
Storage Layer
In this section, we explain the storage layer: the database structure, maintenance, and the bitstream store and configurations. The bitstream store, also
known as assetstore or bitstore, holds the uploaded, ingested, or generated files (documents, images, audio, video, datasets, ...), where as the database
holds all of the metadata, organization, and permissions of content.

1 RDBMS / Database Structure
1.1 Maintenance and Backup
1.2 Configuring the RDBMS Component
1.3 Custom RDBMS tables, columns or views

2 Bitstream Store
2.1 Cleanup
2.2 Backup
2.3 Configuring the Bitstream Store

2.3.1 Configuring Traditional Storage
2.3.2 Configuring Amazon S3 Storage

2.4 Migrate BitStores

RDBMS / Database Structure

DSpace uses a relational database to store all information about the organization of content, metadata about the content, information about e-people and
authorization, and the state of currently-running workflows.

DSpace 6 database schema (Postgres). Right-click the image and choose "Save as" to save in full resolution. Instructions on updating this schema
diagram are in .How to update database schema diagram

DSpace uses to perform automated database initialization and upgrades. Flyway's role is to initialize the database tables (and default FlywayDB
content) prior to Hibernate initialization.

The class manages all Flyway API calls, and executes the SQL migrations under the org.dspace.storage.rdbms.DatabaseUtils
 package and the Java migrations under the org.dspace.storage.rdbms.sqlmigration org.dspace.storage.rdbms.

 package. migration
Once all database migrations have run, a series of are triggered to initialize the (empty) database with required default Flyway Callbacks
content. For example, callbacks exist for adding default DSpace Groups (), default Metadata & Format GroupServiceInitializer
Registries (), and the default Site object (). All Callbacks are under the DatabaseRegistryUpdater SiteServiceInitializer org.

 package.dspace.storage.rdbms
While Flyway is automatically initialized and executed during startup, various are also available on the command Database Utilities
line. These utilities allow you to manually trigger database upgrades or check the status of your database.

DSpace uses as the object relational mapping layer between the DSpace database and the DSpace code.Hibernate ORM
The main Hibernate configuration can be found at [dspace]/config/hibernate.cfg.xml
Hibernate initialization is triggered via Spring (beans) defined . This Spring [dspace]/config/spring/api/core-hibernate.xml
configuration pulls in some settings from DSpace , namely all Database (db.*) settings defined there.Configuration

https://wiki.lyrasis.org/display/DSDOC/How+to+update+database+schema+diagram
https://flywaydb.org/
https://flywaydb.org/documentation/callbacks.html
https://wiki.lyrasis.org/display/DSDOC6x/Database+Utilities
http://hibernate.org/orm/
https://wiki.lyrasis.org/display/DSDOC6x/Configuration+Reference

All DSpace Object Classes provide a DAO (Data Access Object) implementation class that extends a GenericDAO interface defined in o
 class. The default (abstract) implementation is in clarg.dspace.core.GenericDAO org.dspace.core.AbstractHibernateDAO

ss.
The DSpace Context object () provides access to the configured (Dorg.dspace.core.Context org.dspace.core.DBConnection
atabase Connection), which is HibernateDBConnection by default. The class org.dspace.core.HibernateDBConnection
provides access the the Hibernate Session interface (org.hibernate.Session) and its Transactions.

Each Hibernate Session opens a single database connection when it is created, and holds onto it until the Session is closed. A
Session may consist of one or more Transactions. Sessions are NOT thread-safe (so individual objects cannot be shared
between threads).
Hibernate will intelligently cache objects in the current Hibernate Session (on object access), allowing for optimized
performance.
DSpace provides methods on the Context object to specifically remove () or reload (Context.uncacheEntity() Context.

) objects within Hibernate's Session cache.reloadEntity()
DSpace also provides special Context object "modes" to optimize Hibernate performance for read-only access (Mode.

) or batch processing (). These modes can be specified when constructing a new Context READ_ONLY Mode.BATCH_EDIT
object.

Most of the functionality that DSpace uses can be offered by any standard SQL database that supports transactions. However, at this time, DSpace only
provides Flyway migration scripts for and (and has only been tested with those database backends). Additional database backends PostgreSQL Oracle
should be possible, but would minimally require creating custom Flyway migration scripts for that database backend.

