
Fedora XACML Policy Writing Guide
Under Construction

This page is in the process of being edited. – DWD

With a Reference Collection of Sample Policies for Fedora

1 Introduction

XACML provides a very flexible language for expressing access control policies. This document offers guidance on writing a range of useful policies for 
Fedora such as

Broad repository-wide policies for controlling access to Fedora API operations
Specific repository-wide policies for controlling access to groups of digital objects based on various attributes
Fine-grained object-specific policies for controlling access to individual digital objects.

This guide also provides a collection of sample XACML policies intended as reference material to help in writing custom XACML policies for Fedora. The 
sample policies demonstrate one possible authoring style for XACML; there are other ways to write XACML policies that have the same effect. Most of the 
sample repository-wide policies are authored to have a  meaning that each policy has a single rule that either permits or denies access. This single effect,
style of policy writing results in many individual policies, but each policy is atomic and uncomplicated. An alternative is to have fewer policies, each with 
multiple rules within. This multi-rule approach can result in more complicated policies, but is, nevertheless, appropriate for writing   object-specific policies
in Fedora where a single policy states all the rules for a particular digital object. In either case, it is essential to understand the policy combining algorithm 
that is configured for your repository's XACML-based Authorization module. By default, the "Deny Overrides" algorithm is configured in Fedora, which 
means that when multiple policies are applicable to an incoming request, deny will trump permit. As you add new policies to the mix, you must be aware of 
what kinds of policies are already active in the repository. Also, when writing a policy that contains more than one rule, you must understand the the rule 
combining algorithm (which is specified in the root element of an individual XACML policy). The sample policies use the "first-applicable" rule combining 
algorithm, which means that the first applicable rule in the policy will prevail.

This document is not intended to be a comprehensive tutorial on writing XACML policies. Anyone intending to author custom XACML policies for Fedora is 
encouraged to read the following documentation provided by OASIS Technical Committee that defined the XACML standard, and Sun who is the provider 
of the open source Sun XACML engine that is used in the Fedora implementation. It is very important to understand the basics of XACML to ensure that a 
suite of policies works as intended. One of the most important concepts in using XACML is understanding how multiple policies can interact with each 
other (in good ways, or in ways you didn't intend). By following the examples in this guide, you should be able to set up many kinds of access control 
policies for your repository. With additional help from the following documents, you should be able to do more advanced policies, and change some of the 
XACML settings for how sets of policies are combined.

More information on writing XACML policies:

OASIS XACML Specification: this is the official specification and a good reference document

A Brief Introduction to XACML: this is nice introduction to the XACML concepts

OASIS XACML Technical Committee: this home page of the technical committee provides access to other documents on XACML

More information on the Fedora security architecture:

Securing Your Fedora Repository : documentation on security options and configuring configuring user authentication sources for Fedora repositories

Fedora Authorization with XACML Policy Enforcement : documentation on configuration and implementation of the Fedora XACML-based policy 
enforcement module

Binding to user attributes to policies : a discussion of how to use attributes from different sources (e.g., Tomcat, LDAP, Shibboleth) in policies

2 Writing Fedora XACML Policies

2.1 The Fedora Policy Vocabulary

A  is defined to enable the creation of XACML policies for Fedora repositories and digital objects. This vocabulary define Fedora-specific policy vocabulary
a set of URNs that can be used to identify specific Fedora API operations, Fedora object attributes, and the Fedora environment within an XACML policy. 
These URNs are used as attribute designators in XACML policies, specifically within a SubjectAttributeDesignator, ResourceAttributeDesignator, 
ActionAttributeDesignator, or EnvironmentAttributeDesignator.

The set of identifiers defined for the Fedora policy vocabulary can be found in the Fedora software distribution at:

$FEDORA_HOME\server\fedora-internal-use\vocabulary.txt

This vocabulary provides a set of identifiers (URNs) that can appear in XACML policies to refer to Fedora API operations (Actions in XACML), any aspects 
of a Fedora digital object (Resources in XACML), key attributes of the environment in which Fedora runs in (Environment in XACML), and common subject 
(i.e., user) attributes. (Other user attributes are named according to site-usage and so their names aren't included in the Fedora XACML vocabulary.)

2.2 Policy Basics: Identifier, Description, and Rule Combining Algorithm

http://docs.oasis-open.org/xacml/access_control-xacml-2_0-core-spec-cd-04.pdf
http://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://wiki.lyrasis.org/display/FEDORA36/Security
https://wiki.lyrasis.org/display/FEDORA36/XACML+Policy+Enforcement
https://wiki.lyrasis.org/display/FEDORA36/XACML+Policy+Enforcement#XACMLPolicyEnforcement-ATTR
https://wiki.lyrasis.org/download/attachments/30221057/vocabulary.txt?version=1&modificationDate=1218571700934&api=v2


Every policy has an identifier, a rule combining algorithm, and a description. In the root element of an XACML policy there is an attribute to provide the 
policy with a unique identifier. Also, the <Description> element provides a place to put a textual description of the purpose of the policy.

<Policy PolicyId="deny-apia"
    RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-applicable"
    xmlns="urn:oasis:names:tc:xacml:1.0:policy"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

    <Description>This policy will DENY access to THESIS datastreams.</Description>

    <Target>
      ...
    </Target>

    <Rule>
      ...
    </Rule>

</Policy>

The main body of a policy consists of a  and one or more  which are described in the next sections. Note that in the root element of a Policy Target Rules
policy, the rule combining algorithm (i.e., attribute "RuleCombiningAlgID"), specifies how the Fedora Policy Enforcement Module will deal with multiple 
Rules in a policy (how those rules are combined and evaluated together). This algorithm is valid for only the specific policy containing it, and is 
independent of similar algorithms in other policies. It governs how the various effects of the potentially several rules of a policy are combined into the single 
effect of the policy as a whole. It is also independent of the policy-combining algorithm operative for all policies collectively, which governs how the various 
results of all policies are combined into a single result.

2.3 Defining the Policy Target

A Policy Target is the part of a policy that specifies matching criteria for figuring out whether a particular policy is applicable to an incoming service request. 
A Target contains three basic "matching" components: , , and . All of these components must be matched to the context of an Subjects Actions Resources
incoming request for the policy to be applicable. These matching specifications can be built upon . (A fourth matching component, XACML Functions
Environments, is defined in XACML and will be available in Fedora's XACML policies when it is available in the Sun XACML version as used in Fedora.)

