
ThreeSpaceDesignProposal
"3Space" - a tentative proposal for next-generation DSpace architecture
(M. Simpson, 5/7/2004)

INTODUCTION

Here's some (admittedly sketchy) architectural suggestions, as hashed
out by Mike Simpson and Jim+Downing across a series of IC and email
communications.
Some of the concepts that this design tries to embody include:

"programming to interfaces, instead of implementations", as defined
in (Erich Gamma et al., Addison-Wesley 1995)Design Patterns
p.17-18, to simplify development and integration of new components.
modular architecture, using either the "dependency injection" or
"service locator" patterns to simplify interaction between
components, as discussed in "Inversion of Control Containers and the
Dependency Injection Pattern" (Martin Fowler,).http://www.martinfowler.com/articles/injection.html
(possible) a "chain of responsibility" design pattern (,Design Patterns
p.223-232) for certain modules, to increase flexibility in how a given
DSpace instance could be configured to respond to client requests.
The above ideas hopefully contribute to a design that will
enable/encourage lots of independent development of functionality by
folks in the general DSpace user community, and make sure that
independent code contributions can be easily integrated into other
DSpace instances.

LAYE ELATIONSHIPS
The "3" in "3Space" comes from the three layers of the architecture.
Each layer is defined by a Manager object, a set of APIs (implemented
as Java interfaces), and one or more modules (implemented as Java
classes each implementing one or more of the Java interfaces).
There's also (probably) an instance-level object that ties the
Managers together, which I've been calling the "scaffold", for want of
a better term.
The three layers in the architecture also implicitly define two
"boundaries" between layers. The boundaries represent implied APIs as
well: the set of objects that may be passed across them as parameters
to and returned values from the API calls made by the implementing
modules and their Manager objects.
The working terms for the three layers are: "protocol", "service", and
"support". The terms for the boundaries are: "protocol/service" and
"service/support".
The whole point of the layered architecture is to isolate logically
separate chunks of functionality, so that, i.e. someone implementing a
module for the service layer doesn't need to know or care about any of
the details of the protocol layer above, or the support layer below.
Each module exists entirely within its layer, and sees only its own
layer's APIs, and the objects that are allowed to pass the boundaries
of the adjoining layers.

THE POTOCOL LAYE
The purpose of the protocol layer is to translate arbitrarily
formatted requests from clients of the DSpace system into a neutral
internal request format, which is then passed to the service layer for
further action; and, upon receipt of the corresponding neutral
internal response object from the service layer, translate it back
into the appropriate client format.
As a concrete example, DSpace should probably ship with a protocol
module to handle HTTP/HTML requests and responses ("HttpHtmlModule").
The Protocol Manager's job would be to instantiate this class,
listen on a configurable hostname/port socket for client requests, and
hand those requests to the HttpHtmlModule. The HttpHtmlModule would
receive those HTTP requests, build a DSpaceequestObject, and then
give it to the Protocol Manager for dispatch to the service layer,
i.e. something like:
{{{
public interface DSpaceModule { }
public interface ProtocolModule extends DSpaceModule { }
public class HttpHtmlModule implements ProtocolModule

Unknown macro: {private ConfigurationManager config_mgr = getConfigManager();private ProtocolManager proto_mgr =
getProtocolManager();public void initialize_module(){proto_mgr.listen_on(config_mgr.getHostname(),config_mgr.getPort());}public String
process_request(String request){DSpaceequestObject ds_req = new DSpaceequestObject();// ... code to turn the request string received from

the// client (i.e. an HTTP request) into the// DSpaceequestObject ...DSpaceesponseObject ds_rsp = proto_mgr.service_request(ds_req);

Unknown macro: {private ConfigurationManager config_mgr = getConfigManager();private ProtocolManager proto_mgr =
getProtocolManager();public void initialize_module(){proto_mgr.listen_on(config_mgr.getHostname(),config_mgr.getPort());}public String
process_request(String request){DSpaceequestObject ds_req = new DSpaceequestObject();// ... code to turn the request string received from

the// client (i.e. an HTTP request) into the// DSpaceequestObject ...DSpaceesponseObject ds_rsp = proto_mgr.service_request(ds_req);

http://www.martinfowler.com/articles/injection.html

process_request(String request){DSpaceequestObject ds_req = new DSpaceequestObject();// ... code to turn the request string received from

the// client (i.e. an HTTP request) into the// DSpaceequestObject ...DSpaceesponseObject ds_rsp = proto_mgr.service_request(ds_req);
Stringuffer sb = new Stringuffer();// ... code to turn the response object returned from the// service layer back into a String in whatever format// the
client is expecting, i.e. HTML ...return sb.toString();}}}}
}

The .getXXXManager() methods above are left deliberately blank - they could be Singletons bound by JNDI, ClassLoader (traditional singleton
pattern implementation) or ServletContext. This is the Service Locator pattern - in the dependency injection pattern the component would specify
exactly which services and configuration parameters it required for operation, rather than obtaining them through Locators (Managers).
JimDowning

A developer, core or otherwise, might choose to implement a web
services interface to their DSpace instance, writing a new module
("HttpSoapModule") to receive SOAP-format requests from clients, and
return SOAP-formatted responses to them. The HttpSoapModule could be
implemented without having to touch any code, or in fact have any real
knowledge of, below the protocol layer. Later, another developer
might decide that SOAP-over-SMTP might be useful for certain functions
(like bitstream retrieval) and might implement another module
("SmtpSoapModule") based on the original HttpSoapModule, again without
having to touch anything below the protocol layer.