Maintenance and Backup

When using PostgreSQL, it's a good idea to perform regular 'vacuuming' of the database to optimize performance. By default, PostgreSQL performs autom
 on your behalf. However, if you have this feature disabled, then we recommend scheduling the command to run on a regular atic vacuuming vacuumdb

basis.

clean up the database nightly
40 2 * * * /usr/local/pgsql/bin/vacuumdb --analyze dspace > /dev/null 2>&1

Backups: The DSpace database can be backed up and restored using usual methods, for example with and PostgreSQL Backup and Restore pg_dump p
. However when restoring a database, you will need to perform these additional steps:sql

After restoring a backup, you will need to reset the primary key generation sequences so that they do not produce already-used primary keys. Do
this by executing the SQL in , for example with:[dspace]/etc/postgres/update-sequences.sql

psql -U dspace -f [dspace]/etc/update-sequences.sql

Configuring the RDBMS Component

The database manager is configured with the following properties in :dspace.cfg

db.url The JDBC URL to use for accessing the database. This should not point to a connection pool, since DSpace already implements a
connection pool.

db.driver JDBC driver class name. Since presently, DSpace uses PostgreSQL-specific features, this should be .org.postgresql.Driver

db.
username

Username to use when accessing the database.

db.
password

Corresponding password ot use when accessing the database.

Custom RDBMS tables, columns or views

When at all possible, we recommend creating custom database tables or views within a from the DSpace database tables. Since the separate schema
DSpace database is initialized and upgraded automatically using , the upgrade process may stumble or throw errors if you've directly modified Flyway DB
the DSpace database schema, views or tables. Flyway itself assumes it has full control over the DSpace database schema, and it is not "smart" enough to
know what to do when it encounters a locally customized database.

That being said, if you absolutely need to customize your database tables, columns or views, it is possible to create , custom Flyway migration scripts
which should make your customizations easier to manage in future upgrades. (Keep in mind though, that you may still need to maintain/update your
custom Flyway migration scripts if they ever conflict directly with future DSpace database changes. The only way to "future proof" your local database
changes is to try and make them as independent as possible, and avoid directly modifying the DSpace database schema as much as possible.)

If you wish to add custom Flyway migrations, they may be added to the following locations:

http://www.postgresql.org/
http://www.oracle.com/database/
http://www.postgresql.org/docs/current/static/runtime-config-autovacuum.html
http://www.postgresql.org/docs/current/static/runtime-config-autovacuum.html
http://www.postgresql.org/docs/current/static/app-vacuumdb.html
http://www.postgresql.org/docs/current/static/backup.html
http://www.postgresql.org/docs/current/static/app-pgdump.html
http://www.postgresql.org/docs/current/static/app-psql.html
http://www.postgresql.org/docs/current/static/app-psql.html
http://flywaydb.org/

1.
2.

Custom Flyway SQL migrations may be added anywhere under the (e.g. org.dspace.storage.rdbms.sqlmigration package [src]
 or subdirectories)/dspace-api/src/main/resources/org/dspace/storage/rdbms/sqlmigration

Custom Flyway Java migrations may be added anywhere under the (e.g. packageorg.dspace.storage.rdbms.migration [src]
 or subdirectories)/dspace-api/src/main/java/org/dspace/storage/rdbms/migration/

Additionally, for backwards support, custom SQL migrations may also be placed in the folder (e.g. [dspace]/etc/[db-type]/ [dspace]/etc
 for a PostgreSQL specific migration script)/postgres/

Adding Flyway migrations to any of the above location will cause Flyway to auto-discover the migration. It will be run in the order in which it is named. Our
DSpace Flyway script naming convention follows Flyway best practices and is as follows:

 SQL script names: V[version]_[date]__[description].sql
E.g. is a SQL migration script created for DSpace 5.x () V5.0_2014.09.26__DS-1582_Metadata_For_All_Objects.sql V5.0
on Sept 26, 2014 (). Its purpose was to fulfill the needs of ticket DS-1582, which was to migrate the database in order to 2014_09_24
support adding metadata on all objects.
More examples can be found under the packageorg.dspace.storage.rdbms.sqlmigration