<Policy PolicyId="deny-apia"
        RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-applicable"
        xmlns="urn:oasis:names:tc:xacml:1.0:policy"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

  <Description>This policy will DENY access to THESIS datastreams.</Description>

  <Target>

    <Subjects>
      ...
    </Subjects>

    <Resources>
      ...
    </Resources>

    <Actions>
      ...
    </Actions>

  </Target>

  <Rule/>

</Policy>

A Policy Target can be specified for a Policy (or for a PolicySet, which is an advanced way of grouping policies together). A <Target> element is defined at 
the Policy level (as a child of the root <Policy> element). A Policy Target applies to any contained Rules that are expressed in that policy. However, a Rule 
may have its own Target, in which case the Rule-level Target overrides — for that Rule only — the Policy level Target. Typically, a Target defined at the 
Rule level is used to replace and so tighten a broader match specification found at the overall Policy level. (This is described below.)

Resources



All Fedora resources (objects and datastreams) have attribute identifiers defined in the Fedora policy vocabulary (see: ^vocabulary.txt).

The  element of a Policy Target is used to wrap one or more descriptions of the kinds of Fedora resources (objects, datastreams, <Resources>
disseminations, etc.) that the policy should apply to. At runtime, the Policy Enforcement Module will compare attributes of a requested resource against the 
criteria in the <Resources> specification within the policy Target to determine if the policy is applicable to the incoming request. For example, to define a 
policy that is applicable to any Fedora resource, the following is specified:

<Resources>
  <AnyResource/>
</Resources>

Within a single <Resource> specification, there may be one or more attributes that together determine whether a policy match should occur. Each 
<ResourceMatch> element is used to specify the name/value of an attribute of a Fedora resource.

If multiple <ResourceMatch> elements are specified, they will be logically ed together, meaning that for a policy to be applicable to an incoming AND
service request,  <ResourceMatch> specifications must match the attributes of the requested Fedora resource. The AttributeID in the all 
<ResourceAttributeDesignator> element is used to identify a particular resource attribute by a URN, as defined in the Fedora policy vocabulary. In the 
example below, there are two attributes to match on: "urn:...datastream:id" and "urn:...mimeType". The snippet says that a policy match will occur if the 
incoming request context indicates that the requested resource has the datastream id of THESIS and the MIME type of "application/pdf."

<Resources>
  <Resource>
    <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
      <ResourceAttributeDesignator
        AttributeId="urn:fedora:names:fedora:2.1:resource:*datastream:id*"
        DataType="http://www.w3.org/2001/XMLSchema#string"/>
      <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
        THESIS
      </AttributeValue>
    </ResourceMatch>
    <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
      <ResourceAttributeDesignator
        AttributeId="urn:fedora:names:fedora:2.1:resource:datastream:mimeType"
        DataType="http://www.w3.org/2001/XMLSchema#string"/>
      <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
        application/pdf
      </AttributeValue>
    </ResourceMatch>
  </Resource>
</Resources>

To create an   for resource matching, multiple <Resource> elements must be specified. If there are multiple  elements within the OR condition <Resource>
<Resources> wrapper component, the <Resource> elements are . This means that a match on only one of the Resource logically OR-ed together
specifications is necessary for the policy to apply to a service request. For example, the snippet below says that a resource match will occur if the incoming 
request is for a digital object that has the content model type of either "UVA_STD_IMAGE" or "MRSID."



1.  
2.  

<Resources>
  <Resource>
    <ResourceMatch
      MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
      <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
        UVA_STD_IMAGE
      </AttributeValue>
      <ResourceAttributeDesignator
        AttributeId="urn:fedora:names:fedora:2.1:resource:object:contentModel"
        DataType="http://www.w3.org/2001/XMLSchema#string"/>
    </ResourceMatch>
  </Resource>
  <Resource>
    <ResourceMatch
      MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
      <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
        MRSID
      </AttributeValue>
      <ResourceAttributeDesignator
        AttributeId="urn:fedora:names:fedora:2.1:resource:object:contentModel"
        DataType="http://www.w3.org/2001/XMLSchema#string"/>
    </ResourceMatch>
  </Resource>
</Resources>

Actions

All Fedora service operations have an action identifier in defined by the Fedora policy vocabulary (see: ^vocabulary.txt).

The  element of a Policy Target is used to wrap one or more service operations that this policy should apply to. At runtime, the Policy <Actions>
Enforcement Module will compare the identity of an incoming request against the criteria specific in the <Actions> of a Target in a policy. For example, to 
define a policy that is applicable to  Fedora service operation, the following is specified:any

<Actions>
  <AnyAction/>
</Actions>

From a practical standpoint in Fedora, there are only two attributes that pertain to identifying Fedora API operations:

an attribute that indicates what Fedora API is in context
an attribute that indicates the specific service operation within that API.

To create a policy that is intended for an  service (e.g., ALL operations of API-A) do the following:entire

<Actions>
  <Action>
    <ActionMatch
      MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
      <AttributeValue DataType="http://www.w3.org2001/XMLSchema#string">
        urn:fedora:names:fedora:2.1:action:api-a
      </AttributeValue>
      <ActionAttributeDesignator
        AttributeId="urn:fedora:names:fedora:2.1:action:api"
        DataType="http://www.w3.org/2001/XMLSchema#string"/>
    </ActionMatch>
  </Action>
</Actions>

To create a policy that is about a specific operation in a Fedora API do the following:



<Actions>
  <Action>
    <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
      <AttributeValue
        DataType="http://www.w3.org/2001/XMLSchema#string">
          urn:fedora:names:fedora:2.1:action:id-getDatastreamDissemination
      </AttributeValue>
      <ActionAttributeDesignator
        AttributeId="urn:fedora:names:fedora:2.1:action:id"
        DataType="http://www.w3.org/2001/XMLSchema#string"/>
    </ActionMatch>
  </Action>
</Actions>

The above can be considered a shortcut for fully qualifying a service operation within its respective service API. An alternative way to specify an Action as 
a Fedora API operation is to refer to the Fedora service API  the service operation. As with <SubjectMatch> and <ResourceMatch> specifications, AND
multiple . For example the following snippet says that the policy will match if the incoming <ActionMatch> *elements are *logically AND-ed together
request pertains to the Fedora API-A service AND the service request is for the the "getDatastreamDissemination" operation.

<Actions>
  <Action>
    <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
      <AttributeValue DataType="http://www.w3.or/2001/XMLSchema#string">
        urn:fedora:names:fedora:2.1:action:api-a
      </AttributeValue>
      <ActionAttributeDesignator
        AttributeId="urn:fedora:names:fedora:2.1:action:api"
        DataType="http://www.w3.org/2001/XMLSchema#string"/>
    </ActionMatch>
    <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
      <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
        urn:fedora:names:fedora:2.1:action:id-getDatastreamDissemination
      </AttributeValue>
      <ActionAttributeDesignator
        AttributeId="urn:fedora:names:fedora:2.1:action:id"
        DataType="http://www.w3.org/2001/XMLSchema#string"/>
    </ActionMatch>
  </Action>
</Actions>

To create an   for action matching, multiple <Action> elements must be specified. If there are multiple  elements within the OR condition <Action>
<Actions> wrapper component, the <Action> elements are . This means that a match on only one of the Action specifications is logically OR-ed together
necessary for the policy to apply to a service request. For example, the snippet below says that a resource match will occur if the incoming request is either
the getDatastreamDissemination operation of API-A or the getDissemination operation of API-A.

