
1.
2.
3.
4.
5.
6.
7.
8.
9.

How do you configure Eclipse for Fedora with Maven?
Eclipse Helios

Eclipse Helios is now available. This document is in the process of being updated as the new release is tested. There is a known which causes problem
lockup with the Sun JDK 1.6.0_21 which is resolved in the current Helios download and also has a manual workaround. Note that this problem still exists in
Galileo and Ganymede. We have performed a successful build from Helios on WinXP and Windows 7 with Subversion and M2Eclipse installed. Help from
the community would be appreciated.

How do I configure Eclipse to work with Fedora with Maven?

Eclipse is a popular integrated development environment (IDE) which is used by many developers for the Fedora Repository service, clients and other
related services. You do not need to build the Fedora Repository from source in Eclipse in order to build your own projects though it may be convenient.
You may build the Fedora Repository from the command line and just use Eclipse for editing and debugging. The options are too numerous for one article
so we will describe just a few popular configurations to get you started.

The current Fedora Repository trunk (Fedora 3.3 and greater) uses for building the source. Maven helps manage dependencies and Apache Maven
makes project information readily available. You can build Fedora using Maven from the command line or within Eclipse. Like Eclipse, Maven is based on
the idea of using "convention over configuration." While Maven is very flexible, it promotes good modularization practices which should make using Eclipse
for Fedora easier.

This article uses the Fedora Repository service as an example. It is important that you read the first. It contains a Installation and Configuration Guide
significant amount of information about the Fedora Repository and building it from source which is not repeated here.

Steps

Ensure you have the latest version of the Sun 1.6 JDK installed
Install any Eclipse package (Galileo is recommended though Ganymede should work)
Configure the JDK in Eclipse
Configure Maven
Install a Subversion Client or Subversion Eclipse plug-in (recommended)
Install the plug-inM2Eclipse
Create an Eclipse project (using a Subversion plug-in and M2Eclipse)
Customize Eclipse workspace settings (required for committers, optional for others)
Add other interesting plug-ins

1. Installing the JDK

Fedora is only tested with the Sun JDK though others may work well or even be required for a particular operational environments such as specific
application servers. Eclipse has a very sophisticated structure which supports the installation and use of multiple Java compilers and run time
environments. Initially, we recommend installing the Sun JDK to get success and then you may explore other options.

The Oracle/Sun JDK may be obtained from for common platforms. Fedora is developed using Java 1.6. It is not required that Eclipse be running in here
the same JDK/JRE version as is being used for development but it is convenient if you use the same JDK/JRE version on the command line as you are
using for Eclipse. Note that a JDK is required for some operations of the M2Eclipse plug-in described below.

It is also convenient for you install the JDK outside "Program Files" if you are developing in Microsoft Windows, using a directory with no spaces in the
name. Eclipse and the Fedora command-line Maven-based build tools will work with proper set-up but you will have less trouble if you avoid directories
with spaces in their names. Also, very long directory structures may be found in Eclipse projects and generally don't cause problems with Eclipse, but may
cause problems with other products in Windows XP. So having a top-level directory is helpful.Workspaces

2. Install Eclipse

Download and install . You may install any package since you can add plug-ins later but it is convenient to install the "Eclipse IDE for Java EE Eclipse
Developers" since it already contains most of the plug-ins you may want to use. It is recommended that you install the JDK separately since you may wind
up using several versions.

3. Select the JDK and Set the Compiler Compliance

Make sure Java 1.6 appears as an installed JRE and that it is the default JRE for the project.