Java migration script naming convention: V[version]_[date]__[description].java
E.g. is a Java migration created for V5_0_2014_09_25__DS_1582_Metadata_For_All_Objects_drop_constraint.java
DSpace 5.x () on Sept 25, 2014 (). Its purpose was to fulfill the needs of ticket DS-1582, specifically to drop a few V5_0 2014_09_25
constraints.
More examples can be found under the packageorg.dspace.storage.rdbms.migration

Flyway will execute migrations in order, based on their Version and Date. So, V1.x (or V1_x) scripts are executed first, followed by V3.0 (or
V3_0), etc. If two migrations have the same version number, the date is used to determine ordering (earlier dates are run first).

Bitstream Store

DSpace offers two means for storing content.

Storage in a mounted file system on the server (DSBitStore)
Storage using AWS S3 (Simple Storage Service), (S3BitStore).

Both are achieved using a simple, lightweight BitStore API, providing actions of Get, Put, About, Remove. Higher level operations include Store, Register,
Checksum, Retrieve, Cleanup, Clone, Migrate. Digital assets are stored on the bitstores by being transferred to the bitstore when it is uploaded or
ingested. The exception to this is for "registered" objects, that the assets are put onto the filesystem ahead of time out-of-band, and during ingest, it just
maps the database to know where the object already resides. The storage interface is such that additional storage implementations (i.e. other cloud
storage providers) can be added with minimal difficulty.

DSBitStore stores content on a path on the filesystem. This could be locally attached normal filesystem, a mounted drive, or a mounted networked
filesystem, it will all be treated as a local filesystem. All DSpace needs to be configured with for a filesystem, is the filesystem path, i.e. /dspace/assetstore,
/opt/data/assetstore. The DSBitStore uses a "Directory Scatter" method of storing an asset within 3 levels of subfolders, to minimize any single folder
having too many objects for normal filesystem performance.

S3BitStore uses Amazon Web Services S3 (Simple Storage Service) to offer limitless cloud storage into a bucket, and each distinct asset will have a
unique key. S3 is a commercial service (costs money), but is available at low price point, and is fully managed, content is automatically
replicated, 99.999999999% object durability, integrity checked. Since S3 operates within the AWS network, using other AWS services, such virtual server
on EC2 will provide lower network latency than local "on premises" servers. Additionally there could be some in-bound / out-bound bandwidth costs
associated with DSpace application server outside of the AWS network communicating with S3, compared to AWS-internal EC2 servers. S3 has a
checksum computing operation, in which the S3 service can return the checksum from the storage service, without having to shuttle the bits from S3, to
your application server, and then computing the checksum. S3BitStore requires an S3 bucketName, accessKey, secretKey, and optionally specifying the
AWS region, or a subfolder within the bucket.

There can be multiple bitstream stores. Each of these bitstream stores can be traditional storage or S3 storage. This means that the potential storage of a
DSpace system is not bound by the maximum size of a single disk or file system and also that filesystem and S3storage can be combined in one DSpace
installation. Both filesystem and S3 storage are specified by configuration. Also see Configuring the Bitstream Store below.

Stores are numbered, starting with zero, then counting upwards. Each bitstream entry in the database has a store number, used to retrieve the bitstream
when required. An example of having multiple asset stores configured is that assetstore0 is /dspace/assetstore, when the filesystem gets nearly full, you
could then configure a second filesystem path assetstore1 at /data/assetstore1, later, if you wanted to use S3 for storage, assetstore2 could be s3://dspace

. In this example various bitstreams (database objects) refer to different assetstore for where the files reside. It is typically simplest to just -assetstore-xyz
have a single assetstore configured, and all assets reside in that one. If policy dictated, infrequently used masters could be moved to slower/cheaper disk,
where as access copies are on the fastest storage. This could be accomplished through migrating assets to different stores.

Bitstreams also have an 38-digit internal ID, different from the primary key ID of the bitstream table row. This is not visible or used outside of the bitstream
storage manager. It is used to determine the exact location (relative to the relevant store directory) that the bitstream is stored in traditional storage. The
first three pairs of digits are the directory path that the bitstream is stored under. The bitstream is stored in a file with the internal ID as the filename.