Note: The "shortcut" method of referring to a Fedora API operation is used in the example (i.e., we have an ActionMatch for the specific Fedora API of "api-
a") because Fedora actions identifiers are unique in themselves. Fedora automatically knows that the getDatastreamDissemination operation is part of API-
A.



<Actions>
  <Action>
    <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
      <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
        urn:fedora:names:fedora:2.1:action:id-getDatastreamDissemination
      </AttributeValue>
      <ActionAttributeDesignator
        AttributeId="urn:fedora:names:fedora:2.1:action:id"
        DataType="http://www.w3.org/2001/XMLSchema#string"/>
    </ActionMatch>
  </Action>
  <Action>
    <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
      <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
        urn:fedora:names:fedora:2.1:action:id-getDissemination
      </AttributeValue>
      <ActionAttributeDesignator
        AttributeId="urn:fedora:names:fedora:2.1:action:id"
        DataType="http://www.w3.org/2001/XMLSchema#string"/>
    </ActionMatch>
  </Action>
</Actions>

Subjects

The Fedora policy vocabulary (see: ^vocabulary.txt) defines general-purpose attributes for use in policies (e.g., login-id). However, attributes for subjects 
will vary depending on what a repository uses as the source of user information (e.g., tomcat-users.xml, LDAP, Shibboleth). Fedora XACML policies can 
make reference to the identifiers of any subject attribute that can be passed into Fedora from authenticating sources. See the section below on "Getting 
User Attributes into the Fedora Policy Enforcement Module" for more information on the sources of subject attributes.

The  element of a Policy Target is used to wrap one or more descriptions of users or agents that this policy should apply to. At runtime, the <Subjects>
Fedora Policy Enforcement Module will compare attributes of the user/agent making a service request against the criteria specific in the <Subjects> 
specification of the policy Target to determine if the policy is applicable to the incoming request. For example, to define a policy that is applicable to any 
kind of user or agent, the following is specified:

<Subjects>
  <AnySubject/>
</Subjects>

Within a single <Subject> specification, there may be one or more XACML attributes that together determine whether a policy match should occur. Each 
<SubjectMatch> element is used to specify an name/value of an attribute of a user/agent. Multiple <SubjectMatch> *elements are used to specify 

. This means that for a policy to be applicable to an incoming service request,  multiple attributes of a subject, and are *logically AND-ed together all
<SubjectMatch> specifications must match the attributes of the requesting user/agent. In the example below, there is only one attribute to match on (i.e., 
"fedoraRole"). The AttributeID in the <SubjectAttributeDesignator> element is used to identify a particular subject attribute by its local or global identifier. 
The snippet says that a policy match will occur if the incoming request context indicates that the user/agent has a role attribute with the value of 
"administrator."

<Subjects>
  <Subject>
    <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
      <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
        administrator
      </AttributeValue>
      <SubjectAttributeDesignator AttributeId="fedoraRole" MustBePresent="false"
        DataType="http://www.w3.org/2001/XMLSchema#string"/>
    </SubjectMatch>
  </Subject>
</Subjects>

To create an   for subject matching, multiple <Subject> elements must be specified. If there are multiple  elements within the OR condition <Subject>
<Subjects> wrapper component, the <Subject> elements are . This means that a match on only one of the Subject specifications logically OR-ed together
is necessary for the policy to apply to a service request. For example, the snippet below says that a subject match will occur if the requesting user has the 
role of either "administrator" or "superuser."



<Subjects>
  <Subject>
    <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
      <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
        administrator
      </AttributeValue>
      <SubjectAttributeDesignator AttributeId="fedoraRole" MustBePresent="false"
        DataType="http://www.w3.org/2001/XMLSchema#string"/>
    </SubjectMatch>
  </Subject>
  <Subject>
    <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
      <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
        superuser
      </AttributeValue>
      <SubjectAttributeDesignator AttributeId="fedoraRole" MustBePresent="false"
        DataType="http://www.w3.org/2001/XMLSchema#string"/>
    </SubjectMatch>
  </Subject>
</Subjects>

Environments

The Environments component of a Target is intended to specify aspects of the runtime environment that would make the policy match the incoming 
request. Such attributes include the current date, current time, the IP address of the client, and the protocol being used for the request. The  Environments
element is discussed in the OASIS XACML specification, but it is  that underlies the Fedora not yet implemented by the Sun XACML engine
Authorization module. This prevents the expression of environment matching criteria within Targets.

Therefore, do not create policies that specify Environment matching criteria in the policy Target.

Although the Environments element is not currently supported for use within a Target, this does not mean that you cannot encode matching criteria for 
environmental attributes within a policy. Within a policy Rule, you can specify a Condition that contains matching criteria for environmental attributes. Refer 
to the discussion of policy rules below for an example of Environment attribute matching in a Condition.

2.4 Defining Policy Rules

Each policy has at least one, and possibly more, rules. There must be at least one Rule in a policy that matches the incoming request for a policy to be 
deemed applicable to that request. The way the Sun XACML engine determines whether a rule is applicable to an incoming request is by evaluating the 
Target and optional Condition (if it exists). These are ANDed together, and the rule's effect achieved if the ANDed value is TRUE. (If there is no Condition, 
this result is simply the value of the Target.) The rule's Target is so used, and if it has no Target, the policy's Target is used instead.

<Policy PolicyId="deny-apia"
  RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-applicable"
  xmlns="urn:oasis:names:tc:xacml:1.0:policy"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

  <Description>This policy will DENY access to Dublin Core datastreams.</Description>

  <Target>
    ...
  </Target>

  <Rule RuleId="1" Effect="Deny">

    <Target>
      ...
    </Target>

    <Condition>
      ...
    </Condition>

  </Rule>

</Policy>

Rule



A policy contains one or more Rules. Each rule has a  and and . An Effect is the intended consequence of a satisfied rule, which can be either RuleId Effect
"Deny" or "Permit." This means that if the rule is deemed applicable to an incoming service request, and the rule's conditions evaluate to TRUE, then the 
specified effect should be enforced.

Target

Each Rule in a policy can have its own Rule Target. While a Policy Target generally describes the kinds of requests to which an entire policy applies, a 
Rule Target describes the kinds of request to which a particular rule applies. If a Rule Target is not present, the Policy Target is used to determine whether 
the Rule is applicable to an incoming request. When a policy target exists, it is applicable to every rule in the policy which does not have its own Target. In 
practice, a rule target is often more constrained than the associated policy target, fine tuning to specific Subject/Resource/Action match criteria that are in 
the context of a the particular rule.