A) Use the Eclipse Menu: Window -> Preferences -> Java ->
Installed JREs. Despite the name of the menu item it is highly
recommended that you install JDKs. Use of a JDK is required for the
M2Eclipse Maven plug-in described below. Use the Add button to
add the Java 1.6 JDK if it is not already installed. Check the Java 1.6
JDK and press .OK

http://www.infoq.com/news/2010/07/eclipse-java-6u21
http://maven.apache.org
https://wiki.lyrasis.org/display/FEDORA34/Installation+and+Configuration+Guide
http://www.oracle.com/technetwork/indexes/downloads
http://www.eclipse.org/downloads/

B) Use the Eclipse Menu: Window -> Preferences -> Java ->
Compiler. Select in the 1.6 Compiler compliance level:
combo box and press .Apply

4. Configure Maven

The M2Eclipse plug-in includes an embedded Maven. Optionally you can also install Maven on the command-line. Regardless, you must have a local
Maven repository to cache dependencies and work products from the builds. A command-line Maven can be obtained from . http://maven.apache.org/ If
Eclipse cannot find the local Maven repository you will have ugly errors and Eclipse may lock-up.

Duraspace provides a Maven repository for Fedora dependencies which cannot be obtained from Maven Central or common public Maven repositories.
You do not have to do anything to use this repository, everything is handled by Maven from specifications in the POMs.

Maven will look for the repository in several standard locations. However, you can make things easier if you create a setting file. Settings may be obtained
globally from the Maven installation or in a settings file associated with your user. The user settings file varies depending on the operating system (in
Windows - "Documents and Settings\username\.m2\settings.xml", in Linux - "home/username/.m2/settings.xml"). The global setting file is usually in
<maven-install>/conf. If you install a command-line Maven you may accidentally wind up with two local Maven repositories. Just make sure everything
points to the same local repository. If you have problems may help to set the environment variable M2_HOME to <maven-install> and put <M2_HOME>
/bin on your path.

Example user settings.xml

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <localRepository>d:/m2/repository</localRepository>
</settings>

Example global settings.xml

<?xml version="1.0" encoding="UTF-8"?>

<!--
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file

http://maven.apache.org/

distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
-->

<!--
 | This is the configuration file for Maven. It can be specified at two levels:
 |
 | 1. User Level. This settings.xml file provides configuration for a single user,
 | and is normally provided in ${user.home}/.m2/settings.xml.
 |
 | NOTE: This location can be overridden with the CLI option:
 |
 | -s /path/to/user/settings.xml
 |
 | 2. Global Level. This settings.xml file provides configuration for all Maven
 | users on a machine (assuming they're all using the same Maven
 | installation). It's normally provided in
 | ${maven.home}/conf/settings.xml.
 |
 | NOTE: This location can be overridden with the CLI option:
 |
 | -gs /path/to/global/settings.xml
 |
 | The sections in this sample file are intended to give you a running start at
 | getting the most out of your Maven installation. Where appropriate, the default
 | values (values used when the setting is not specified) are provided.
 |
 |-->
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 http://maven.apache.org/xsd/settings-1.0.0.
xsd">
 <!-- localRepository
 | The path to the local repository maven will use to store artifacts.
 |
 | Default: ~/.m2/repository
 <localRepository>/path/to/local/repo</localRepository>
 -->
 <localRepository>d:/m2/repository</localRepository>

 <!-- interactiveMode
 | This will determine whether maven prompts you when it needs input. If set to false,
 | maven will use a sensible default value, perhaps based on some other setting, for
 | the parameter in question.
 |
 | Default: true
 <interactiveMode>true</interactiveMode>
 -->

 <!-- offline
 | Determines whether maven should attempt to connect to the network when executing a build.
 | This will have an effect on artifact downloads, artifact deployment, and others.
 |
 | Default: false
 <offline>false</offline>
 -->

 <!-- pluginGroups
 | This is a list of additional group identifiers that will be searched when resolving plugins by their

prefix, i.e.
 | when invoking a command line like "mvn prefix:goal". Maven will automatically add the group identifiers
 | "org.apache.maven.plugins" and "org.codehaus.mojo" if these are not already contained in the list.
 |-->
 <pluginGroups>
 <!-- pluginGroup
 | Specifies a further group identifier to use for plugin lookup.
 <pluginGroup>com.your.plugins</pluginGroup>
 -->
 </pluginGroups>

