
How to Create a Custom Ingest Form

The following section presumes that you are using the Virtual Machine Image or are
visiting OR that you have installed and configured the XML http://sandbox.islandora.ca
Forms module. For an overview of how Islandora handles descriptive metadata, read Chapte

. This section will discuss how to create a new r 13 - Descriptive Metadata and Islandora
form using the Islandora Form Builder.

Introduction

The XML Forms Builder allows you to create and manipulate and xml form templates
affiliate them with This means you can create custom forms for users to content models.
ingest items into collection by affiliating You may want to the content model with a form.
create a custom metadata form to address the needs of your particular collection, or to pre-
populate repeating fields. For example, if a collection of PDFs was all written by the same
author, you may wish to create a custom form for this collection that has the author’s name
pre-populated, so that users ingesting into this collection will not need to re-enter this
information. Using custom forms you can also specify which metadata elements you wish to
use to describe your object, and create validation rules for particular fields, among other
features.

If you are a developer, or somebody looking to install the XML form builder, you
will want to review Chapter 10: Enabling Form Creation with the XML Forms
Modules, which discusses the installation and configuration of the module.
If you are a user, then the following documentation assumes that you have some
understanding of metadata schemas and XML, as well as Islandora specific concepts
such as Content Models, and Collection Objects. The greater grounding you have in

, , and (.xsds), the greater use you will XPath XML Form Templates XML Schemas
be able to make of the form builder.
Solution Packs are designed to come pre-packaged with suitable forms written in
MODS. These forms can be copied, and edited or modified to suit your needs.
Forms can be created based on any schema.

Before You Begin

Required Modules

http://sandbox.islandora.ca
https://wiki.lyrasis.org/display/ISLANDORA6131/Chapter+13+-+Descriptive+Metadata+and+Islandora
https://wiki.lyrasis.org/display/ISLANDORA6131/Chapter+13+-+Descriptive+Metadata+and+Islandora

Ensure that you have downloaded and enabled the following Drupal modules which are
available from the Islandora.ca :Download page

islandora_content_model_forms
islandora_xml_forms
php_lib
objective_forms
tabs

When developing an XML form in the XML Form Builder you’ll need to reference the
schema of the metadata format you are working with. Throughout this document we’ll be
using the OAI DC metadata schema as an example. The OAI DC XML format is the
serialization of Simple Dublin Core metadata descriptions and we’ll be using Dublin Core
elements in this example . You can view/retrieve the schema from http://www.openarchives.
org/OAI/2.0/oai_dc.xsd

Sample XML Record

It is incredibly helpful to have an example record on hand while developing the form.
Ensure that it matches the version of the XML schema you are working with.

Sample OAI DC Record from a Fedora Repository

http://islandora.ca/download
http://www.openarchives.org/OAI/2.0/oai_dc.xsd
http://www.openarchives.org/OAI/2.0/oai_dc.xsd

<oai_dc:dc xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:dc="
http://purl.org/dc/elements/1.1/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.
openarchives.org/OAI/2.0/oai_dc/
[http://www.openarchives.org/OAI/2.0/oai_dc.xsd]">

<dc:title>Pioneer days & shanty ways</dc:title>
<dc:creator>Eldershaw, Edith V.</dc:creator>
<dc:subject>History</dc:subject>
<dc:subject>Social life and customs</dc:subject>
<dc:description>Edith V. Eldershaw.</dc:description>
<dc:description>Printed by Williams & Crue Ltd.; Summerside, P.E.I.</dc:description>
<dc:description>Contains "stories", poems, and photographs,</dc:description>
<dc:publisher>Eldershaw</dc:publisher>
\\

<dc:type>collection</dc:type>
<dc:type>ingested</dc:type>
<dc:format>electronic</dc:format>
<dc:identifier>ilives:257167</dc:identifier>
<dc:language>eng</dc:language>
<dc:coverage>Prince County (P.E.I.)</dc:coverage>
\\

<dc:coverage>Tignish (P.E.I.)</dc:coverage>
<dc:coverage>Prince Edward Island</dc:coverage>

</oai_dc:dc>

XML Editors

When developing a form it can be useful to have an XML editor to test code in. Typically
these editors can help you determine the xpath of an element, whether the output you are
producing is valid, etc. XML Editors would include (commercial), (open-Oxygen XPontus
source), and there are many others.

XML Form Builder

http://www.oxygenxml.com/
http://xpontus.sourceforge.net/

XML Form Builder is a Drupal module that integrates the creation of XML based forms
into Islandora. Once a form has be built, it is associated with a content model. This tutorial
will take you through the process of creating a form, associating it with a content model,
and implementing it with a collection. Once created you will be able to create and edit your
metadata.

To use the XML Form Builder navigate to the module in your Islandora site:

Administer > Content Management > XML Form Builder (admin/content/xml/form)

Form Builder Interface

When you start the module you are presented with an option to select a form from a list
(those are the forms that come bundled with your Islandora install) and a series of buttons.

Create: Select Create to begin the process of creating a metadata form from scratch or from
an existing form definition file (an XML Form Builder form).