Refer to the documentation above for the for the structure of a Target, since rule and policy Targets are defined using the same Defining a Policy Target 
elements.

Condition

A Condition is a predicate that must be satisfied for a rule to be assigned its effect. These predicates can be built upon .XACML Functions

While Targets are appealing, frame-like expressions, they have a constrained logic which isn't always expressive enough to narrow down whether a policy 
is applicable to a service request. Hence, the need for Condition elements. If either the policy Target or the rule Target is not able to adequately express a 
constraint, a Condition can be added to a Rule.  It cannot appear within a Target, nor directly under Policy _ A Condition can appear only within a Rule._
or PolicySet. If a Condition is intended to be applicable to the entire Policy, the Condition must be repeated in every Rule in that Policy. Unlike the 
relationship of rule targets to policy targets, conditions do in fact begin with the associate (rule or policy) target, and proceed to further constrain that target.

2.5 XACML Functions

The XACML specification defines numerous functions that can be used in defining attribute match criteria in Targets and in defining predicates for 
Conditions. Consult the  for a complete list of functions with their descriptions. For convenience, here is a small sampling of XACML Specification
convenient functions with their XACML identifiers:

Equality predicates
String Equality – urn:oasis:names:tc:xacml:1.0:function:string-equal
Boolean Equality – urn:oasis:names:tc:xacml:1.0:function:boolean-equal
Date/Time Equality – urn:oasis:names:tc:xacml:1.0:function:dateTime-equal
others

Logical functions
OR – urn:oasis:names:tc:xacml:1.0:function:or
AND – urn:oasis:names:tc:xacml:1.0:function:and
NOT – urn:oasis:names:tc:xacml:1.0:function:not
others

Comparison functions
Greater Than – urn:oasis:names:tc:xacml:1.0:function:integer-greater-than
Less Than – urn:oasis:names:tc:xacml:1.0:function:type-bag
Greater Than or Equal – urn:oasis:names:tc:xacml:1.0:function:integer-greater-than-or-equal
Less Than or Equal – urn:oasis:names:tc:xacml:1.0:function:integer-less-than-or-equal
Date/Time Greater Than – urn:oasis:names:tc:xacml:1.0:function:dateTime-greater-than
others

Bag and Set functions
Bag of Strings – urn:oasis:names:tc:xacml:1.0:function:string-bag
Member of Set – urn:oasis:names:tc:xacml:1.0:function:type-at-least-one-member-of
others

Below is an example Condition that uses several of these functions. This Condition evaluates to TRUE if the client IP address (from the environment of the 
incoming request) is NOT a member of a set of privileged IP addresses. The Condition element itself contains an outer-most function which is a  negation f

. Within the condition, we see the application of the , which specifies that the environment attribute "clientIpAddress" unction set membership function
(from the Fedora vocabulary) should be evaluated. Finally, the inner most  wraps a set of possible values for the clientIPAddress attribute. bag function
Again, if the clientIpAddress on the incoming request is not one of those in the bag of addresses, then the rule's Deny effect should take place.

http://docs.oasis-open.org/xacml/access_control-xacml-2_0-core-spec-cd-04.pdf


1.  

2.  

3.  

<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:not">
  <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-at-least-one-member-of">
    <EnvironmentAttributeDesignator
      AttributeId="urn:fedora:names:fedora:2.1:environment:httpRequest:clientIpAddress"
      DataType="http://www.w3.org/2001/XMLSchema#string"/>
    <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-bag">
      <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
        127.0.0.1
      </AttributeValue>
      <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
        128.84.103.11
      </AttributeValue>
    </Apply>
  </Apply>
</Condition>

In summary, each policy must have at least one Rule. For a Rule to have an effect, (1) the Rule must match the incoming request by virtue of a Target 
match (either via a policy Target, or a constraining rule Target), and (2) if a Condition is specified, the condition predicate evaluates to TRUE. An 
applicable rule will result in a Permit or Deny for an incoming request, based on what is specified in the Rule Effect.

2.6 Required vs. Optional Attributes in a Policy

There are times when an attribute that is referred to by a policy target will not be available on an incoming service request. By default, when the policy 
matching activity occurs - and an attribute specified in a policy is not found in the incoming request context - an Indeterminate result is returned and an 
authorization exception is thrown. Policy authors can avoid unwanted Indeterminate results by indicating in the attribute designators of a Target or 
Condition that a particular attribute can be considered optional in terms of whether it must existing in the incoming request context. This is done by setting 
MustBePresent="false" on a SubjectAttribututeDesignator, ResourceAttributeDesignator, ActionAttributeDesignator, or EnvironmentAttributeDesignator 
element. This will tell the Fedora Policy Enforcement module that it's ok if the incoming request does not have the specified attribute available within it. 
(The implicit/unstated default is MustBePresent="true")

Let's take an example to make this clearer. Consider a policy where the SubjectMatch specification talks about an attribute "fedoraRole" and specifies that 
the value of this attribute must be "administrator" in order for this policy to be considered applicable by the PDP. Now consider an incoming service request 
that has a user login id (e.g., "wdn5e") in the request context, but this user does not have a "fedoraRole" attribute associated with it. So, when the PEP 
tries to determine whether this policy is applicable to the incoming service request, it returns INDETERMINATE because it can't figure out whether there is 
a subject match without the presence of a "fedoraRole" attribute. This will cause an authorization exception to be thrown for the request because the PDP 
expects the "fedoraRole" attribute to be present in the request context. However, we essentially want to somehow indicate that the fedoraRole attribute is 
considered "optional" on an incoming request (i.e., not every incoming request must have this particular attribute in context). To do this, you must indicate 
in the policy Target that the attribute does not have to be present ("MustBePresent="false") in the incoming request as follows:

<Subjects>
  <Subject>
    <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
      <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
        administrator
      </AttributeValue>
      <SubjectAttributeDesignator AttributeId="fedoraRole" MustBePresent="false"
        DataType="http://www.w3.org/2001/XMLSchema#string"/>
    </SubjectMatch>
  </Subject>
</Subjects>

In this example, it's easy to imagine that another policy could independently permit access. Hence the fit of MustBePresent="false": if the policy above 
lacks an attribute, it may not be crucial to the ultimate authorization decision. Policies are not authored in isolation, but to work together.

2.7 Recommended Best Practices for Authoring Fedora XACML Policies

Set the PolicyId attribute in the XACML policy to match the filename of the policy. 