 <!-- proxies
 | This is a list of proxies which can be used on this machine to connect to the network.
 | Unless otherwise specified (by system property or command-line switch), the first proxy
 | specification in this list marked as active will be used.
 |-->
 <proxies>
 <!-- proxy
 | Specification for one proxy, to be used in connecting to the network.
 |
 <proxy>
 <id>optional</id>
 <active>true</active>
 <protocol>http</protocol>
 <username>proxyuser</username>
 <password>proxypass</password>
 <host>proxy.host.net</host>
 <port>80</port>
 <nonProxyHosts>local.net|some.host.com</nonProxyHosts>
 </proxy>
 -->
 </proxies>

 <!-- servers
 | This is a list of authentication profiles, keyed by the server-id used within the system.
 | Authentication profiles can be used whenever maven must make a connection to a remote server.
 |-->
 <servers>
 <!-- server
 | Specifies the authentication information to use when connecting to a particular server, identified by
 | a unique name within the system (referred to by the 'id' attribute below).
 |
 | NOTE: You should either specify username/password OR privateKey/passphrase, since these pairings are
 | used together.
 |
 <server>
 <id>deploymentRepo</id>
 <username>repouser</username>
 <password>repopwd</password>
 </server>
 -->

 <!-- Another sample, using keys to authenticate.
 <server>
 <id>siteServer</id>
 <privateKey>/path/to/private/key</privateKey>
 <passphrase>optional; leave empty if not used.</passphrase>
 </server>
 -->
 </servers>

 <!-- mirrors
 | This is a list of mirrors to be used in downloading artifacts from remote repositories.
 |
 | It works like this: a POM may declare a repository to use in resolving certain artifacts.
 | However, this repository may have problems with heavy traffic at times, so people have mirrored
 | it to several places.
 |
 | That repository definition will have a unique id, so we can create a mirror reference for that
 | repository, to be used as an alternate download site. The mirror site will be the preferred
 | server for that repository.

 |-->
 <mirrors>
 <!-- mirror
 | Specifies a repository mirror site to use instead of a given repository. The repository that
 | this mirror serves has an ID that matches the mirrorOf element of this mirror. IDs are used
 | for inheritance and direct lookup purposes, and must be unique across the set of mirrors.
 |
 <mirror>
 <id>mirrorId</id>
 <mirrorOf>repositoryId</mirrorOf>
 <name>Human Readable Name for this Mirror.</name>
 <url>http://my.repository.com/repo/path</url>
 </mirror>
 -->
 </mirrors>

 <!-- profiles
 | This is a list of profiles which can be activated in a variety of ways, and which can modify
 | the build process. Profiles provided in the settings.xml are intended to provide local machine-
 | specific paths and repository locations which allow the build to work in the local environment.
 |
 | For example, if you have an integration testing plugin - like cactus - that needs to know where
 | your Tomcat instance is installed, you can provide a variable here such that the variable is
 | dereferenced during the build process to configure the cactus plugin.
 |
 | As noted above, profiles can be activated in a variety of ways. One way - the activeProfiles
 | section of this document (settings.xml) - will be discussed later. Another way essentially
 | relies on the detection of a system property, either matching a particular value for the property,
 | or merely testing its existence. Profiles can also be activated by JDK version prefix, where a
 | value of '1.4' might activate a profile when the build is executed on a JDK version of '1.4.2_07'.
 | Finally, the list of active profiles can be specified directly from the command line.
 |
 | NOTE: For profiles defined in the settings.xml, you are restricted to specifying only artifact
 | repositories, plugin repositories, and free-form properties to be used as configuration
 | variables for plugins in the POM.
 |
 |-->
 <profiles>
 <!-- profile
 | Specifies a set of introductions to the build process, to be activated using one or more of the
 | mechanisms described above. For inheritance purposes, and to activate profiles via <activatedProfiles/>
 | or the command line, profiles have to have an ID that is unique.
 |
 | An encouraged best practice for profile identification is to use a consistent naming convention
 | for profiles, such as 'env-dev', 'env-test', 'env-production', 'user-jdcasey', 'user-brett', etc.
 | This will make it more intuitive to understand what the set of introduced profiles is attempting
 | to accomplish, particularly when you only have a list of profile id's for debug.
 |
 | This profile example uses the JDK version to trigger activation, and provides a JDK-specific repo.
 <profile>
 <id>jdk-1.4</id>