Copy: Copies an existing form (from the dropdown), that you can then modify. This is
probably be one of the most common methods you will use to create new forms.

Edit: Edits an existing form.

View: View an existing form. This option is useful when testing input. You can submit a
form and see its XML output.

Export: Exports an existing form and allows you to save the form XML to your local
computer.

Creating a Form

To start creating a form select Create.

In the Create Form dialogue enter a form name - for example we are creating a basic OAI
DC form so a name like oai_dc_basic would be appropriate. If you have an existing XML
Form Builder form you could upload the form definition. We’ll be creating this OAI DC
XML form from scratch, so we can click on Create.

The module should report that it successfully created a new form called oai_dc_basic.

This is the main form building/editing interface for creating XML forms and it provides
methods for adding form properties, form fields and a preview pane.

Setting Form Properties

When creating an XML form the first thing you need to set in the Form Editor is the Form
Properties. This is where having an example of an OAI DC record would come in handy
and would provide the information you need to fill in the Form Properties. Here is the part
of the record that you’ll use:

<oai_dc:dc xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:dc="
http://purl.org/dc/elements/1.1/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.
openarchives.org/OAI/2.0/oai_dc/
http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

It provides information about the Root Element Name, the Namespace URI, the location of
the Schema, as well as the various namespaces needed.

Select Save once you have the properties entered. Once the form properties have been
entered you are ready to add elements to your form.

Adding form fields

Some schema require elements appear in a certain order (an order based schema), that
certain elements be required or not, that some elements are repeatable and others not, or that
elements can be nested. Refer to your schema documentation and to the guidance in
creation of records based on the schema. For the schema we are using in this tutorial,
Simple Dublin Core, each of the fifteen elements is optional and may be repeated. We will
create a simple form for this exercise that utilizes several Dublin Core elements. Let’s
create a table listing the elements, the element labels, the type of element, the content of the
element, and whether they are repeatable. We’ll use this information when adding elements
to our form.

Element Label Type Content Repeata
ble

title Title textfield The title of the work. no

creator Creator
(s)

tags/tag The creator(s) of the work. yes

descripti
on

Descripti
on

textarea A description of the work. no

type Type select A controlled list of terms no

date Date datepic
ker

The date the work was issued or published. no

subject Subject
(s)

tags/tag The topic of the work. yes

rights Rights textarea Information about rights held in and over
the resource.

no

Adding a textfield type form field - the dc:title element

We can start adding elements to the form starting with the title element. We can use the
information in our table to fill out the first part of Element Form.

In this part of the form you can enter values for Identifier, Type, Title, Description, Default
Value, and Required. These can be defined as follows:

Identifier: Identifies this form field. It is the Drupal form array key for this element.

Type: Used to determine the type of form field.

Title: The label of the form field as it appears on your form.

http://dublincore.org/documents/dcmi-type-vocabulary/

Description: The description of the form field.

Default Value: The value of the form field that will be displayed or selected initially if the
form has not been submitted yet.

Required: Indicates whether or not the element is required. This automatically validates for
empty fields, and flags inputs as required. Fields with a type of file are not allowed to be
required.

The rest of the form deals with where each element is created, read, updated, and deleted in
the XML tree. This is where it would be useful to understand how XML works and to have
a basic understanding of XPATH.

Reviewing our OAI DC XML sample record we can determine the location/context of the
title element.

<oai_dc:dc xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:dc="
http://purl.org/dc/elements/1.1/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.
openarchives.org/OAI/2.0/oai_dc/
[http://www.openarchives.org/OAI/2.0/oai_dc.xsd]">
<dc:title>Pioneer days & shanty ways</dc:title>

The full XPATH in this XML document for the dc:title element would be:

/oai_dc:dc/dc:title

where /oai_dc:dc is the parent element and dc:title is the child element. The Create dialogue
is where we enter the information needed for creating an element in our form. We’ll be
entering information into the Path Context, Path, Type, and Value properties in our
example. If you had an order based schema, you would also fill in the Schema field. Here
are some definitions for each of those properties:

Path Context: the context in which the path with be executed in.

document - xpath query is run from the root element of the document

parent - xpath query is run from the node created/read by its parent’s form field

self - only applies Delete and Update actions and applies to the node selected by the Read
action.

Path: An XPATH to this element’s parent object. This is used to determine whether this
element is inserted.

Schema: An XPATH to the definition of this element's parent. The xpath is executed in the
schema defined in this form's properties. This is used to determine the insert order for this
element.

Type: The type of node that will be created. If XML is specified, an XML snipped is
expected in the value field.

Value: If the type is either Element or Attribute, the name of the element or attribute is
expected. If the type is XML, an XML snippet is expected where the value of the form field
will be inserted where ever the string %value% is used in the XML snippet.

Review the image below and think about how your other OAI DC elements will be created
based on this pattern.

Create action is about selecting the parent node where the new node will be created.

The rest of the form deals with where the element will be read, updated, and/or deleted from.

Read action is about selecting the node that will be used to populate the form field.
Update action is about updating the node that was used to populated the form field.
Delete action is about deleting the node that the Read action selected.

1.
2.