<Policy PolicyId="deny-objects-to-students" . . . > –  corresponds to filename of "/repository-policies/deny-objects-to-students.xml"

For object-specific policies, especially if kept in an XML file, set the PolicyID in the XACML and the policy filename to match the object PID, but 
with concession to demand of OS filenames (e.g., uses dash instead of colon). 

<Policy PolicyId="demo-5" . . . > –  corresponds to filename of "/object-policies/demo-5.xml"

Policies should use simplest rule-combining algorithm which gives desired outcome. Avoid a more complicated algorithm which happens to work, 
but which confuses because it implies more than what's there. A simple choice is the "first-applicable" rule combining algorithm which give 
precedence to the first rule in a policy to apply to a situation. 



3.  

4.  

5.  

1.  

2.  

3.  

4.  

5.  

6.  

<Policy PolicyId="demo-5" RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-applicable" . . . > 

An object-specific policy should be coded so that it applies only to that specific object. So-coded, if misplaced among general repository policies, 
that wouldn't be hurtful. 

Try to stick with "single-effect" policies, that is a policy should either permit or deny. Things can get confusing if a single policy has some rules that 
permit and some that deny. If most policies are single-effect, try to have them all be single-effect. You may wind up writing more individual 
policies, some that deny and some that permit, but from a policy management standpoint, it is probably easier to have atomic, unambiguous 
policies.

2.8 XACML Gotchas

XACML provides for an AttributeValue in a <Target> evaluation as a single value, but provides for an AttributeValue in a <Condition> evaluation 
as "bags" (sets), doing so even for either singleton or empty bags. Code policies accordingly. 

MatchId functions (which are used in Targets) are much restricted in allowed values, compared to the values allowed in the analogous 
FunctionIds (which are used in Conditions). There are no existing functions which are self-contained boolean combinations, such as not-equal. 
Since attributes are generally not boolean themselves (and so possibly negated), the not function can't be used as a MatchId, e.g., in a 
SubjectMatch element. Since SubjectMatch, e.g., expresses a single binary operation, there is no possibility of introducing negative logic into a 
Target. [An exception would be an explicit value returned by an attribute finder, which would signify the absence of the attribute.] 

Despite some evidence that <Environments> was added to <Target> generally, it doesn't seem to work currently in sunxacml. 

sunxacml has a relaxed parsing of policies; e.g., we have encountered schema violation (e.g., Action omitted between Actions and ActionMatch) 
which resulted only in the policy not being evaluated correctly, as opposed to failing parse. How widespread this is, we don't know. As a 
precaution, policies should be tested for effect. This is good practice, anyway, since testing is the only check of the policy-writer's understanding 
of xacml and against the inevitable typ0. 

Though sunxacml parsing is relaxed, <Description> </Description> apparently requires at least one-character content: <Desciption/> doesn't do it. 

In SubjectMatch, ResourceMatch, and ActionMatch blocks, place AttributeValue elements before AttributeDesignator. Also, avoid using two 
AttributeDesignator elements (without any AttributeValues). Though it may seem logical to use other ordering or attribute selection, it doesn't 
match the standard and won't work.

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:dateTime-less-than">
  <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#dateTime">
    2004-12-07T20:22:26.705Z
  </AttributeValue>
  <ResourceAttributeDesignator
    AttributeId="urn:fedora:names:fedora:2.1:resource:object:lastModifiedDate"
    DataType="http://www.w3.org/2001/XMLSchema#dateTime"/>
</ResourceMatch>

3. Default Repository-Wide Policies

out-of-the-box, the Fedora repository is configured with a default set of access control policies that provide for a highly restricted management service (API-
M), an open access service (API-A), and an open OAI provider service. These default access control policies establish the same level of out-of-the-box 
security on the repository that was previously configured for Fedora 2.0 release; however, as of Fedora 2.1 these basic access controls are now specified 
as XACML policies. Please consult the  documentation for a description of each default policy.Default Repository Policies

4. Custom Policies - Sample Repository-Wide Policies

The sample policies are written with the assumption that Fedora's  are unedited and activated. These default policies lock Default Repository-Wide Policies
down access to the Fedora API-M service so that only the Fedora Administrator is permitted access. The default policies also result in open access to API-
A (all users are permitted). Given this starting point, you can think writing custom policies as a way to "loosen up" the API-M defaults and "tighten up" the 
API-I defaults. In other words, it is likely that you will want to write policies that let more users have access to API-M operations. Also, you will likely want to 
add restrictions in who can access digital objects, datastreams, and disseminations (i.e., via API-A). The sample policies will demonstrate how to do these 
things, given various authentication scenarios. Notice that there are some policies which restrict access based on user identity/attributes based on 
Tomcat's default user directory ( tomcat-users.xml). Other policies demonstrate how to restrict access by user attributes/groups that are defined in an 
LDAP directory.

Note that the sample policies have been written for demonstration purposes. They are not intended to work as a collaborative set of policies, since they 
often demonstrate different ways of of doing the same basic thing (e.g., one policy demonstrating rules based on Tomcat user identity, another showing a 
similar thing with LDAP groups). If you want to try them out, you can put one or more of the sample policies into play by following the instructions for activati

 into a Fedora repository. However, it is recommended that you test them individually to understand the effect each policy has. This ng and loading policies
approach of augmenting the default policies, which are left as-is, allows progressive learning, without endangering your repository. It may be that this 
approach goes farther in opening up API-M than in tighting up API-I, and that eventually the default policy for API-A will need to be replaced by one or 
more policies written to your site's needs. So it goes. Ultimately, you can proceed to write a meaningful suite of policies that are intended to work together 
for your repository.

4.1 Repository Policies to  the API-A defaults at the   leveltighten service interface

https://wiki.lyrasis.org/display/FEDORA36/XACML+Policy+Enforcement#XACMLPolicyEnforcement-default
#
#


P
o
li

cy

S
e
r
vi
ce

XACML 
Policy 

File
Policy Description

4
.
1
.
1

A
P
I-
A

deny-
apia-to-
ldap-
group.
xml

Deny access to all API-A methods to users who are "Librarians" or "Info Technologists" (as indicated by their LDAP attributes).

4
.
1
.
2

A
P
I-
A

deny-
apia-if-
not-
tomcat-
role.xml

This policy will DENY access to ALL API-A methods to users who are NOT in the "administrator" or "professor" ROLES.

4
.
1
.
3

A
P
I-
A

deny-
apia-to-
tomcat-
user.xml

This policy will deny access to all API-A methods to a particular user based on login id (as registered in the tomcat-users.xml file).

4
.
1
.
4

A
P
I-
A

deny-
apia-
except-
by-
owner.
xml

Deny access to all API-A methods to any user unless that user is the owner of the object being accessed. This sample policy primarily 
exists to show how to create a policy that compares the owner-id of an object to the login-id of the current user. It is important to note that 
due to how XACML policies are processed, you  do this comparison in the <Subject> section of the XACML policy. The comparison cannot
must appear in a <Condition> specification in the <Rule> section.