 <activation>
 <jdk>1.4</jdk>
 </activation>

 <repositories>
 <repository>
 <id>jdk14</id>
 <name>Repository for JDK 1.4 builds</name>
 <url>http://www.myhost.com/maven/jdk14</url>
 <layout>default</layout>
 <snapshotPolicy>always</snapshotPolicy>
 </repository>
 </repositories>
 </profile>
 -->

 <!--
 | Here is another profile, activated by the system property 'target-env' with a value of 'dev',
 | which provides a specific path to the Tomcat instance. To use this, your plugin configuration

 | might hypothetically look like:
 |
 | ...
 | <plugin>
 | <groupId>org.myco.myplugins</groupId>
 | <artifactId>myplugin</artifactId>
 |
 | <configuration>
 | <tomcatLocation>${tomcatPath}</tomcatLocation>
 | </configuration>
 | </plugin>
 | ...
 |
 | NOTE: If you just wanted to inject this configuration whenever someone set 'target-env' to
 | anything, you could just leave off the <value/> inside the activation-property.
 |
 <profile>
 <id>env-dev</id>

 <activation>
 <property>
 <name>target-env</name>
 <value>dev</value>
 </property>
 </activation>

 <properties>
 <tomcatPath>/path/to/tomcat/instance</tomcatPath>
 </properties>
 </profile>
 -->
 </profiles>

 <!-- activeProfiles
 | List of profiles that are active for all builds.
 |
 <activeProfiles>
 <activeProfile>alwaysActiveProfile</activeProfile>
 <activeProfile>anotherAlwaysActiveProfile</activeProfile>
 </activeProfiles>
 -->
</settings>

5. Install a Subversion Client

It is recommended that you install a Subversion plug-in, either or (use only one or bad things will happen), even if you only intend to Subversive Subclipse
build from the command-line. Installing a Subversion plug-in enables you to see the history of files and often is required for advanced functions of other
plug-ins. Unfortunately, some plug-ins may work only with Subversive or Subclipse but not both. Please provide comments on this article regarding your
experience.

A Subversion plug-in is required for a number of functions in the Maven plug-in M2Eclipse . Subclipse is provided by the same described below
organization as M2Eclipse however Subversive integration with M2Eclipse is available and in our testing seems to support all common operations. Also,
Subversive is the incubated Eclipse plug-in.

Many developers use a command-line or graphical Subversion client such as as their primary SCM client. Building from the command-line svn Tortoise
and using Eclipse primarily for editing, debugging, and other functions is a common approach for developing Fedora Commons projects (see Building the

). However, it is still very helpful to have a Subversion plug-in installed. One Maven plug-in we use to automatically creates build Fedora Repository
numbers, , and depends on having a command-line Subversion available, but will only generate a warning which can be buildnumber-maven-plugin
ignored if one is not present.

In the following example we show the steps for using Subversive. Installing Subversive is a bit complicated and is changing as it is moving through Eclipse
incubation. Once you have installed a Subversion client the following steps may be used to customize your Eclipse settings and to link to the Fedora
Subversion repository. Note that some of the steps can only be accomplished after you have downloaded the Fedora sources preferably using Subversion.
Don't worry, just get them done before you start editing or building the code.