For example, a bitstream with the internal ID is stored in the directory:12345678901234567890123456789012345678

[dspace]/assetstore/12/34/56/12345678901234567890123456789012345678

The reasons for storing files this way are:

Using a randomly-generated 38-digit number means that the 'number space' is less cluttered than simply using the primary keys, which are
allocated sequentially and are thus close together. This means that the bitstreams in the store are distributed around the directory structure,
improving access efficiency.
The internal ID is used as the filename partly to avoid requiring an extra lookup of the filename of the bitstream, and partly because bitstreams
may be received from a variety of operating systems. The original name of a bitstream may be an illegal UNIX filename.

1.
2.
3.
4.
5.
6.

When storing a bitstream, the DOES set the following fields in the corresponding database table row:BitstreamStorageService
bitstream_id
size
checksum
checksum_algorithm
internal_id
deleted
store_number

The remaining fields are the responsibility of the content management API class.Bitstream

The bitstream storage manager is fully transaction-safe. In order to implement transaction-safety, the following algorithm is used to store bitstreams:

A database connection is created, separately from the currently active connection in the current DSpace context.
An unique internal identifier (separate from the database primary key) is generated.
The bitstream DB table row is created using this new connection, with the column set to .deleted true
The new connection is _commit_ted, so the 'deleted' bitstream row is written to the database
The bitstream itself is stored in a file in the configured 'asset store directory', with a directory path and filename derived from the internal ID
The flag in the bitstream row is set to . This will occur (or not) as part of the current DSpace .deleted false Context

This means that should anything go wrong before, during or after the bitstream storage, only one of the following can be true:

No bitstream table row was created, and no file was stored
A bitstream table row with was created, no file was storeddeleted=true
A bitstream table row with was created, and a file was storeddeleted=true
None of these affect the integrity of the data in the database or bitstream store.

Similarly, when a bitstream is deleted for some reason, its flag is set to true as part of the overall transaction, and the corresponding file in storage deleted
is deleted.not

Cleanup

The above techniques mean that the bitstream storage manager is transaction-safe. Over time, the bitstream database table and file store may contain a
number of 'deleted' bitstreams. The method of goes through these deleted rows, and actually deletes them along with cleanup BitstreamStorageService
any corresponding files left in the storage. It only removes 'deleted' bitstreams that are more than one hour old, just in case cleanup is happening in the
middle of a storage operation.

This cleanup can be invoked from the command line via the command, which can in turn be easily executed from a shell on the server machine cleanup
using . You might like to have this run regularly by , though since DSpace is read-lots, write-not-so-much it [dspace]/bin/dspace cleanup cron
doesn't need to be run very often.

Clean up any deleted files from local storage on first of the month at 2:40am
40 2 1 * * [dspace]/bin/dspace cleanup > /dev/null 2>&1

Backup

The bitstreams (files) in traditional storage may be backed up very easily by simply 'tarring' or 'zipping' the directory (or [dspace]/assetstore/
whichever directory is configured in). Restoring is as simple as extracting the backed-up compressed file in the appropriate location.dspace.cfg

It is important to note that since the bitstream storage manager holds the bitstreams in storage, and information about them in the database, that a
database backup and a backup of the files in the bitstream store must be made at the same time; the bitstream data in the database must correspond to
the stored files.

Of course, it isn't really ideal to 'freeze' the system while backing up to ensure that the database and files match up. Since DSpace uses the bitstream data
in the database as the authoritative record, it's best to back up the database before the files. This is because it's better to have a bitstream in storage but
not the database (effectively non-existent to DSpace) than a bitstream record in the database but not storage, since people would be able to find the
bitstream but not actually get the contents.

With DSpace 1.7 and above, there is also the option to backup both files and metadata via the feature.AIP Backup and Restore

Configuring the Bitstream Store
Changed in DSpace 7.4

While the old file (defined at) still exists in DSpace 7.4, a new configuration file has bitstore.xml [dspace]/config/spring/api/bitstore.xml
been added for configuring the Bitstream Store: [dspace]/config/modules/assetstore.cfg

If you have previously configured , and only have a single assetstore, we recommend resetting to the default configuration, and bitstore.xml bitstore.xml
use the new file for configuring your Bitstream Store. This is of course very general advice, and your specific situation may require more assetstore.cfg
care, particularly if you have more than one Bitstream Store (see below, and this likely doesn't apply to you, but it could).