4.2 Repository Policies to  the API-A defaults based on tighten object attributes

P
o
li

cy

S
e
r
v
i

ce

XACML 
Policy 

File
Policy Description

4
.
2
.
1

A
P
I-
A

deny-
objects-
by-pids-
to-
tomcat-
role.xml

Overall, this policy will identify a set of objects by their PIDs and it will DENY ALL APIA access to users of particular ROLES. NOTE: As a 
repository-wide policy, this policy demonstrates how to control access to specific objects (identified by PID). As an alternative, it is possible 
to create "object-specific" policies that either resides in the digital object's POLICY datastream, or that is stored in the object-specific policy 
directory. (See the Fedora system documentation on XACML policies for more information.)

4
.
2
.
2

A
P
I-
A

deny-
objects-
by-
cmodel-
to-ldap-
group.
xml

This policy will DENY all APIA access to digital objects that are EAD Finding AIDS. This is based on the object content model attribute 
having a value of "UVA_EAD_FINDING_AID." Specifically, the policy will DENY access to users that belong to a particular LDAP-defined 
GROUP.

4
.
2
.
3

A
P
I-
A

deny-
objects-
hide-
datastre
ams-if-
not-
tomcat-
role.xml

The overall intent of this policy is datastream hiding, meaning that raw datastreams must not be accessible to anyone except very privileged 
users, but service-mediated disseminations are accessible by a broader audience. The key point is that students can access disseminations 
of the object, but not the raw datastreams. This might typically be done in cases where lesser privileged users are given a derivation of the 
main datastream, or a lesser quality view, or a less complete view of the raw datastream content. Given that an object is of a certain content 
model (in this case UVA_STD_IMAGE), this policy will DENY datastream access to users who do NOT have the ROLE of "administrator" or 
"professor". It will also DENY dissemination access to users who do NOT have the ROLE of "student," "administrator," or "professor."

4.3 Repository Policies to  the API-A defaults at the  leveltighten datastream
P
o
li

cy

S
er
vi
ce

XACML Policy File Policy Description

4
.
3
.
1

A
PI
-
A

deny-apia-
datastream-all-to-
all-users.xml

This policy will DENY access to ALL datastreams. Specifically, it will DENY access to ALL USERS making requests to the 
getDatastreamDissemination method of API-A.

4
.
3
.
2

A
PI
-
A

deny-apia-
datastream-DC-to-
all-users.xml

This policy will DENY access to Dublin Core datastreams. Specifically, it will DENY access to ALL users making 
getDatastreamDissemination requests on API-A to obtain datastreams with an identifier of 'DC.'

https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-to-ldap-group.xml?version=1&modificationDate=1218809757323&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-to-ldap-group.xml?version=1&modificationDate=1218809757323&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-to-ldap-group.xml?version=1&modificationDate=1218809757323&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-to-ldap-group.xml?version=1&modificationDate=1218809757323&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-to-ldap-group.xml?version=1&modificationDate=1218809757323&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-if-not-tomcat-role.xml?version=1&modificationDate=1218809757321&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-if-not-tomcat-role.xml?version=1&modificationDate=1218809757321&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-if-not-tomcat-role.xml?version=1&modificationDate=1218809757321&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-if-not-tomcat-role.xml?version=1&modificationDate=1218809757321&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-if-not-tomcat-role.xml?version=1&modificationDate=1218809757321&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-to-tomcat-user.xml?version=1&modificationDate=1218809757316&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-to-tomcat-user.xml?version=1&modificationDate=1218809757316&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-to-tomcat-user.xml?version=1&modificationDate=1218809757316&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-to-tomcat-user.xml?version=1&modificationDate=1218809757316&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-except-by-owner.xml?version=1&modificationDate=1218809757319&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-except-by-owner.xml?version=1&modificationDate=1218809757319&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-except-by-owner.xml?version=1&modificationDate=1218809757319&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-except-by-owner.xml?version=1&modificationDate=1218809757319&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-except-by-owner.xml?version=1&modificationDate=1218809757319&api=v2
https://wiki.lyrasis.org/download/attachments/30221066/deny-apia-except-by-owner.xml?version=1&modificationDate=1218809757319&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-by-pids-to-tomcat-role.xml?version=1&modificationDate=1218810054778&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-by-pids-to-tomcat-role.xml?version=1&modificationDate=1218810054778&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-by-pids-to-tomcat-role.xml?version=1&modificationDate=1218810054778&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-by-pids-to-tomcat-role.xml?version=1&modificationDate=1218810054778&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-by-pids-to-tomcat-role.xml?version=1&modificationDate=1218810054778&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-by-pids-to-tomcat-role.xml?version=1&modificationDate=1218810054778&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-by-cmodel-to-ldap-group.xml?version=1&modificationDate=1218810054776&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-by-cmodel-to-ldap-group.xml?version=1&modificationDate=1218810054776&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-by-cmodel-to-ldap-group.xml?version=1&modificationDate=1218810054776&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-by-cmodel-to-ldap-group.xml?version=1&modificationDate=1218810054776&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-by-cmodel-to-ldap-group.xml?version=1&modificationDate=1218810054776&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-by-cmodel-to-ldap-group.xml?version=1&modificationDate=1218810054776&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-by-cmodel-to-ldap-group.xml?version=1&modificationDate=1218810054776&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-hide-datastreams-if-not-tomcat-role.xml?version=1&modificationDate=1218810054780&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-hide-datastreams-if-not-tomcat-role.xml?version=1&modificationDate=1218810054780&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-hide-datastreams-if-not-tomcat-role.xml?version=1&modificationDate=1218810054780&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-hide-datastreams-if-not-tomcat-role.xml?version=1&modificationDate=1218810054780&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-hide-datastreams-if-not-tomcat-role.xml?version=1&modificationDate=1218810054780&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-hide-datastreams-if-not-tomcat-role.xml?version=1&modificationDate=1218810054780&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-hide-datastreams-if-not-tomcat-role.xml?version=1&modificationDate=1218810054780&api=v2
https://wiki.lyrasis.org/download/attachments/30221062/deny-objects-hide-datastreams-if-not-tomcat-role.xml?version=1&modificationDate=1218810054780&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-all-to-all-users.xml?version=1&modificationDate=1218809814897&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-all-to-all-users.xml?version=1&modificationDate=1218809814897&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-all-to-all-users.xml?version=1&modificationDate=1218809814897&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-DC-to-all-users.xml?version=1&modificationDate=1218809814899&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-DC-to-all-users.xml?version=1&modificationDate=1218809814899&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-DC-to-all-users.xml?version=1&modificationDate=1218809814899&api=v2


4
.
3
.
3

A
PI
-
A

deny-apia-
datastream-DC-to-
tomcat-group-
ALT1.xml

This policy will DENY access to Dublin Core datastreams. Specifically, it will deny access to USER GROUPS making 
getDatastreamDissemination requests on API-A for datastreams with a datastream identifier of 'DC.' User groups are defined 
using custom roles in the tomcat-users.xml file.

