization Strategies

® Node.js configuration for multi-threading

Andrea Bollini (4Science) mentioned in the meeting on Oct 13, 2022 that 4Science has discovered that the default setup of Node.js can be limiting for sites
with a lot of users simply because Node.js is single threaded. He noted that 4Science has found ways to configure Node.js to better support many users
by allowing Node.js to use all your CPU, etc.

https://wiki.lyrasis.org/display/DSDOC7x/Installing+DSpace#InstallingDSpace-FrontendInstallation
https://wiki.lyrasis.org/display/DSDOC7x/Installing+DSpace#InstallingDSpace-BackendInstallation
https://wiki.lyrasis.org/display/~bollini

4Science notes: Optimization of the hosting environment is one of the area where the competition across service providers is higher. At 4Science we
have and we are investing a lot in tools to monitor, enhance and benchmark different setup and these findings constitute one of our competitive
advantages. In the spirit of the open source community and in the respect of the investment done, we are happy to share some of these findings with the
community.

Node.js follows a single-thread model. This mean that when a request trigger the server side rendering (SSR) other concurrent requests will need to wait
until the previous requests has been served. Depending on the capacity of the server and the speed of all the other involved components (REST, DB,
SOLR) this could vary from 1 seconds or less to more than 2-3 seconds (or much more). PM2 has a cluster mode for Node.js that start multiple nodejs
instances distributing requests among them allowing to use more than one physical or virtual CPUs, see https://pm2.keymetrics.io/docs/usage/cluster-
mode/

without this setting any additional CPU available on the frontend/angular server will be just ignored and only 1 CPU will be really used most of
time.

In general we found important to provide more CPU to the angular/node components and to the SOLR component than to the REST API server. Memory
is more relevant for the REST APl/tomcat and for SOLR. For SOLR it is important to avoid swapping, see https://solr.apache.org/guide/8_11/taking-solr-to-
production.html#ulimit-settings-nix-operating-systems

Our usual setup adopts multiples VMs, one VM for each DSpace component (reverse proxy, REST, Angular, PostgreSQL, solr, ...) this help to track down
bottlenecks and to measure resource loads. One important aspect is also the reverse proxy, we found nGINX usually to be more performant than apache
when no special configuration are applied to both. Keep in mind that the reverse proxy will be the final bottleneck for everything as all the requests (REST
ISSR) will pass in it. If the CPUs of the server are doing other stuff the reverse proxy will be not able to fulfill the requests and the request will be stuck in
the queue. We have observed sometimes very slow response time from the REST due to the fact that all the CPUs where already used by the reverse
proxy / SSR part that were not able to free up such resources because they were waiting for requests sent to the REST API that never reach tomcat (as
they were queued in the reverse proxy...)

In our opinion, If you really want to go with a single all in one server you should use not less than 8vCPU and 32GB of RAM

ACTION: Updated all DSpace Documentation to include this hint, especially Performance Tuning DSpace.

Minimize size of main.js

Team needs to investigate if there are ways to further minimize the size of the main.js file (noted by Lighthouse as being too large) via lazy loading or
similar strategies.

In 7.5, work on this was completed in https://github.com/DSpace/dspace-angular/issues/1921 (see PRs attached/linked to this ticket)
Examples: https://christianlydemann.com/the-complete-guide-to-angular-load-time-optimization/
This might require optimizing pages which users are most likely to first access the application. Namely:

® Homepage

® |tem splash pages
® (Possibly others? Community/Collection splash pages?)

Page Caching

Improvements to page caching was completed in 7.5, see https://github.com/DSpace/dspace-angular/pull/2033

Tools

webpack-bundle-analyzer
Can be used to visualize what is taking up a lot of space in main.js and other bundles
https://www.npmjs.com/package/webpack-bundle-analyzer
Running for DSpace:
® |Install it (globally): npminstall -g webpack-bundl e-anal yzer

® Run a build and generate stats.json: yarn buil d: stats
® Startitup! webpack-bundl e-anal yzer .\dist\browser\stats.json

BundlePhobia.com
Useful to find the normal size of dependencies & links you to alternative libraries which may be smaller: https://bundlephobia.com/

It also details which libraries are "tree shakable" and which are not.

https://pm2.keymetrics.io/docs/usage/cluster-mode/
https://pm2.keymetrics.io/docs/usage/cluster-mode/
https://solr.apache.org/guide/8_11/taking-solr-to-production.html#ulimit-settings-nix-operating-systems
https://solr.apache.org/guide/8_11/taking-solr-to-production.html#ulimit-settings-nix-operating-systems
https://wiki.lyrasis.org/display/DSDOC7x/Performance+Tuning+DSpace
https://github.com/DSpace/dspace-angular/issues/1921
https://christianlydemann.com/the-complete-guide-to-angular-load-time-optimization/
https://github.com/DSpace/dspace-angular/pull/2033
https://www.npmjs.com/package/webpack-bundle-analyzer
https://bundlephobia.com/

	DSpace 7 UI Optimization Analysis

