
Score
Overview
 Depending on your data the next step may be to match incoming data with data already in VIVO. For example, if you have just pulled in some publication
information from Pubmed, you might want to compare the author names with people in your VIVO, so that you can link the publications with the authors.
This comparison is done via the tool, which compares any values you want between VIVO and the input data, and assigns a number to the Score
comparison.Score.java provides a method used to score incoming data. Data is assumed to be in a VIVO-like ontology and stored in a Jena . model
Method can call any combination of scoring algorithms. Scoring function will attempt to match data to individuals in VIVO. Several algorithms can be
utilized to determine when the match will be inserted into VIVO. Data produced by this method is stored in a separate scoring model which then is required
by the to do the data changes.Match

A Score run involves several concepts:

The in the input model of data to score. This allows different Score runs to be performed for different types of data, for example to namespace
score authors, publications, and journals separately.
The on which to compare an individual in the input model to an individual in VIVO. For example,URI

http://xmlns.com/foaf/0.1/firstName

to compare authors by their first names.
The with which to run the comparison. An algorithm takes two strings and returns a floating-point number between 0.0 and 1.0. A 0.0 algorithm
indicates complete rejection, while a 1.0 indicates a complete match. For example, the algorithm takes the two strings and equality test
determines whether they are precisely the same string. If so, it returns 1.0; if not, it returns 0.0. Other algorithms, such as , Levenshtein distance
perform a more thorough comparison of the strings and can return values in-between one and zero inclusively.
The of the particular comparison. This is typically a number between 0.0 and 1.0 and is multiplied by the output of the algorithm to get the weight
score value for that pair of items and that URI. A lower weight means that this particular comparison is less important than others for this run.

A Score run can contain multiple sets of URI, algorithm, and weight (linked together by a common, arbitrary parameter suffix). The total Score value of the
individual is the sum of the products of the algorithm output and weight for each set. For example a Score run that is intended to exactly match the full
name of a person might be passed in a URI of first name, algorithm of equality test, and weight of 0.3, plus a URI of last name, algorithm of equality test,
and weight of 0.5. If both first and last name match, the total Score value will be (1.0 * 0.3) + (1.0 * 0.5) = 0.7. If only last name matched, it would be (0.0 *
0.3) + (1.0 * 0.5) = 5.0.

At this point Score is finished. All it does is generate these values. It is that determines what to do with them.Match

Arguments

Short
Option

Long
Option

Parameter Value Map Description Required

i inputJena-
config

CONFIG_FILE inputJena JENA configuration filename true

I inputOverride override the JENA_PARAM of inputJena jena model
config using VALUE

false

v vivoJena-
config

CONFIG_FILE vivoJena JENA configuration filename true

V vivoOverride override the JENA_PARAM of vivoJena jena model
config using VALUE

false

s score-config CONFIG_FILE score data JENA configuration filename true

S scoreOverride override the JENA_PARAM of score jena model config
using VALUE

false

t tempJenaDir DIRECTORY_PATH directory to store temp jena model false

A algorithms for RUN_NAME, use this CLASS_NAME (must
implement Algorithm) to evaluate matches

true

W weights for RUN_NAME, assign this weight (0,1) to the scores true

F inputJena-
predicates

for RUN_NAME,match true

P vivoJena-
predicates

for RUN_NAME, assign this weight (0,1) to the scores true

n namespace SCORE_NAMESPACE limit match Algorithm to only match rdf nodes in inputJena whose
URI begin with SCORE_NAMESPACE

false

Usage

https://wiki.lyrasis.org/display/VIVO/Jena+RDF+Model
https://wiki.lyrasis.org/display/VIVO/Match
https://wiki.lyrasis.org/display/VIVO/Match

1.
2.

1.
2.
3.

Explanation

Execute Score for Departments
$Score $SCOREMODELS -n ${BASEURI}org/ -AdeptId=$EQTEST -WdeptId=1.0 -FdeptId=$UFDEPTID -PdeptId=$UFDEPTID

Here $SCOREMODELS refers to the models being scored between.

SCOREINPUT="-i $H2MODEL -ImodelName=$MODELNAME -IdbUrl=$MODELDBURL -IcheckEmpty=$CHECKEMPTY"
SCOREDATA="-s $H2MODEL -SmodelName=$SCOREDATANAME -SdbUrl=$SCOREDATADBURL -ScheckEmpty=$CHECKEMPTY"
SCOREMODELS="$SCOREINPUT -v $VIVOCONFIG -VcheckEmpty=$CHECKEMPTY $SCOREDATA -t $TEMPCOPYDIR -b $SCOREBATCHSIZE"

$VIVOCONFIG refers to the Configuration within vivo.xml

$SCOREINPUT is the current harvested data model

$SCOREDATA is a model containing the data generated from the scoring process and is used by Match to make the changes needed.

The $UFDEPTID contains the predicate being scored on.

UFDEPTID="http://vivo.ufl.edu/ontology/vivo-ufl/deptID"

The -n ${BASEURI}org/ filter the changes to the specific namespace,

Your desired namespace will be something like

http://vivo.myDomain.edu/category

As long as all your department URIs begin with that string. This is important if your predicate seems to be part of many different resources.

The EQTEST is making sure that the match is 100% equal (A stands for algorithm)

The and flags are determining the predicates that matched on within the input and VIVO models respectively.F P

The part needs to be consistent since one score statement can score in multiple ways. you may want to choose label=deptId=

Methods

init

Initializes the variables

verifyRunNames

Verify that each map contains the same keys

loadRdfToScoreData

Load a batch of data into the score model

build SPARQL insert statement
execute statement

buildSelectQuery

Builds the select query.

create a StringBuilder with the initial part of the SELECT statement
append the rest of the statement with the predicates related to the RUN_NAME
return statement as a string

execute

1.
2.
3.
4.
5.
6.

a.
b.
c.

Create a vivoClone
Create an inputClone
Place both vivo and score into same dataset.
Build the Query using buildSelectQuery
Apply the query to the dataset.
For every result:

Build a score record.
Build a fragment of the SPARQL statement
Send SPARQL fragments to loadRdfToScoreData

	Score