Note: You can Update or Delete nodes other than the node which is Read - For example
with mods:name … where sub-elements are created with a form field and additional nodes
are automatically created with XML code. We may want to delete/update the entire mods:
name and its sub-elements.

Adding the creator element - an element that may have multiple values

In some cases you will have multiple occurrences of an element, for example a digital
object may have more than one creator (multiple authors) or may have many subjects that
describe it. The Form Builder has several methods dealing with this use case. In our
example OAI DC form we have decided that there could be multiple creators and the
schema allows that. It is a two step process:

create an element with a type of ,tags
nest another element in the tags type element that has a type of .tag

This image displays the first step of the creation of the creator element.

The second step is to create a nested type element. The image below displays the values tag
for the properties used for this element.

Adding a textarea type form field - the dc:description element

For element that require a description or that contain a large amount of text, the textarea
type form field is used.

Adding a select type form field - the dc:type element

In many cases you will want to provide the user with a list of controlled terms and the select
form field type is used. For the type element our controlled list of terms is based on the
DCMI Type Vocabulary. The Vocabulary provides a general, cross-domain list of approved
terms that may be used as values for the Resource Type element to identify the genre of a

.resource

DCMI Type Vocabulary

Term Description

Colle
ction

An aggregation of resources.

Data
set

Data encoded in a defined structure. Examples include lists, tables, and
databases. A dataset may be useful for direct machine processing.

Event A non-persistent, time-based occurrence. Examples include an exhibition,
webcast, conference, workshop, open day, performance, battle, trial, wedding,
tea party, conflagration.

Image A visual representation other than text. Examples include images and
photographs of physical objects, paintings, prints, drawings, other images and
graphics, animations and moving pictures, film, diagrams, maps, musical
notation.

Inter
activ
eRes
ource

A resource requiring interaction from the user to be understood, executed, or
experienced. Examples include forms on Web pages, applets, multimedia
learning objects, chat services, or virtual reality environments.

Movi
ngIm
age

A series of visual representations imparting an impression of motion when
shown in succession. Examples include animations, movies, television programs,
videos, zoetropes, or visual output from a simulation.

1.
2.

Phys
icalO
bject

An inanimate, three-dimensional object or substance. Note that digital
representations of, or surrogates for, these objects should use Image, Text or one
of the other types.

Servi
ce

A system that provides one or more functions. Examples include a photocopying
service, a banking service, an authentication service, interlibrary loans, a Z39.50
or Web server.

Soft
ware

A computer program in source or compiled form.

Sound A resource primarily intended to be heard. Examples include a music playback
file format, an audio compact disc, and recorded speech or sounds.

StillI
mage

A static visual representation. Examples include paintings, drawings, graphic
designs, plans and maps. Recommended best practice is to assign the type Text
to images of textual materials.

Text A resource consisting primarily of words for reading. Examples include books,
letters, dissertations, poems, newspapers, articles, archives of mailing lists. Note
that facsimiles or images of texts are still of the genre Text.

(source:) dublincore.org

When adding a select form field in the Form Builder there are two steps:

Add the information about the element you are creating
Add the terms that will display in the select list for users

1. When adding information about the element we will use the same method that we
have used previously.

http://dublincore.org/documents/dcmi-type-vocabulary/

2. To add terms to your select form field you need to click on the More Advanced
Controls tab in the Element Form pane. Review the image below and enter your terms
in the Options panel.

Adding a datepicker type form field - the dc:date element

For this example we are using the datepicker type of form field. You will want to review
your existing metadata as another type of form field may be more appropriate.

The remaining two elements for our sample OAI DC XML form, dc:subject (tags, tag) and
dc:rights (textarea), can be built in the same manner as fields of a similar type that we have
already created.

Adding a file upload type form field - pdf file uploader

One additional element that can be added for convenience is a file upload type form field.
This will allow you to browse for a PDF document on your local machine as part of the
Islandora ingest process. The image below illustrates what properties need to be filled in.

Note: the Identifier for this form field type be .must ingest-file-location

Form Associations Module

Connecting the Form to a Content Model

Once you’ve completed and tested the form you’ve created in the XML Form Builder
module, you can connect that form to an existing content model using the Form
Associations module. You can navigate to the module using this path:

Administer > Content management > Form Associations

In this example we will associate the form we created - - with the oai_dc_basic islandora:
 content model. Review the image below to fill out the Form Associations sp_strict_pdf

dialog.

Form Associations Dialog

Navigating to a Collection

Once the association has been successfully created, you can try ingesting new objects into a
collection that has the islandora:sp_strict_pdf content model associated with it. In this case,
the Islandora demo VM has a PDF collection associated with the islandora:sp_strict_pdf
content model. Navigate to the PDF collection using the image as a guide.

Once in the collection (you can tell where you are by the breadcrumb), select the Add tab to
add a new PDF to the collection.

Adding a PDF to the Collection

You will be presented with a dialog requesting two pieces of information: the content model

and the form to use for ingest.

Selecting the Associated Form

Entering Metadata

You will be presented with the form that we created during this tutorial. You’ll need to fill it
in. Once you’ve completed your data entry, submit the form.

	How to Create a Custom Ingest Form