A) Use the Eclipse Menu: Window -> Open Perspective -> Other.
Using the dialog select Open Perspective SVN Repository

 and press .Exploring Apply

http://www.polarion.com/products/svn/subversive/download.php?utm_source=eclipse.org&utm_medium=link&utm_campaign=subversive
http://subclipse.tigris.org/
http://www.open.collab.net/downloads/subversion/
http://tortoisesvn.tigris.org/

B) Use the right-mouse click menu or the Eclipse Menu: File -> New -
> Repository Location. Enter the URL of the Subversion repository
(no authentication is needed to download), optionally add a custom
label and press .OK

C) Currently the Fedora Repository Project Subversion repository is
located at: https://fedora-commons.svn.sourceforge.net/svnroot

 on . After you have /fedora-commons/fedora Sourceforge.net
successfully define the repository location you should be able to see
its .trunk, branches, and tags

D) Use the Eclipse Menu: Window -> Preferences -> Team -> SVN -
> Properties Configuration. On the tab Automatic Properties
import from resources/devdocs/devenv/subversion.config
the Fedora Repository sources and press . Please note, its Apply
best to do this step later after you have installed M2Eclipse and
downloaded the project.

https://fedora-commons.svn.sourceforge.net/svnroot/fedora-commons/fedora
https://fedora-commons.svn.sourceforge.net/svnroot/fedora-commons/fedora

1.

2.

6. Install the M2Eclipse Plug-in

There are Eclipse targets built into Maven but the from Sonatype provides a capable and well documented addition to your Eclipse IDE. It is M2Eclipse
highly recommended that you install it. The installation is well documented and there is an online book that is highly Developing with Eclipse and Maven
recommended reading. Note that the installation process only documents the use of Subclipse, another Sonatype contribution. However, there is a
Subversive integration available which in our testing supports common used M2Eclipse functionality (you must install the Subversive Integration

 plug-in).for the M2Eclipse Project here

M2Eclipse will complain if you are not running Eclipse within a JDK are instead using a stand-alone JRE. This will require you to edit the file eclipse.ini
found in top-level director of your Eclipse installation. The formatting of this file is tricky and unforgiving. Below is an example from a Windows installation:

-startup
plugins/org.eclipse.equinox.launcher_1.0.200.v20090520.jar
--launcher.library
plugins/org.eclipse.equinox.launcher.win32.win32.x86_1.0.200.v20090519
-product
org.eclipse.epp.package.jee.product
--launcher.XXMaxPermSize
256M
-showsplash
org.eclipse.platform
--launcher.XXMaxPermSize
256m
-vm
c:/java/jdk1.6.0_13/bin/javaw.exe
-vmargs
-Dosgi.requiredJavaVersion=1.6
-Xms512m
-Xmx1024m

7. Create an Eclipse Project

You must create an Eclipse project for Fedora. The layout of the Fedora Repository source pre-dated the use of Eclipse and does not follow the most
natural layout for Eclipse projects. However, Eclipse can be configured to be an effective IDE for development. The ongoing refactoring for Maven is
making it more natural to build using Eclipse and enabling the use of Eclipse plug-ins. There are actually too many ways to configure Eclipse for us to
document here. We will, however, illustrate one common configuration which you may use (and challenge the community to add more options to this
article).

Eclipse Friendliness

Refactoring of Fedora is underway to improve modularity which will help make Fedora more Eclipse friendly. Code sections have been entirely
restructured to build with Maven. However, there is still work to be done in refactoring Fedora to improve modularity. You can follow this ongoing effort now
in this Wiki and JIRA. The work at is concluded.ANT to Maven2

There is an easy way to create the Fedora Repository project with M2Eclipse. First you must specify the repository location using the SVN Repository
Exploring perspective. Then using the Checkout as Maven Project wizard you will create the project and import the source code. fedora-repository
As a prerequisite, we assume you have already successfully configured the client in Eclipse, installed M2Eclipse and configured your local Subversion
Maven repository. The following example uses the Subclipse plug-in.

Set up the Subversion Repository

http://m2eclipse.sonatype.org/
http://www.sonatype.com/products/m2eclipse/documentation
http://community.polarion.com/projects/subversive/download/integrations/update-site/
https://wiki.lyrasis.org/display/FCREPO/ANT+to+Maven2

2.
3.
4.
5.