BitStores (aka assetstores) are configured with [dspace]/config/modules/assetstore.cfg

Configuring Traditional Storage

https://wiki.lyrasis.org/display/DSDOC8x/AIP+Backup+and+Restore

By default, DSpace uses a traditional filesystem bitstore of [dspace]/assetstore/

To configure traditional filesystem bitstore, as a specific directory, configure the bitstore like this:

#---#
#-----------------STORAGE CONFIGURATIONS------------------------#
#---#
Configuration properties used by the bitstore.xml config file
#
#---#

assetstore.dir, look at DSPACE/config/spring/api/bitstore.xml for more options
assetstore.dir = ${dspace.dir}/assetstore

Configures the primary store to be local or S3.
This value will be used as `incoming` default store inside the `bitstore.xml`
Possible values are:
- 0: to use the `localStore`;
- 1: to use the `s3Store`.
If you want to add additional assetstores, they must be added to that bitstore.xml
and new values should be provided as key-value pairs in the `stores` map of the
`bitstore.xml` configuration.
assetstore.index.primary = 0

This would configure store number 0 named localStore, which is a (filesystem), at the filesystem path of (i.DSBitStore ${dspace.dir}/assetstore
e.)[dspace]/assetstore/

It is also possible to use multiple local filesystems. The following example is specific to the older configuration, and it should still work, but is bitstore.xml
un-tested with DSpace 7.4. In the example below, key #0 is localStore at , and key #1 is localStore2 at ${dspace.dir}/assetstore /data

. Note that incoming is set to store "1", which in this case refers to localStore2. That means that any new files (bitstreams) uploaded to /assetstore2
DSpace will be stored in localStore2, but some existing bitstreams may still exist in localStore.

<bean name="org.dspace.storage.bitstore.BitstreamStorageService" class="org.dspace.storage.bitstore.
BitstreamStorageServiceImpl">
 <property name="incoming" value="1"/>
 <property name="stores">
 <map>
 <entry key="0" value-ref="localStore"/>
 <entry key="1" value-ref="localStore2"/>
 </map>
 </property>
</bean>
<bean name="localStore" class="org.dspace.storage.bitstore.DSBitStoreService" scope="singleton">
 <property name="baseDir" value="${dspace.dir}/assetstore"/>
</bean>
<bean name="localStore2" class="org.dspace.storage.bitstore.DSBitStoreService" scope="singleton">
 <property name="baseDir" value="/data/assetstore2"/>
</bean>

Configuring Amazon S3 Storage

To use as a bitstore, in point to 1, set to true, and configure it with Amazon S3 assetstore.cfg assetstore.index.primary assetstore.s3.enabled awsAcce
, , and . NOTE: Before you can specify these settings, you obviously will have to create an account in the ssKey awsSecretKey bucketName Amazon

 console, and create an user with credentials and privileges to an existing . You can also use an , which would allow your AWS IAM S3 bucket IAM Role
Amazon EC2 instance to talk directly to your S3 bucket without using any credentials. If you do configure an IAM Role with AWS, you'll still need to provide
values for and , but they are un-used by DSpace, and can be anything at all. In the example below, we assume you are awsAccessKey awsSecretKey
using an IAM Role, and are providing the text "use-the-role-please" as the value for these two keys. This is of course not a valid AWS key, for either
example.

Configures the primary store to be local or S3.
This value will be used as `incoming` default store inside the `bitstore.xml`
Possible values are:
- 0: to use the `localStore`;
- 1: to use the `s3Store`.
If you want to add additional assetstores, they must be added to that bitstore.xml
and new values should be provided as key-value pairs in the `stores` map of the
`bitstore.xml` configuration.

https://aws.amazon.com/s3/
http://aws.amazon.com/
http://aws.amazon.com/
https://aws.amazon.com/iam/
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

assetstore.index.primary = 1

#---#
#-------------- Amazon S3 Specific Configurations --------------#
#---#
The below configurations are only used if the primary storename
is set to 's3Store' or the 's3Store' is configured as a secondary store
in your bitstore.xml

