
1.
a.
b.

2.
a.
b.

3.
a.

i.
1.
2.
3.
4.

ii.
iii.

1.
2.

a.
b.
c.

4.
a.

b.
c.
d.

5.
a.
b.

6.
a.

i.
ii.
iii.

7.

2023-06-29 DSpace 7 Working Group Meeting

Date
Attendees
Current Work

Project Board
New Feature development process for 7.6
Issue Triage process for 7.6

Notes

Date

29 Jun 2023 from 14:00-15:00 UTC

Location: https://lyrasis.zoom.us/my/dspace?pwd=RTk4QUhISnhPRi9YenVrTFJKbDllQT09 (Meeting ID: 502 527 3040) : dspace. Passcode

More connection options available at DSpace Meeting Room

Agenda
(60 mins) General Discussion Topics

DSpace release retrospective7.6
Anything we feel we'd like to do differently as we move towards 8.0?
Any processes/procedures we'd like to keep in place for 8.0?

Disbanding the "DSpace 7 Working Group". Moving back to general "DSpace Developer" Meetings
Proposing simply renaming this meeting & keeping the meeting time the same.
Wiki obviously will need to be updated to note this change and make it easy to find where the developers meet

Planning for 8.0 (Summary from Steering meeting yesterday)
Goals for 8.0

Move forward major features which missed 7.x.
COAR Notify support (4Science & Harvard)
OpenAIRE integration with notification broker/claim service (4Science)
Porting " " from old REST API to new one. (U of Laval, Canada)REST-Based Quality Control Reports
Duplicate Detection in Submission ported from DSpace-CRIS (The Library Code)

Include new features which empower users in the admin UI. Make things easier for Admins.
Improve documentation, training to allow for greater community contributions. (Ease setup/install/customization, etc.)

Angular upgrade/maintenance. Spring upgrade/maintenance. Solr upgrade/maintenance, etc.
Possibly need cleanup of Submission Refactor to support Angular upgrade. https://github.com/DSpace
/dspace-angular/issues/858

Library used to create the Submission form may need updating?
Timeline for 8.0 release: April 2024
In parallel, proof of concepts / planning regarding modularization (e.g. 4Science angular proposal) and OCFL/preservation
storage (Lyrasis proposal to be discussed in more detail).

Planning for 7.6.x releases - bug-fix only.
Tim will bring to Steering the suggestion to switch post-7.6 release numbering to 7.6.1, 7.6.2, 7.6.3 (for eventual bug fix
release). This clarifies that 7.6 is the final feature release, and that every later release is a minor upgrade.
Two development branches: and dspace-7.x main
Two project boards in GitHub: and DSpace 7.6.x Maintenance DSpace 8.0 Release
Revisiting code review process brainstorms: See Incentivizing Code Reviews and PR Testing

(No Updates) Demo Site migration to Lyrasis (and) https://demo7.dspace.org/ https://api7.dspace.org/server/
Tim will work with Lyrasis to make this happen as soon as reasonably possible now that 7.6 is released.
Demo site will be renamed back to "demo.dspace.org" (instead of "demo7.dspace.org").

Future meeting discussions for 8.0
4Science proposed to present

COAR Notify on July 13th 2023
ORCID Login improvement on July 20th 2023
Angular : library-based architecture proposal updated proposal on July 20th

(Other topics?)

Attendees

Tim Donohue
Art Lowel (Atmire)
Andrea Bollini (4Science)
Paulo Graça
Mark H. Wood
Grazia Quercia (4Science)
Corrado Lombardi (4Science)
Julian Timal (eScire)
Martin Walk
Melissa Anez