Select the or the with which you wish to worktrunk branch
Use the WizardCheck Out as Maven Project
Create a Maven configurationRun As Maven Build
Use the configuration to build the project the first timeRun As Maven Build

Set Up the Source Repository and Create the Project

A) In a fresh install of Eclipse you will see the Welcome screen. It will
help if you use the Eclipse Menu: Project -> Build Automatically to
uncheck this function. We will use the Maven build for the first build
of the repository.

B) Using the Eclipse Menu: Select the Window -> Open Perspective -
> SVN Repository Exploring open the perspective.

C) You should see the following perspective:

D) Right click in view to display the SVN Repositories Add SVN
 dialog. Use the URL Repository https://fedora-commons.svn.

.sourceforge.net/svnroot/fedora-commons/fedora

https://fedora-commons.svn.sourceforge.net/svnroot/fedora-commons/fedora
https://fedora-commons.svn.sourceforge.net/svnroot/fedora-commons/fedora

E) Open the repository and select the trunk or a desired branch. This
may take some time depending on the response of the Subversion
repository.

F) Right click to display the SVN menu and select Check out as
Maven Project...

G) Select the target location and revision. If you do not see as a svn
choice in the combo box Subclipse is not correctly set up. SCM URL
Dialogs for Subversive may be different. If you have only one
repository, the dialog will already be populated. Otherwise select the
Fedora Subversion repository URL. Typically you will check out the H

 and . Open the ead Revision Check out All projects Advan
 drop down and select and ced Resolve Workspace Projects Se

. This will create a separate parate projects for modules
Eclipse project for each Maven pom which you may find useful later.

H) Select the button to display the Next> Select Project
 dialog. It is a personal preference where the workspace Location

will be created on your workstation. If you have other project in the
same workspace you may want to set up a working set just for the
Fedora Repository (e.g. fcrepo) though you can to this later too.
Select the button and the wizard will complete its Finish
operations. This may take some time because the wizard must
create the Eclipse project(s), download the sources, and download
the Maven dependencies to your local repository. If this process
seems to hang you may be having problems with the configuration of
your local Maven repository. If this happens you may be able to kill
Eclipse, correct the problem and use the Update Maven

 feature of M2Eclipse. Otherwise, delete the project Dependencies
and start again using the Check out as Maven Project...
wizard.

Set up the Maven Run As Configuration and Build the Project

I) Switch to the Java perspective to set up the run configurations.

J) You will notice a number of projects, one for each Maven pom.
Using this approach lets you make Eclipse settings for each module.
The name of the top-level project is automatically set to and fcrepo
M2Eclipse will have already make key Eclipse project settings for
you.

K) There are two ways to create a new from Run Configuration
the Java perspective. You can right click on the project to fcrepo
start the new dialog.Run Configuration

L) Alternately, you can use the Eclipse Menu: Run -> Run
Configurations ...

M) Start the Maven dialog using a right click Run Configuration
on and selecting the menu item.Maven Build new

N) You will see the dialog. Using a Maven Run Configuration
run configuration is exactly the same as running a Maven build from
the command line. Later we will show how to use more of the Eclipse
build features but for the first build lets use a basic run configuration.
Give the configuration a name, set the base directory and the goals
which build the entire repository. Press the button to save the Apply
configuration (notice the name will be added to the list of Maven run
configurations in the left panel of the dialog.

O) Check that the JRE is set to the Sun Java 1.6 initially. After you
have a successful build you may also want to build and test under
other JREs. Press the button to save the configuration and Apply
press the button to start the build.Run

P) Since Fedora uses generated code and Maven will update the
project structure it is helpful to refresh the project display after each
build. This may not be fully sufficient so you also may need to update
select Maven configurations after a build (see)Update Maven Projects

Q) You can add additional Maven run configurations for individual
modules, other goals and integration tests. Note for the integration
tests you will need a compatibly configured running Fedora
Repository.

R) Congratulations! You have succeeded in you first Maven build of
Fedora.

S) Update Maven Configuration

Since Fedora uses generated code and Maven will update the project structure it is sometime necessary to manually update selected projects helpful.
After the first build and if there are any changes to the common or generated code right click on the and projects. Use common fedora-admin-client
the Maven -> Update Maven Configuration menu item to refresh the project.

