
Create a new aspect (Manakin)
(This is a work in progress. As I learn more I add it.)

A Manakin aspect contributes a self-contained set of features to some set of the pages generated by XMLUI. An aspect is embodied in a pipeline. Cocoon
Its implementation consists of a sitemap, and zero or more classes to implement unique components used in the sitemap. (It is possible that all of the
components you need are already provided by Cocoon or Manakin. Some aspects, for example, require only XSL transforms, an an XSL transformer is
already implemented for you.)

You need a working knowledge of Cocoon to fully understand or to create a Manakin aspect.

The Sitemap
This is a normal Cocoon sub-sitemap. List the aspect's pipelines and the components that those pipelines use.

Component elements (, , , etc) are grouped by type. Each one gives a short name to a Java class which implements its transformer action matcher
function.

A pipeline expresses a sequence of actions carried out on the DRI document being constructed. Conceptually, the document passes through each action
on its way to the end of the sitemap. Begin with a (which accepts the developing DRI document from an earlier processing stage) and end generator
with a (which passes the document to a later stage). Sandwiched between these are , , , , serializer matches selectors transformers actions
and the like, which act on the content of the document.

Typically a pipeline will need to choose whether it is interested in processing this particular document, and perhaps how it should treat the document based
on its content. A variety of matchers are available for this purpose. Common matches are "wildcard" (which matches wildcard patterns against the
application-specific portion of the URL), (which tests handles as to whether they represent communities, collections, items, HandleTypeMatcher
bitstreams, etc.), and (which tests the requesting user's authorization for types of access to the object represented by a HandleAuthorizedMatcher
handle). If none of your pipeline's components matches the current document, the document should be serialized as-is.

Match operations can be nested to any reasonable depth.

Eventually you reach a point at which you have discovered what you want to do to the document. stages apply transformers to the document, transform
to add to or alter some of its content. You may find existing transformers that implement some of the operations you require, but this is the most likely
place for you to identify some of your own code which augments or edits the document.

A start on a list of the transformers provided by DSpace is available by browsing the .DSpace javadocs
See the direct known subclasses of .AbstractDSpaceTransformer

You also have the use of the stock transformers provided by Cocoon – see for details.the Cocoon 2.1 documentation

Writing a Transformer
A transformer is a subclass of .AbstractDSpaceTransformer
See the javadoc for for the methods you can override.AbstractDSpaceTransformer

Augmenting the DRI document

In particular, you'll want to implement some of , , , and/or . Each is passed an object addBody() addOptions() addPageMeta() addUserMeta()
representing the appropriate segment of the DRI document so that your code can make required additions to it. For example, to augment the body you
would override :addBody

public void addBody(Body body) throws ...
{
 String foo = Bar.getFoo();

 body.addDivision("myDivision")
 .addPara("myStuff", null)
 .addContent(foo);
}

This would add a division named "myDivision" containing a paragraph named "myStuff", whose content is whatever was returned by .Bar.getFoo()

What elements you add is up to you. Keep in mind that you'll need to organize the data so that your themes can easily pick them out for placement in the
final page.

Knowing what you're working with

http://cocoon.apache.org
http://projects.dspace.org/dspace-xmlui/dspace-xmlui-api/apidocs/index.html
http://cocoon.apache.org/2.1/userdocs/transformers.html

The class is quite useful for discovering what sort of request you are fulfilling and what repository object org.dspace.app.xmlui.utils.HandleUtil
is in focus.

DSpaceObject theObject = HandleUtil.obtainHandle(objectModel);
if (null != theObject)
{
 int objectType = theObject.getType();
 int objectId = theObject.getID();
}

If returns then the current request does not refer to a specific repository object handle.obtainHandle null

objectModel is an attribute of , filled in by its method, and thus available to you since you are extending that AbstractDSpaceTransformer setup
class. The type of a should be one of the small integers defined in (ITEM, COLLECTION, DSpaceObject org.dspace.core.Constants
COMMUNITY, etc.).

Complete Examples
Emetsger__ExampleAspects

Additional Documentation
Manakin Developer's Guide
DRI Schema Reference

https://wiki.lyrasis.org/display/DSPACE/Emetsger__ExampleAspects
http://wiki.datadryad.org/images/8/8d/ManakinDevelopersGuide.pdf
http://www.dspace.org/1_7_0Documentation/DRI%20Schema%20Reference.html

	Create a new aspect (Manakin)