THE SEVICE LAYE
The purpose of the service layer is to receive requests (in a neutral
internal format) from the protocol layer, make the necessary calls
into the support layer to resolve the request and build a response
object, and then return that object to the protocol layer.
As a concrete example, DSpace will need to ship with a service module
to handle simple object retrieval ("ObjectetrievalModule"). The
Service Manager instantiates the object, which then awaits the
appropriate request event from the protocol layer (I'm actually not
sure who should broker this, the Protocol Manager or the Service
Manager, or both? The Service Manager is going to need to have a
configurable mechanism for dispatching the various kinds of requests
to the appropriate service module – maybe some kind of regex-based
system, configured in an XML file?). Upon receipt of a request
object, the ObjectetrievalModule calls down into the support layer to
service the request – authenticating and/or authorizing as necessary,
retrieving the requested asset object, and formatting it into a
DSpaceesponseObject which is then passed back to the protocol layer.
More extremely rough pseudocode:
{{{
public interface DSpaceModule { }
public interface ServiceModule extends DSpaceModule { }
public class ObjectetrievalModule implements ServiceModule

Unknown macro: {private ConfigurationManager config_mgr = getConfigManager();private ServiceManager srv_mgr = getServiceManager();
public DSpaceesponseObject service_request(DSpaceequestObject ds_req){DSpaceesponseObject ds_rsp = new DSpaceesponseObject();// ...
code calling into the support layer to do, i.e.// session authentication, principal authorization,// and object retrieval ...int sid = DSpaceequestObject.
getSessionId();DSpaceSession ds_sess = srv_mgr.getSession(sid);boolean authenticated = srv_mgr.authenticate_session(ds_sess, username,
passphrase);if(! authenticated){throw new DSpaceAuthenticationFailureException();}boolean authorized = srv_mgr.authorize_for_retrieval(
ds_sess.getPrincipal(),ds_req.getetrievalPath());if(! authorized){throw new DSpaceAuthorizationFailureException();}DSpaceId did = ds_req.
getObjectetrievalId();DSpaceObject dso = srv_mgr.retrieve_object(did);// ... code to translate the DSpaceObject into the// DSpaceesponseObject
...return ds_rsp;}}}}
}
New service modules can be implemented and added to either the core
code, or as optional plugin modules, as needs for new services arise.
The service module developers can implement these new modules without
any knowledge of the layers above or below, i.e. any new service
immediately becomes available through any/all of the deployed protocol
modules, without extra work on the part of the developer; and changes
to the support layer implementations won't affect the existing service
modules.

THE SUPPOT LAYE
The purpose of the support layer is to respond to a variety of calls
filtering down from the service layer – i.e. for authentication,
authorization, session maintenance, asset store maintenance, etc.
Each module in the support layer implements one or more of the Support
Layer APIs, and then indicates to the Support Manager upon
initialization which methods it will be responsible for supporting.
I.e. some DSpace instances may choose to configure a
KerberosAuthNZModule support module that handles both authentication
and authorization to a Kerberos-based back end; other instances may
only want a KerberosAuthenticationModule (for authentication), but a
locally-developed SomeLocalSystemAuthorizatioNModule (for
authorization). The idea is to maximize pluggability into arbitrary
backend systems, and hide all of specific configuration and
implementation details behind the Support Manager, so that other

process_request(String request){DSpaceequestObject ds_req = new DSpaceequestObject();// ... code to turn the request string received from

the// client (i.e. an HTTP request) into the// DSpaceequestObject ...DSpaceesponseObject ds_rsp = proto_mgr.service_request(ds_req);
Stringuffer sb = new Stringuffer();// ... code to turn the response object returned from the// service layer back into a String in whatever format// the
client is expecting, i.e. HTML ...return sb.toString();}}}}

Unknown macro: {private ConfigurationManager config_mgr = getConfigManager();private ServiceManager srv_mgr = getServiceManager();
public DSpaceesponseObject service_request(DSpaceequestObject ds_req){DSpaceesponseObject ds_rsp = new DSpaceesponseObject();// ...
code calling into the support layer to do, i.e.// session authentication, principal authorization,// and object retrieval ...int sid = DSpaceequestObject.
getSessionId();DSpaceSession ds_sess = srv_mgr.getSession(sid);boolean authenticated = srv_mgr.authenticate_session(ds_sess, username,
passphrase);if(! authenticated){throw new DSpaceAuthenticationFailureException();}boolean authorized = srv_mgr.authorize_for_retrieval(
ds_sess.getPrincipal(),ds_req.getetrievalPath());if(! authorized){throw new DSpaceAuthorizationFailureException();}DSpaceId did = ds_req.
getObjectetrievalId();DSpaceObject dso = srv_mgr.retrieve_object(did);// ... code to translate the DSpaceObject into the// DSpaceesponseObject
...return ds_rsp;}}}}

support modules, or the services layer above, don't need to worry
about them.
More pseudocode:
{{{
public interface DSpaceModule { }
public interface SupportModule extends DSpaceModule { }
public interface AuthorizationModule extends SupportModule { }
public interface AuthenticationModule extends SupportModule { }
public interface AssetStoreModule extends SupportModule { }
public class KerberosAuthenticationModule implements AuthenticationModule