Enables or disables the store initialization during startup, without initialization the store won't work.
if changed to true, a lazy initialization will be tried on next store usage, be careful an excecption could
be thrown
assetstore.s3.enabled = true

For using a relative path (xx/xx/xx/xxx...) set to true, default it false
When true: it splits the path into subfolders, each of these
are 2-chars (2-bytes) length, the last is the filename and could have
at max 3-chars (3-bytes).
When false: is used the absolute path using full filename.
assetstore.s3.useRelativePath = false

S3 bucket name to store assets in. If unspecified, by default DSpace will
create a bucket based on the hostname of `dspace.ui.url` setting.
assetstore.s3.bucketName = your-bucket-name-goes-here

Subfolder to organize assets within the bucket, in case this bucket
is shared. Optional, default is root level of bucket
assetstore.s3.subfolder = your-optional-subfolder-goes-here

please don't use root credentials in production but rely on the aws credentials default
discovery mechanism to configure them (ENV VAR, EC2 Iam role, etc.)
The preferred approach for security reason is to use the IAM user credentials, but isn't always possible.
More information about credentials here: https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide
/credentials.html
More information about IAM usage here: https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-
roles.html
assetstore.s3.awsAccessKey = use-the-role-please
assetstore.s3.awsSecretKey = use-the-role-please

If the credentials are left empty,
then this setting is ignored and the default AWS region will be used.
NOTE: AWS is funny about regions, it's probably best to explicitly provide the one you intend to use,
if you want to keep track of where your bitstreams are
assetstore.s3.awsRegionName = us-west-2

The incoming property specifies which assetstore receives incoming assets (i.e. when new files are uploaded, they will be stored in the "incoming"
assetstore). This defaults to store 0. NOTE: in the file, this setting is called .assetstore.cfg assetstore.index.primary

S3BitStore has parameters for awsAccessKey, awsSecretKey, bucketName, awsRegionName (optional), and subfolder (optional).

awsAccessKey and are created from the console. You'll want to create an user, and generate a Security awsSecretKey Amazon AWS IAM
Credential, which provides you the accessKey and secret. Since you need permission to use S3, you could give this IAM user a quick & dirty
policy of AmazonS3FullAccess (for all S3 buckets that you own), or for finer grain controls, you can assign an IAM user to have certain
permissions to certain resources, such as read/write to a specific subfolder within a specific s3 bucket.
bucketName is a globally unique name that distinguishes your S3 bucket. It has to be unique among all other S3 users in the world.
awsRegionName is a region in AWS where S3 will be stored. Default is US Eastern. Consider distance to primary users, and pricing when
choosing the region.
subfolder is a folder within the S3 bucket, where you could organize the assets to be in. If you wanted to re-use a bucket for multiple purposes
(bucketname/assets vs bucketname/backups) or DSpace instances (bucketname/XYZDSpace or bucketname/ABCDSpace or bucketname
/ABCDSpaceProduction).

Migrate BitStores

There is a command line migration tool to move all the assets within a bitstore, to another bitstore. bin/dspace bitstore-migrate

[dspace]/bin/dspace bitstore-migrate
usage: BitstoreMigrate
 -a,--source <arg> Source assetstore store_number (to lose content). This is a number such as 0 or 1
 -b,--destination <arg> Destination assetstore store_number (to gain content). This is a number such as 0 or

http://aws.amazon.com/
https://aws.amazon.com/iam/

1.
 -d,--delete Delete file from losing assetstore. (Default: Keep bitstream in old assetstore)
 -h,--help Help
 -p,--print Print out current assetstore information
 -s,--size <arg> Batch commit size. (Default: 1, commit after each file transfer)

[dspace]/bin/dspace bitstore-migrate -p
store[0] == DSBitStore, which has 2 bitstreams.
store[1] == S3BitStore, which has 2 bitstreams.
Incoming assetstore is store[1]

[dspace]/bin/dspace bitstore-migrate -a 0 -b 1

[dspace]/bin/dspace bitstore-migrate -p
store[0] == DSBitStore, which has 0 bitstreams.
store[1] == S3BitStore, which has 4 bitstreams.
Incoming assetstore is store[1]

	Storage Layer