4
.
3
.
4

A
PI
-
A

deny-apia-
datastream-DC-to-
tomcat-group-
ALT2.xml

This policy will DENY access to Dublin Core datastreams. Specifically, it will deny access to USER GROUPS making 
getDatastreamDissemination requests on API-A for datastreams with a datastream identifier of 'DC.' User groups are defined 
using custom roles in the tomcat-users.xml file.

4
.
3
.
5

A
PI
-
A

deny-apia-
datastream-
MRSID-if-not-
tomcat-role.xml|

This policy will DENY access to MRSID image datastreams by controlling access to the getDatastreamDissemination method of 
the Fedora Access Service (API-A). Specifically, it will DENY access to users who are NOT of particular ROLES when the 
requested resource is a datastream with identifier of 'MRSID.'

4
.
3
.
6

A
PI
-
A

deny-apia-
datastream-
TEISOURCE-to-
tomcat-user.xml|

This policy will DENY access to TEI datastreams by controlling access to the getDatastreamDissemination method of the Fedora 
Access Service (API-A). The TEI datastream is identified as a Resource where the Fedora datastream id has the value of 
'TEISOURCE.' This policy will DENY access to a SPECIFIC USER based on login id (as registered in the tomcat-users.xml file).

4.4 Repository Policies to  the API-A defaults at the  leveltighten dissemination
P
ol
icy

S
er
vi
ce

XACML Policy File Policy Description

4.
4.1

A
PI
-A

deny-apia-dissem-
demo1-getMedium-to-
all-users.xml

This policy will DENY access to the 'demo:1/getMedium' dissemination (defined on a disseminator that subscribes to the 
demo:1 behavior definition. Specifically, it will DENY access to ALL users making getDissemination requests on API-A for 
the 'demo:1/getMedium' dissemination.

4.
4.2

A
PI
-A

deny-apia-dissem-
demo1-getMedium-to-
ldap-group.xml

This policy will DENY access to the 'demo:1/getMedium' dissemination (defined on a disseminator that subscribes to the 
demo:1 behavior definition. Specifically, it will DENY access to users of particular LDAP-defined GROUPS who are making 
getDissemination requests on API-A for the 'demo:1/getMedium' dissemination.

4.
4.3

A
PI
-A

deny-apia-dissem-
demo1-getMedium-if-
not-tomcat-role.xml

This policy will DENY access to the 'demo:1/getMedium' dissemination (defined on a disseminator that subscribes to the 
demo:1 behavior definition. Specifically, it will DENY access to users who are NOT of particular ROLES who are making 
getDissemination requests on API-A for the 'demo:1/getMedium' dissemination.

4.
4.4

A
PI
-A

deny-apia-dissem-
demo1-getMedium-to-
tomcat-user.xml

This policy will DENY access to disseminations that are available on objects via a disseminator subscribing to the 'demo:2' 
behavior definition. Specifically, it will DENY access to a particular user (as registered in the tomcat-users.xml file).

4.
4.5

A
PI
-A

deny-apia-dissem-
DualResImage-to-all-
users.xml

This policy will DENY access to ALL disseminations that are available on objects via a particular disseminator (one that 
subscribes to an image-based behavior definition whose PID is 'demo:DualResImage'. Specifically, it will DENY access to 
ALL users making getDissemination requests on this disseminator.

4.5 Repository Policies to  the API-M defaults at the   levelloosen service interface
Poli
cy

Service XACML Policy File Policy Description

4.5.1API-M
permit-apim-by-ldap-
group.xml

4.5.2API-M
permit-apim-by-tomcat-
group.xml

4.5.3API-M
permit-apim-by-tomcat-
user.xml

4.5.4
API-A
/API-M

permit-if-owner.xml
If the logged-in user is the owner of an object, permit all actions. Note: This policy also works if the object has multipl

 and the logged-in user is one of them.e owners

5 Custom Policies - Sample Object-Specific Policies

5.1 Object-specific policies with multiple policy rules

Object-specific policies are policies that refer to one particular digital object. An object-specific policy is stored in the "POLICY" datastream of the digital 
object to which it pertains.