http://www.timeanddate.com/worldclock/fixedtime.html?hour=14&min=0&sec=0&p1=0
https://lyrasis.zoom.us/my/dspace?pwd=RTk4QUhISnhPRi9YenVrTFJKbDllQT09
https://wiki.duraspace.org/display/DSPACE/DSpace+Meeting+Room
https://github.com/orgs/DSpace/projects/23
https://www.coar-repositories.org/notify/
https://www.openaire.eu/openaire-eld-enrich-local-data-via-the-openaire-graph
https://wiki.lyrasis.org/display/DSDOC7x/REST+Based+Quality+Control+Reports
https://github.com/DSpace/dspace-angular/issues/858
https://github.com/DSpace/dspace-angular/issues/858
https://github.com/orgs/DSpace/projects/29
https://github.com/orgs/DSpace/projects/27
https://wiki.lyrasis.org/display/DSPACE/Incentivizing+Code+Reviews+and+PR+Testing
https://demo7.dspace.org/
https://api7.dspace.org/server/
https://wiki.lyrasis.org/display/DSPACE/DSpace+8+Angular+%3A+library-based+architecture+proposal
https://wiki.lyrasis.org/display/~tdonohue
https://wiki.lyrasis.org/display/~artlowel
https://wiki.lyrasis.org/display/~bollini
https://wiki.lyrasis.org/display/~paulo_graca
https://wiki.lyrasis.org/display/~mwood
https://wiki.lyrasis.org/display/~grazia.quercia4science
https://wiki.lyrasis.org/display/~corrado.lombardi
https://wiki.lyrasis.org/display/~jtimal
https://wiki.lyrasis.org/display/~martin.walk
https://wiki.lyrasis.org/display/~manez

1.

2.

a.

b.

c.

3.

a.

b.
c.
d.

e.

4.

Current Work

Project Board

DSpace 7.6 Project Board: https://github.com/orgs/DSpace/projects/23

To quickly find PRs assigned to you for review, visit (This is also available in the GitHub header under "Pull https://github.com/pulls/review-requested
Requests Review Requests")

New Feature development process for 7.6
Per a decision of DSpace Steering, Everything else must be a that would new features for 7.6 are only welcome if they used to exist in 6.x. fix
normally be acceptable in a "bug fix only" release.

7.6 is a "transition" release, where we are transitioning back to our . As of 8.0, new features will only be allowed in major release numbering scheme
releases (8.0, 9.0, 10.0) and minor releases will only include bug/security fixes (8.1, 8.2, 8.3).

For brand new UI features, at a minimum, the UI ticket should contain a description of how the feature will be implemented
If the UI feature involves entirely new User Interface interactions or components, we recommend mockups or links to examples

. (If it's useful, you can create a Wiki page and use the plugin in our wiki)elsewhere on the web Balsamiq wireframes
Feature design should be made publicly known (i.e. in a meeting) to other Developers. Comments/suggestions must be accepted for

 After that, silence is assumed to be consent to move forward TWO WEEKS, or until consensus is achieved (whichever comes first).
with development as designed. (The team may decide to extend this two week deadline on a case by case basis, but only before the
two week period has passed. After two weeks, the design will move forward as-is.)
This does mean that if a UI feature is later found to have design/usability flaws, those flaws will need to be noted in a bug ticket (to
ensure we don't repeat them in other features) and fixed in follow-up work.

For brand new REST features (i.e. new endpoints or major changes to endpoints), at a minimum we need a REST Contract prior to
development.

REST Contract should be made publicly known (i.e. in a meeting) to other Developers. Comments/suggestions must be accepted for
After that, silence is assumed to be consent to move forward TWO WEEKS, or until consensus is achieved (whichever comes first).

with development. (The team may decide to extend this two week deadline on a case by case basis, but only before the two week period
has passed. After two weeks, the design will move forward as-is.)
This does mean that some REST features may need future improvement if the initial design is found to later have RESTful design
flaws. Such flaws will need to be noted in a bug ticket (to ensure we don't repeat them in other features) and fixed in follow-up work.
REST API Backwards Compatibility support

During 7.x development, we REQUIRE backwards compatibility in the REST API layer between any sequential 7.x
releases. This means that the 7.1 REST API must be backwards compatible with 7.0, and 7.2 must be compatible with 7.1, etc.

However, deprecation of endpoints is allowed, and multi-step 7.x releases may involve breaking changes (but those
breaking changes must be deprecated first & documented in Release Notes). This means that it's allowable for the
7.2 release to have changes which are incompatible with the 7.0 release, provided they were first deprecated in
7.1. Similarly, 7.3 might have breaking changes from either 7.1 or 7.0, provided they were deprecated first.

After 7.x development, no breaking changes are allowed in minor releases. They can only appear in major releases (e.g. 7.x8.0
or 8.x9.0 may include breaking changes).