M2Eclipse has a number of options for deploying projects but its handling of hierarchical projects is not complete. Since Fedora is a hierarchical project, it
takes a little experience but Eclipse will work properly if permitted. Using the default M2Eclipse configuration is best. It presents subproject POMs as
ordinary appropriate (usually Java) Eclipse projects in the workspace separately for each POM. It you use this configuration, the Eclipse functionality will
work well. However, you will see both the hierarchical POM projects and the Java Projects in the project explorer views. If you look at the source directly
you will see a normal directory hierarchy. M2Eclipse will use information from the POM to create functional Eclipse projects (setting up the .project and .
classpath files). You can build equally using Eclipse Maven configuration or from the command line.

8. Customize the Workspace Settings

It is helpful if you customize the workspace settings. The coding standards settings are agreed to by the committers. Contributors are asked to use of the
same settings if possible to help facilitate the acceptance process. You will have customize the workspace setting each time you create a new workspace
or use the feature once you have your first workspace set up. Many of the settings can be loaded from files in the source Copy Workspace Setting
distribution. To set up your workspace (code style settings, etc):

See resources (Fedora post 3.3) <fedora-repository>/resources/doc/devdocs/devenv/README.txt

The next video shows how to prepare the Eclipse IDE for development of the Fedora Repository source code.

This video was prepared using Europa but generally will work for Eclipse Galileo and Ganymede also. There are small differences in the IDE versions and
their dialogs. These instructions and screen images below were prepared with Ganymede and we are adding Galileo.

To set up Eclipse (Helios, Galileo and Ganymede):

It is recommended that you use to Eclipse Helios or Galileo (this section has been tested for Helios and Galileo - some small differences will be
encountered). You must install Eclipse and a compatible Java JDK prior to beginning this configuration. Also you need to obtain a set of configuration files
which are located in the Fedora Repository source.

A) Use the Eclipse Menu: Window -> Preferences -> Java -> Code Style

Under the top-level section:Code Style

1.
2.

Check "Add @Override ...", and leave other checkboxes unchecked
Make sure "Exception variable name" is e

B) Import the configurations files for the , , and from the directory in the Fedora Clean Up Code Templates Formatter Organize Imports build
Repository source.

1.
2.
3.

4.
5.

Under the section import and press Clean-up fedora-cleanup.xml Apply
Under the section import and press Code Templates fedora-codetemplates.xml Apply
Also under the section in edit to replace "Firstname Lastname" with your own name and press Code Templates Comments -> Types Types A
pply
Under the section import and press Formatter fedora-formatter.xml Apply
Under the section import fedora.importorder and press Organize Imports Apply

1.
2.
3.

C) Use the Eclipse Menu: Window -> Preferences -> Java -> Editor -> Save Actions

Select "Perform the selected actions on save"
Make sure "Additional Actions" is selected
Click "Configure...", and go to the "Code Organizing" tab, and make sure "Remove trailing whitespace" and "All lines" are selected

Optional Settings

Fedora makes use of WSDL generated Java classes. Without these, Eclipse will complain loudly. There are problems with refreshing in Eclipse that make
generated code a source of some difficulties. Also, the Eclipse builder provides substantial feedback such as errors and warnings that can aid in coding
but can also be overwhelming.

A) Use the Eclipse Menu: Window -> Preferences -> Team -> Ignored Resources

Add , , and and press the button.target .settings .classpath .project Apply

B) In the Problems view add a filter for warnings and errors. Use the menu item. Press the button to create a filter Configure Contents New
configuration. Provide a name for the filter. Uncheck , , and in the subpanel. WSDL Problem XML Problem XML Schema Problem XSL Problem Types
If you created a working set you may want to apply the filter to it. Otherwise select and appropriate scope. Press the button to create the filter.Ok

1.
2.
3.
4.
5.

6.

1.
a.
b.

c.