P
o
li

cy

S
e
r
vi
ce

XA
C

ML
Po
lic
y 

File

Policy Description

https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-DC-to-tomcat-group-ALT1.xml?version=1&modificationDate=1218809814901&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-DC-to-tomcat-group-ALT1.xml?version=1&modificationDate=1218809814901&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-DC-to-tomcat-group-ALT1.xml?version=1&modificationDate=1218809814901&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-DC-to-tomcat-group-ALT1.xml?version=1&modificationDate=1218809814901&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-DC-to-tomcat-group-ALT2.xml?version=1&modificationDate=1218809814895&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-DC-to-tomcat-group-ALT2.xml?version=1&modificationDate=1218809814895&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-DC-to-tomcat-group-ALT2.xml?version=1&modificationDate=1218809814895&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-DC-to-tomcat-group-ALT2.xml?version=1&modificationDate=1218809814895&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-MRSID-if-not-tomcat-role.xml?version=1&modificationDate=1218809814892&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-MRSID-if-not-tomcat-role.xml?version=1&modificationDate=1218809814892&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-MRSID-if-not-tomcat-role.xml?version=1&modificationDate=1218809814892&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-MRSID-if-not-tomcat-role.xml?version=1&modificationDate=1218809814892&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-TEISOURCE-to-tomcat-user.xml?version=1&modificationDate=1218809825291&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-TEISOURCE-to-tomcat-user.xml?version=1&modificationDate=1218809825291&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-TEISOURCE-to-tomcat-user.xml?version=1&modificationDate=1218809825291&api=v2
https://wiki.lyrasis.org/download/attachments/30221065/deny-apia-datastream-TEISOURCE-to-tomcat-user.xml?version=1&modificationDate=1218809825291&api=v2
https://wiki.lyrasis.org/download/attachments/30221064/deny-apia-dissem-demo1-getMedium-to-all-users.xml?version=1&modificationDate=1218809886423&api=v2
https://wiki.lyrasis.org/download/attachments/30221064/deny-apia-dissem-demo1-getMedium-to-all-users.xml?version=1&modificationDate=1218809886423&api=v2
https://wiki.lyrasis.org/download/attachments/30221064/deny-apia-dissem-demo1-getMedium-to-all-users.xml?version=1&modificationDate=1218809886423&api=v2
https://wiki.lyrasis.org/download/attachments/30221064/deny-apia-dissem-demo1-getMedium-to-ldap-group.xml?version=1&modificationDate=1218809886425&api=v2
https://wiki.lyrasis.org/download/attachments/30221064/deny-apia-dissem-demo1-getMedium-to-ldap-group.xml?version=1&modificationDate=1218809886425&api=v2
https://wiki.lyrasis.org/download/attachments/30221064/deny-apia-dissem-demo1-getMedium-to-ldap-group.xml?version=1&modificationDate=1218809886425&api=v2
https://wiki.lyrasis.org/download/attachments/30221064/deny-apia-dissem-demo1-getMedium-if-not-tomcat-role.xml?version=1&modificationDate=1218809886422&api=v2
https://wiki.lyrasis.org/download/attachments/30221064/deny-apia-dissem-demo1-getMedium-if-not-tomcat-role.xml?version=1&modificationDate=1218809886422&api=v2
https://wiki.lyrasis.org/download/attachments/30221064/deny-apia-dissem-demo1-getMedium-if-not-tomcat-role.xml?version=1&modificationDate=1218809886422&api=v2
https://wiki.lyrasis.org/download/attachments/30221064/deny-apia-dissem-demo1-getMedium-to-tomcat-user.xml?version=1&modificationDate=1218809886420&api=v2
https://wiki.lyrasis.org/download/attachments/30221064/deny-apia-dissem-demo1-getMedium-to-tomcat-user.xml?version=1&modificationDate=1218809886420&api=v2
https://wiki.lyrasis.org/download/attachments/30221064/deny-apia-dissem-demo1-getMedium-to-tomcat-user.xml?version=1&modificationDate=1218809886420&api=v2
https://wiki.lyrasis.org/download/attachments/30221064/deny-apia-dissem-DualResImage-to-all-users.xml?version=1&modificationDate=1218809886416&api=v2
https://wiki.lyrasis.org/download/attachments/30221064/deny-apia-dissem-DualResImage-to-all-users.xml?version=1&modificationDate=1218809886416&api=v2
https://wiki.lyrasis.org/download/attachments/30221064/deny-apia-dissem-DualResImage-to-all-users.xml?version=1&modificationDate=1218809886416&api=v2
https://wiki.lyrasis.org/download/attachments/30221059/permit-apim-by-ldap-group.xml?version=1&modificationDate=1218810125509&api=v2
https://wiki.lyrasis.org/download/attachments/30221059/permit-apim-by-ldap-group.xml?version=1&modificationDate=1218810125509&api=v2
https://wiki.lyrasis.org/download/attachments/30221059/permit-apim-by-tomcat-group.xml?version=1&modificationDate=1218810125511&api=v2
https://wiki.lyrasis.org/download/attachments/30221059/permit-apim-by-tomcat-group.xml?version=1&modificationDate=1218810125511&api=v2
https://wiki.lyrasis.org/download/attachments/30221059/permit-apim-by-tomcat-user.xml?version=1&modificationDate=1218810125513&api=v2
https://wiki.lyrasis.org/download/attachments/30221059/permit-apim-by-tomcat-user.xml?version=1&modificationDate=1218810125513&api=v2
https://wiki.lyrasis.org/download/attachments/30221058/permit-if-owner.xml?version=1&modificationDate=1218572498747&api=v2
#
#


5
.
1
.
1

N
/A

de
mo
-5.
xml

By using , this policy shows how to deny access to all raw datastreams in the object except to particular users (e.g., the multiple policy rules
object owners). It also shows how to deny access to a particular disseminations to selected user roles.

5
.
1
.
2

N
/A

de
mo
-1
1.
xml

By using , this policy shows how to deny access to particular datastreams in the object. 1) The policy will DENY everyone multiple policy rules
except professors and researchers access to  source datastreams of the demo:11 object by controlling access to the particular
getDatastreamDissemination method of the Fedora Access Service (API-A). 2) The policy will DENY everyone except students, professors, and 
researchers, access to all disseminations of demo:11. 3) This policy will also DENY ALL access to the demo:11 object to a SPECIFIC USER 
based on login id (as registered in the tomcat-users.xml file). NOTE: The net effect of the policy permits open access to the descriptive metadata 
datastream of demo:11.

5
.
1
.
3

N
/A

de
mo
-2
6.
xml

By using , this policy shows how to deny access to particular datastreams in the object. The policy will DENY visitors multiple policy rules
access to the TEI and FOP source datastreams of the demo:26 object by controlling access to the getDatastreamDissemination method of the 
Fedora Access Service (API-A). These datastreams are open to all other kinds of users, and Disseminations are open to all users. This is an 
object-specific policy. It could be stored inside the demo:26 digital object in the POLICY datastream OR in the directory for object-specific 
policies. (The directory location is set in the Authorization module configuration in the Fedora server configuration file (fedora.fcfg).

Unable to render {include}  The included page could not be found.Unable to render {include}

https://wiki.lyrasis.org/download/attachments/30221067/demo-5.xml?version=1&modificationDate=1218572539399&api=v2
https://wiki.lyrasis.org/download/attachments/30221067/demo-5.xml?version=1&modificationDate=1218572539399&api=v2
https://wiki.lyrasis.org/download/attachments/30221067/demo-5.xml?version=1&modificationDate=1218572539399&api=v2
https://wiki.lyrasis.org/download/attachments/30221067/demo-5.xml?version=1&modificationDate=1218572539399&api=v2
https://wiki.lyrasis.org/download/attachments/30221067/demo-11.xml?version=1&modificationDate=1218572539410&api=v2
https://wiki.lyrasis.org/download/attachments/30221067/demo-11.xml?version=1&modificationDate=1218572539410&api=v2
https://wiki.lyrasis.org/download/attachments/30221067/demo-11.xml?version=1&modificationDate=1218572539410&api=v2
https://wiki.lyrasis.org/download/attachments/30221067/demo-11.xml?version=1&modificationDate=1218572539410&api=v2
https://wiki.lyrasis.org/download/attachments/30221067/demo-11.xml?version=1&modificationDate=1218572539410&api=v2
https://wiki.lyrasis.org/download/attachments/30221067/demo-26.xml?version=1&modificationDate=1218572539412&api=v2
https://wiki.lyrasis.org/download/attachments/30221067/demo-26.xml?version=1&modificationDate=1218572539412&api=v2
https://wiki.lyrasis.org/download/attachments/30221067/demo-26.xml?version=1&modificationDate=1218572539412&api=v2
https://wiki.lyrasis.org/download/attachments/30221067/demo-26.xml?version=1&modificationDate=1218572539412&api=v2
https://wiki.lyrasis.org/download/attachments/30221067/demo-26.xml?version=1&modificationDate=1218572539412&api=v2

	Fedora XACML Policy Writing Guide

