
Demonstration Objects
This document describes the demonstration objects that are distributed with Fedora.

After installing Fedora, you'll find these objects, in several formats, in your directory.$FEDORA_HOME/client/demo

On this page:

Ingesting the Demo Objects
Simple Document Demo
Formatting Objects Demo
Simple Image Demo
Document Transformation Demo
Image Collection Demo

Ingesting the Demo Objects
These objects can be ingested into the repository in one of two ways.

Using the , selecting File, Ingest, Multiple Objects, From Directory and pointing to the demo/foxml directory.Fedora Administrator GUI
Running the command line script.fedora-ingest-demos

Once ingested, the demo objects can be viewed in a web browser using API-A-LITE. For example, to view the object:demo:5

http://localhost:8080/fedora/objects/demo:5

All demo objects are intended to work when the Fedora repository server is in a stand-alone condition (e.g., if the repository is running without a network
connection, or if the repository is behind a firewall and not set up to receive outside connections)

Simple Document Demo
The Fedora data object demonstrates the simplest Fedora digital object scenario. It is the case where we aggregate content in the Fedora demo:18
object, and let Fedora's default object behaviors provide access to the content. This is an example of a Fedora digital object that only has default
dissemination services. In this case, there are 3 datastreams in the object, one for each format of a particular document (in this case the Fedora paper
presented at ECDL2002). We can use the basic Fedora object dissemination service (also called "datastream disseminations") which are part of the basic
content model shared by all objects. The basic content model is dynamically associated with every object in the repository (though it may optionally be
statically associated). It has a default service definition (sDep) which provides basic operations for every object which includes the ability to list items in the
object, get an item, get the dissemination index, get the Dublin Core record, and retrieve other information about the object. The results of these operations
can be returned as either HTML (method names begin with "view...") or XML (method names begin with "get..."). The end result is that the object is simply
a container for content and metadata. The user can view the contents and get any item from the object. While this scenario may be easy to implement and
useful, it does not take advantage of Fedora's extensible service features where custom operations can be associated with an object.

Formatting Objects Demo
There are two demonstrations of using Fedora to display XML content styled using XSL Formatting Objects. First, the Fedora data object shows demo:21
the transformation of native formatting object document stored as an inlined XML datastream into PDF. Second, the Fedora data object shows demo:26
the use of formatting objects to process TEI documents.

Simple Image Demo
The Fedora data object demonstrates the UVA Simple Image behaviors by associating a simple dissemination with the object through its content demo:5
model. There are 4 Datastreams in the object, one for each of four different image resolutions. The object is linked to one dissemination service which
provides four behavior methods: getVeryHigh, getHigh, getMedium, and getThumbnail. The fulfillment of the service contract entails the Fedora HTTP
Image Getter resolving the URL of the appropriate datastream for each of the UVA Simple Image behaviors. There are no transformations performed on
the datastreams. This object shows how a service definition can be used to create a normalized set of methods for a particular type of object, an image
object in this case, which is defined by a content model. The idea here is that the Simple Image service definition provides a standard set of dissemination
services that can be used on any image object that conforms to the standard image content model. As we will see later, different variants of image objects
can subscribe to the same service definition, and in some cases the datastreams will be dynamically transformed by a service to provide the appropriate
image disseminations. This demo shows a simple one-to-one mapping of the datastreams in the object to the behavior methods.

Document Transformation Demo

https://wiki.lyrasis.org/display/FEDORA35/Fedora+Administrator
https://wiki.lyrasis.org/display/FEDORA35/fedora-ingest-demos

The Fedora data object demonstrates the Document Transformation behaviors. There are 3 datastreams in the object, one XML source demo:14
document, and two XSLT stylesheets. The object's content model provides one dissemination service which is associated with the "Document Transform"
service definition and the Fedora Local Saxon Service (service deployment). Two services are available: getDocumentStyle1 and getDocumentStyle2.
When these methods are run the repository mediates access to the Fedora Local Saxon Service to produce the appropriate transformation on the XML
source in the object. The dissemination result will be one of two document styles.

Image Collection Demo
This demo illustrates the use of the Resource Index search service to fulfill collection behaviors.

For this demo to work, the must be enabled prior to ingesting these objects.Resource Index

A series of data objects (demo:SmileyBucket, demo:SmileyKeychain, etc.) subscribe to the image behaviors defined by the sDef object demo:
DualResImage. Each of these image objects also use the RELS-EXT datastream to assert its membership in the demo:SmileyStuff collection. The demo:
SmileyStuff collection subscribes to sDef object demo:Collection, which defines two methods: list and view. The collection object uses the demo:
DualResImageCollection sDep to implement those behaviors.

To see the dynamic HTML listing of collection members in action, you can visit:

http://hostname/fedora/get/demo:SmileyStuff/demo:Collection/view

This dissemination first requests the list of members of the demo:SmileyStuff collection using the local . Then it uses the local risearch service saxon service
to transform the XML results into a human-readable HTML page. The query text and the stylesheet are both datastreams of the SmileyStuff collection and
act as inputs to the list and view behaviors, respectively.

https://wiki.lyrasis.org/display/FEDORA35/Resource+Index
https://wiki.lyrasis.org/display/FEDORA35/Resource+Index+Search
https://wiki.lyrasis.org/display/FEDORA35/SAXON+XSLT+Processor+Service

	Demonstration Objects