C) Use the Eclipse Menu: Window -> Preferences -> Java -> Compiler -> Errors/Warnings and open the Deprecated and Restricted API
dropdown. Set the combo box to . Press the or button to save the settings. This may Forbidden reference (access rules) Warning Apply Ok
start a full rebuild.

Installing from the Command-Line

Make sure you have a fresh checkout from Subversion.
If you have not previously built do it now.
After a successful build create the installer (or use the in the build configuration).-P installer
Copy the installer from the <workspace>/fedora-repository>/installer/target to an install directory.
Run the installer to create an initial deployment (see the). You should use a different directory from your Installation and Configuration Guide
Eclipse workspace for now. You may choose any configuration but use the install until you have more experience.Quick
Start and stop the server once to ensure the configuration is correct and the directory is created. This /path/to/tomcat/webapps/fedora
will permit the installer to set up the initial configuration which is difficult to do manually.

Known Issues

Eclipse creates META-INF/MANIFEST.MF files
https://issues.sonatype.org/browse/MNGECLIPSE-671
https://bugs.eclipse.org/bugs/show_bug.cgi?id=285510

https://wiki.lyrasis.org/display/FEDORA34/Installation+and+Configuration+Guide
https://issues.sonatype.org/browse/MNGECLIPSE-671
https://bugs.eclipse.org/bugs/show_bug.cgi?id=285510

1.

c.
2.

a.

1.
2.
3.

http://www.nabble.com/New-files-added-to-src-tree-on-Maven-import-td24772549.html
New or renamed modules are not updated in Eclipse project layout

http://www.nabble.com/New-modules-and-SCM-headaches.-td22167868.html

Eclipse with Maven notes

These are the steps I followed to get Fedora building correctly in Eclipse -- Eddie (6 Nov 2009)

Tested with:

Eclipse 3.4 (Ganymede), Carbon 32-bit & Eclipse 3.5 (Galileo), Cocoa 64-bit
m2eclipse
Subversive

SVNKit 1.3
Subversive Integration for the M2Eclipse Project (from)http://www.polarion.org/projects/subversive/download/integrations/update-site/

I also needed to update SVN Team Provider using rather http://download.eclipse.org/technology/subversive/0.7/update-site/
than the one provided by the update site in Galileo

Add the fedora svn repository to Eclipse ()https://fedora-commons.svn.sourceforge.net/svnroot/fedora-commons/fedora
Optional: create a new working set for Fedora (e.g. fcrepo)
Checkout trunk as a Maven project (if you created a working set, check out into the working set)

http://www.nabble.com/New-files-added-to-src-tree-on-Maven-import-td24772549.html
http://www.nabble.com/New-modules-and-SCM-headaches.-td22167868.html
http://www.polarion.org/projects/subversive/download/integrations/update-site/
http://download.eclipse.org/technology/subversive/0.7/update-site/
https://fedora-commons.svn.sourceforge.net/svnroot/fedora-commons/fedora

4.

5.
6.

7.

1.
a.

b.

Update Project Configuration (using the Maven menu) for common and fedora-admin-client projects

Add target, .settings, .classpath, .project to Ignored Resources (Preferences/Team)
Java Compiler Errors

Filter Problems

Known Issues

Eclipse creates META-INF/MANIFEST.MF files
https://issues.sonatype.org/browse/MNGECLIPSE-671

https://issues.sonatype.org/browse/MNGECLIPSE-671

1.

b.
c.

2.
a.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=285510
http://www.nabble.com/New-files-added-to-src-tree-on-Maven-import-td24772549.html

New or renamed modules are not updated in Eclipse project layout
http://www.nabble.com/New-modules-and-SCM-headaches.-td22167868.html

https://bugs.eclipse.org/bugs/show_bug.cgi?id=285510
http://www.nabble.com/New-files-added-to-src-tree-on-Maven-import-td24772549.html
http://www.nabble.com/New-modules-and-SCM-headaches.-td22167868.html

	How do you configure Eclipse for Fedora with Maven?

