
1.
2.
3.

1.
2.
3.

1.
2.
3.
4.

1.
2.

20110215 Developer Integration Meeting Notes
Agenda
10-11:30 Plan structure of integrated code base

What structure do we want for the source tree and what are the distinct build targets
What becomes a library?
Framework and patterns for unit testing

11:30-12:00 Plan Subversion migration – moving code into a single place

How to maintain continuous integration (Hudson/Jenkins)
Any impact of project structure on Selenium testing
Who does what in what sequence for the merge

1:30-3 Collaboration

What is effective collaboration for us now and what are the barriers to us collaborating better
managing the lines of communication
assignments, division of labor #
Managing the code base

Reviewing submitted code – who has what responsibility
Deciding that we will have a standard

Standards for code structure – packages
Standards for coding style

How to submit a patch
How do I become a VIVO developer?

Plan structure of integrated code base
VIVO has two distinct subversion repositories – Vitro for the bulk of the generic functioning of the application, and VIVO for specific modifications
associated with the VIVO ontology.

Discussion of difference between VITRO and VIVO

VITRO VIVO

basic theme + themeing architecture
connectors

wordpress
drupal
R

no ontology (almost)
application ontology

framework for self editing
ingest tools
login(shibboleth)
policies(when edit what)
reasoners (ontmodel spec)
lucene
file upload |
ontology
custom forms
visualizations
custom list views
lucene (do not) index list |

Branch structure

1.
2.
3.
4.
5.

Discussion of the SVN

trunk
latest stable code
code that is stable to the point other developers won't hate you
development occurs in trunk

Tags
moments in time
do not become branches
no patches applied to tags

Branches
development (that might annoy other developers)
release(moving)
very unstable
Naming Convention

development branch (dev-Description-JIRAProject-Issue#)
maintenance (MAINT-Project-Version)

Submitting code changes

General discussion was that we should accept code changes from the mailing list. Right now we can use a basic policy about what to do about accepting
code but if we start to get a lot of submissions we will have to review this policy.

(based on)XBMC's How to Submit a Patch

create unified diff
submit as attachments to JIRA tickets.
category = reviewing team
include revison to apply to (if needed)
license requirements

http://wiki.xbmc.org/?title=HOW-TO_submit_a_patch

Todo: Jim Blake: create sourceforge wiki page on submitting code changes.
http://issues.library.cornell.edu/browse/NIHVIVO-2142

Code style (3:20 pm - 3:37pm)

Can we get Eclipse to help us?

How will we agree on what the style standards are?

When will we discus problems that people have with styles.

Todo: Micah will get us the xml check style config

Decision: Project will use the check style plug-in with a unified configuration. We will have to come up with a way to agree on the style if conflicts are a
problem. We can talk about changes on 3pm Thursday calls.

How to become a developer? (3:37pm- 3:48pm)

A developer who is already a committer can email the dev list about this person and ask to have them added to the agenda of a 3pm developers call?
Have a lead add an item to the agenda to get someone approved as a committer? We could have them nominated on a meeting one week and then
approve then next week. (Chris B, Brian C and Steven W like this).

What should we do about discussing someone who wants to become a committer? Will people be reluctant to criticize someone in public? They could just
email Jon CR or someone with the problems in private?

What do we do about developers who are causing problems? Does someone who is having problems just ask someone like Jon CR to look into this?
Should a dev lead just yank their SVN access?

todo: Steven Williams write a wiki page on becoming a developer

http://issues.library.cornell.edu/browse/NIHVIVO-2142

break (3:48 - 4:00)

4:00 - 4:30 CU people worked on release. Chris B, Brian C and Steven W. talked a little about what to to with openness. Chris B said that we can outline
some documents and get some of the other people to flesh these out. Talk about "getting started guides" for projects like Debian, Ubuntu and Ruby.

Unstructured discussion (4:30 pm - 5:00pm)
What would need to change for doing release out of Sourceforge?

StevenW Likes regular releases for predictability. FL has been doing half time on development and half on testing. Are we going to need a unified cycle
across the project?

Chris B. What is the process to decide on what to work on in a release?

JonCR - After the project, what will we do to decide what features to work on in a release?

BrianL - Would like to spend time working on providing data in formats like bibo ().http://bibontology.org

Nick - Would like to do more user testing to design new features.

BrianC - My priority is the national network.

ChrisB - Concerned that VIVO is seen as just a phone book. Also interested in usability testing.

StevenW - Competitive landscape review. Digital Vita has a collaborator feature.

ChrisB - Vanderbilt applied to be a national CTSA coordinating center. As a coordinator they will need to find co-PIs who work at other CTSAs to
collaborate with. How can we do this in VIVO? How can I answer the questions: "Who can I work on this grant with?" "Who can introduce me to this person
that I'd like to work with?" Can we write plug-ins to write mashups with Linkedin?

StevenW - Tomorrow we will decide what process to use to choose features for upcoming releases?

JonCR - Would like to be able do national network tasks (starting with search) in a local VIVO.

We looked at the Temporal visualization and people liked them. They would like to have the visualization on the profile page of organizations.

http://bibontology.org

	20110215 Developer Integration Meeting Notes