No new Entity Types will be accepted in 7.x
Because new out-of-the-box Entity Types require strategic planning, we have decided that we will be unable to accept new Entity Types
in any 7.x release. That said, any newly suggested Entity Types will be passed along to Steering / Leadership so that they may be
considered during the planning of the 8.0 release.
Enhancements, improvements or bug fixes to the Configurable Entities feature itself, or existing out-of-the-box Entity Types are still
welcome in 7.x. We want to ensure that Configurable Entities is made as stable and usable as possible in 7.x, in preparation for
discussions of new entity types in 8.x and beyond.

Issue Triage process for 7.6

Overview of our Triage process:
Initial Analysis: will do a quick analysis of all issue tickets coming into our (this is where newly reported Tim Donohue Backlog Board
issues will automatically appear).
Prioritization/Assignment: If the ticket should be considered for this release, will categorize/label it (high/medium/low Tim Donohue
priority) and immediately assign to a developer to further analysis. Assignment will be based on who worked on that feature in the past.

"high priority" label = A feature is badly broken or missing/not working. These tickets must be implemented first, as ideally they s
 in the next release. (Keep in mind however that priorities may change as the release date approaches. So, it hould be resolved

is possible that a "high priority" ticket may be rescheduled if it is a new feature that cannot fit into release timelines.)
"medium priority" label = A feature is difficult to use, but mostly works.. These tickets be resolved prior to the next release might
(but the release will not be delayed to fix these issues).
"low priority" label = A feature has usability issues or other smaller inconveniences or a non-required feature is not working as
expected. These tickets are simply "nice to have" in the next release. We'll attempt to fix them as time allows, but no
guarantees are made.

Detailed Analysis: Developers should immediately analyze assigned tickets and respond back within 1-2 days. The developer is
expected to respond to with the following:Tim Donohue

Is the bug reproducible? (If the developer did not understand the bug report they may respond saying they need more
information to proceed.)
Does the developer agree with the initial prioritization (high/medium/low), or do they recommend another priority?
Does the bug appear to be on the frontend/UI or backend/REST API?
Does the developer have an idea of how difficult it would be to fix? Either a rough estimate, or feel free to create an immediate
PR (if the bug is tiny & you have time to do so).
Are you (or your team) interested in being assigned this work?

https://github.com/orgs/DSpace/projects/23
https://github.com/pulls/review-requested
https://wiki.lyrasis.org/display/DSPACE/Releases#Releases-ReleaseNumberingScheme
https://balsamiq.com/wireframes/
https://wiki.lyrasis.org/display/~tdonohue
https://github.com/orgs/DSpace/projects/24
https://wiki.lyrasis.org/display/~tdonohue
https://wiki.lyrasis.org/display/~tdonohue

4.

a.

Final Analysis: Tim Donohue will look at the feedback from the developer, fix ticket labels & move it to the appropriate work Board. If it is
moved to the , then the ticket may be immediately assigned back to the developer (if they expressed an interest) to begin Project Board
working on it.

If the ticket needs more info, will send it back to the reporter and/or attempt to reproduce the bug himself. Once Tim Donohue
more info is provided, it may be sent back to the developer for a new "Detailed Analysis".

Notes

Feedback on 7.x process
Scope: Way too much in 7.x (too long to get out - 4 years is a long time)

Kept adding more features. Too much "scope creep". Not strict on release dates
Took time to improve what is there which resulted in larger refactors (couldn't avoid all "scope creep" that occurred & there were
positives out of it.)

Early releases we may have taken too much time to solutions. Got better about that later on.discuss
We learned the hard way: move features, not release dates. We should keep this.
DSpace 7 is a massive improvements over 6.x.
Massive overhaul (UI and REST API) is not something we'll need to do frequently. Was necessary in 7.x.
Code Reviews: Lose a lot of time keeping PRs up-to-date without being able to anticipate when reviews will occur.
Originally noted that 7.x needed more than just a flashy UI. But, maybe that was all we needed all along
Community involvement: Did we do too much work to bring them along early on? It wasn't easily attainable to bring community
members along until we "finalized" the 7.x platform.

Hadn't documented the design principles well enough (and the design principles sometimes changed)
Funded Development: absolutely to ensure this level of effort could occur for 7.x. Allowed service providers to balance necessary
work on open source DSpace much better.
Staffing: More support for Tim/Tech Lead.

https://wiki.lyrasis.org/display/~tdonohue
https://github.com/orgs/DSpace/projects/16
https://wiki.lyrasis.org/display/~tdonohue

	2023-06-29 DSpace 7 Working Group Meeting