Unknown macro: {private ConfigurationManager config_mgr = getConfigManager();private SupportManager sup_mgr =
getSupportManager();// methods to implement the AuthenticationModule interface ...public boolean authenticate_session()

// ...}public class LdapAuthorizedAssetStoreModule implements AuthorizationModule,AssetStoreModule{// okay, having a single module deal with
authorization and asset// store management is a contrived example to prove a point. }
}
New support modules can be developed either by local sites, to tie
into local legacy backends, or more general modules (Kerberos, LDAP)
could be developed as part of the core codebase, with configurable
options to hook them into local instances of well-known protocols.
Each support module is isolated from changes in the protocol and
service layers above it, and independent of what other support modules
are deployed by a particular instance's configuration.

CHAIN OF ESPONSIILITY PATTEN IN THE SUPPOT LAYE
The support layer is one place where it might be useful to allow for
multiple individual modules to declare their interest in handling API
calls. I.e. you might try to authenticate first against a remote
Kerberos service, but fall through to a small filesystem-based
directory if the Kerberos authentication is unsuccessful; or you might
want to try object retrieval from the local asset store, but fall
through to a remote object retrieval module for certain object
identifiers.
The Apache webserver has a similar setup, where individual Apache
modules can register their interest in various phases of the request
transaction process, and indicate (via return values from a funtion
dispatch mechanism) that they decline to process this particular
request (passing it on to the next module registered for that
particular phase); that they have handled the phase, and the request
should move on to the next phase; or that they have rejected the
request, and an error code should be returned to the client; etc.
Under this module, the Support Manager becomes responsible for
managing "chains" of modules that have registered their support for
various APIs; call priority for individual modules could either be
based on position in a configuration file (modules listed first get a
chance to respond to an API call first) or on explicitly configured
priority levels (i.e. the KerberosAuthenticationModule answers
Authentication API calls at a priority of 50, and
LocalAuthenticationModule answers calls to the same API, but at a
priority of 25).
The "Chain of esponsibility" design pattern, where a manager passes a
method call down a chain of object, giving each a chance to respond in
turn, is not hard to implement, and would add a lot of flexibility to
the support layer.
I don't know if doing something similar at the higher layers is
worthwhile – are their times where, for instance, multiple distinct
modules might want to implement and respond to a single Service API?
Something to think about further.

CONCLUSION
In considering the above, I want to emphasize that individual details
like which methods wind up in which APIs, what we call particular
objects, etc., isn't at all what I'm trying to describe. I went back
and forth on whether or not to leave in the chunks of pseudocode
precisely because I didn't want to let implementation details muddy up
the overall architectural design. I wound up leaving them in, mainly
to emphasize the "writing to interfaces" and "service locator"
(i.e. the Manager objects) paradigms.
And of course, this is just One Way To Do It. Maybe we only need the
service and support layers, and the protocol layer is more trouble
than it's worth. Or maybe the "chain of responsibility" stuff needs
to be dropped from the support layer, if it makes the configuration
file syntax too horrible.
I do think that the two things we should be striving for are maximum
flexibility of deployment (individual instances should be able to
easily mix-and-match modules to serve their specific needs, and the
core code should ship with a sufficient number of base modules to

Unknown macro: {private ConfigurationManager config_mgr = getConfigManager();private SupportManager sup_mgr =
getSupportManager();// methods to implement the AuthenticationModule interface ...public boolean authenticate_session()

Unknown macro: { ... authenticate against a local Kerberosbackend datasource ... }
// ...}public class LdapAuthorizedAssetStoreModule implements AuthorizationModule,AssetStoreModule{// okay, having a single module deal with

authorization and asset// store management is a contrived example to prove a point. }

Unknown macro: { ... authenticate against a local Kerberosbackend datasource ... }
// ...}public class LdapAuthorizedAssetStoreModule implements AuthorizationModule,AssetStoreModule{// okay, having a single module deal with

authorization and asset// store management is a contrived example to prove a point. }

immediately answer the needs of most of the community); and minimum
difficulty of code development and integration (individual module
writers should be insulated from side-effects introduced by other
module writers – the framework should make all other modules
transparent, from the point of view of a single module).
I hope that the design I've described moves us towards those two
goals, or at least suggests some directions for further discussion.

	ThreeSpaceDesignProposal

